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Objective: To investigate microvascular invasion (MVI) of HCC through a noninvasive
multi-disciplinary team (MDT)-like radiomics fusion model on dynamic contrast enhanced
(DCE) computed tomography (CT).

Methods: This retrospective study included 111 patients with pathologically proven
hepatocellular carcinoma, which comprised 57 MVI-positive and 54 MVI-negative
patients. Target volume of interest (VOI) was delineated on four DCE CT phases. The
volume of tumor core (Vtc) and seven peripheral tumor regions (Vpt, with varying distances
of 2, 4, 6, 8, 10, 12, and 14 mm to tumor margin) were obtained. Radiomics features
extracted from different combinations of phase(s) and VOI(s) were cross-validated by 150
classification models. The best phase and VOI (or combinations) were determined. The
top predictive models were ranked and screened by cross-validation on the training/
validation set. The model fusion, a procedure analogous to multidisciplinary consultation,
was performed on the top-3 models to generate a final model, which was validated on an
independent testing set.

Results: Image features extracted from Vtc+Vpt(12mm) in the portal venous phase (PVP)
showed dominant predictive performances. The top ranked features from Vtc+Vpt(12mm) in
PVP included one gray level size zone matrix (GLSZM)-based feature and four first-order
based features. Model fusion outperformed a single model in MVI prediction. The
weighted fusion method achieved the best predictive performance with an AUC of
0.81, accuracy of 78.3%, sensitivity of 81.8%, and specificity of 75% on the
independent testing set.
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Conclusion: Image features extracted from the PVP with Vtc+Vpt(12mm) are the most
reliable features indicative of MVI. The MDT-like radiomics fusion model is a promising tool
to generate accurate and reproducible results in MVI status prediction in HCC.
Keywords: hepatocellular carcinoma, microvascular invasion, dynamic contrast-enhanced computed tomography,
radiomics, model fusion
INTRODUCTION

Hepatocellular carcinoma (HCC), is the fifth most common
cancer and third leading cause of cancer-related death worldwide
(1). Despite advancements in medical technology leading to great
achievements in the treatment of HCC, the prognosis of HCC
remains poor, with a 5-year recurrence rate of 70% with
hepatectomy and 35% following liver transplantation (2–4).
Microvascular invasion (MVI) is defined as the presence of
tumor cells in portal veins, large capsule vessels, or in the
vascular space lined by endothelial cells (5, 6). Evidence has
shown that MVI is an independent predictor of recurrence and
poor outcome following surgical hepatic resection (4, 7–9).

Currently, pathological examination is the gold standard for
identifying MVI of HCC following operation or biopsy collection.
This approach, however, is unreliable in case of sample
contamination or for ineffectively done preoperative needle
biopsies due to intratumoral heterogeneity (10). Furthermore,
needle biopsy may increase the risks of unintended tumor
bleeding or implantation metastasis (11). Therefore, there is a
pressing demand for an accurate and non-invasive method for
early prediction of MVI.

To date, the identified clinical indicators of MVI include:
Alpha-fetoprotein (AFP), prothrombin induced by vitamin K
absence or antagonist II (PIVKA-II), and other serological markers
(12). However, the prediction performances of these markers
were unsatisfactory due to poor sensitivity and specificity.
Morphological and imaging characteristics such as large tumor
size, unsmooth tumor margins, multinodular tumor morphology,
rim enhancement on the arterial phase, and peritumoral
hypointensity on the hepatobiliary phase of Gadolinium-
exthoxybenzyl-diethylenetriamine-pentaacetic (Gd-EOB-DTPA)–
enhanced MRI, have also been associated with the presence of
MVI (13–18). These characteristics, on the other hand, are easily
prone to inter-observer variations (19), as evidenced by the
inconsistent interpretations of the conventional CT/MRI images
for MVI prediction in previous studies (20, 21).

Radiomics is a new method for disease diagnosis and
prognosis prediction. Radiomics have exhibited great potential
in predictive/discriminative models by integrating disease-
related imaging features with clinical, pathological, and genetic
data (22–24). Progress has been made in applying CT or MRI
based radiomics for investigating MVI in HCC (25–28). However,
most studies only included a single phase of dynamic contrast-
enhanced (DCE)-CT orMRI. Exclusion of the other phases is likely
to omit useful information which may impair MVI prediction.
Also, research has focused mainly on the intratumoral region.
Therefore, key image information beyond the tumor core might be
2

lost since MVI often occurs in regions neighboring the tumor/non-
tumor interface (6, 29). Image texture from the peripheral liver
parenchyma, such as a settled 5mm or 10mm distance from the
tumor edge, have shown encouraging predictive ability in MVI (26,
28, 30). To our knowledge, no study has comprehensively reported
on MVI predictive performances using different combinations of
DCE-CT/MRI phase(s) with varying distances from the
tumor margin.

Predictive performance is also closely related to the prediction
model (or classifier) used. Different classifiers are built on
different mathematical models and thus generate inconsistent
performances with the same classification task (31). An ensemble
of classifiers, a process analogous to disease diagnosis by a multi-
disciplinary team (MDT), produces more reliable and accurate
predictions compared with a single classifier (32–34). This study
hypothesizes that this principle also applies with the fusion of
various predictive models to yield enhanced and reproducible
performance in MVI prediction.

The main study objective was to investigate the performance
of radiomics analysis for MVI prediction in HCC. This study also
aimed to identify the predominant phase(s) and the most
relevant tumor periphery range for MVI prediction using
noninvasive DCE-CT. Miscellaneous predictive models are
established by considering different combinations of phases,
tumor peripheral margins, feature selection methods and
classifiers. The predictive performances of each model, as well
as the final fusion model obtained through a multi-disciplinary
team (MDT)-like fusion method, were to be explored.
MATERIALS AND METHODS

Patient Cohort
This study was approved by the Institutional Review Board of
Guangzhou First People’s Hospital and the requirement for
informed consent was waived based on the nature of a
retrospective study. A total of 212 patients who underwent
preoperative DCE-CT for newly diagnosed HCC from January
2016 to April 2020 at Guangzhou First People’s Hospital were
considered for inclusion in the study. The inclusion criteria were:
1) Pathologically confirmed HCC; 2) preoperative quadriphasic
DCE-CT performed, and 3) complete preoperative lab tests. The
exclusion criteria were: 1) Patients who had received anticancer
therapy including chemoembolization, radiofrequency ablation,
or transcatheter arterial chemoembolization (n=98); and 2) time
interval between DCE-CT scan and surgery of more than two
weeks (n=3). Finally, a total of 111 HCC patients (MVI positive:
n=57 and MVI negative: n=54) were enrolled in this study.
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The clinical considerations included: Presence or absence of
cirrhosis, hepatitis B or C immunology. While the preoperative
tests carried out included: alpha-AFP level, white blood cell
(WBC) count, red blood cell (RBC) count, neutrophil count,
hemoglobin (Hb) level, serum albumin (ALB), platelet count
(PLT), prothrombin time (PT), international normalized ratio
(INR), aspartate aminotransferase (AST), serum alanine
aminotransferase (ALT), conjugated bilirubin (CB), serum total
bilirubin (TB), serum creatinine (Scr), serum alkaline
phosphatase (ALP), and determination of Child-Pugh class.

Imaging and Histopathology
Preoperative DCE-CT were performed on multiple scanners
with four phases following intravenous injection of the
contrast agent, including phase 1- early arterial phase (EAP),
18-25 s; phase 2- late arterial phase (LAP), 35-40 s; phase 3-
portal venous phase (PVP), 50-60 s; and phase 4- equilibrium
phase (EP) 120-250 s. The detailed imaging parameters are
shown in the Supplementary Materials.

All surgical specimens were examined by one pathologist
(W.S. Ding, with 14 years of experience in pathological diagnosis
of hepatocellular carcinoma) to confirm the MVI status of the
resected tumor.

The Volume of Interest Delineation
All images in each phase were stored in DICOM format and
anonymized. Delineation of the target volume of interest (VOI)
was performed by the ITK-SNAP software (http://www.itksnap.
org) on the CT images slice-by-slice on phases 1- 4 (Figure 1).
Visible tumor margins were first manually delineated to obtain
the volume of tumor core (Vtc). This procedure was conducted
by two investigators (W.L Zhang and R.M Yang, with 4 and 15
years of experience in radiological diagnosis, respectively) who
lacked prior knowledge of the patients’ MVI status. The
conformity of delineated VOIs was measured by the Dice
similarity coefficient. The two delineated VOIs with Dice index
greater than 0.9 were averaged to yield the final VOI.
Discrepancies on the lesion boundary (Dice < 0.9) were
resolved by further discussions until mutual consensus were
reached. The Vtc was then extended to different distances (2; 4;
6; 8; 10; 12; 14mm) from the tumor margin, to obtain seven VOIs
of the tumor periphery (Vpt), which were automatically
generated with a morphological dilation algorithm. This
process was not entirely isotropic as the expansion would stop
on encountering large vessels (vessel caliber ≥2mm), bile ducts,
or liver margin. All the manual steps allowed slight adjustment to
acquire tailored VOIs for each phase. The VOI delineation was
performed on the largest lesion for patients with multiple lesions.

Radiomics Feature Extraction and Analysis
Radiomic features were extracted from each VOI using an
open-source python package Pyradiomics (https://pyradiomics.
readthedocs.io/en/latest/index.html). There were 94 features
in total extracted from the candidate features set including:
1) First order features (n=19); 2) gray level co-occurrence
matrix (GLCM) features (n=24); 3) gray level size zone matrix
(GLSZM) features (n=16); 4) gray level run length matrix
Frontiers in Oncology | www.frontiersin.org 3
(GLRLM) features (n=16); 5) neighboring gray-tone difference
matrix (NGTDM) features (n=5); and 6) gray level dependence
matrix (GLDM) features (n=14). Please refer to the Pyradiomics
documentation (32–34) for their detailed definitions. Feature
extractions were performed on each of the four phases, and the
corresponding obtained features were combined and categorized
into four groups:

1. group 1: features from each phase, termed as F1
pha, F2

pha, 

F3
pha, and F4

pha (n=94 features for each of the four types);

2. group 2: concatenated features of any two phases, F1;2
pha, F1;3

pha,

 F1;4
pha, F2;3

pha, F2;4
pha, and F3;4

pha (n=188 features for each of

the six types);
3. group 3: concatenated features of any three phases, F1;2;3

pha , 

F1;2;4
pha , F1;3;4

pha , and F2;3;4
pha (n=282 features for each of the

four types);
4. group 4: concatenated features of all four phases, F1;2;3;4

pha

(n=376 features) (31).

This resulted in a total of 15 types (4 + 6 + 4 + 1) of different
combinations of features, which then served as the input for a
specific predictive model.

Multi-Disciplinary Team-Like Prediction
Modeling
The patient samples were divided chronologically into a training/
validation set (n = 88) and an independent testing set (n = 23). In
this research, a typical prediction model was developed on a
feature selection strategy and a classifier, and was then cross-
validated by a tenfold cross-validation (CV) using the training/
validation set (90% training, 10% validation). In each step of the
ten-fold CV, a specific feature selection method screened out an
optimal subset of the features to train a particular classifier.
Fifteen feature selection methods and ten classifiers were
investigated and their possible combinations resulted in 150
different prediction models.

The 15 types of features were extracted from different
combinations of VOIs (Vtc, Vpt or Vtc +Vpt, note here Vpt is
obtained with seven different tumor periphery distances), and
then were fed into each of the above mentioned 150 models. We
yield totally 33750 (15×150×(1 + 7+7)) models to be compared
on the training/validation set. The predictive powers of all the
evaluated models were quantified by the area under the receiver
operating characteristic (ROC) curve (AUC), accuracy (ACC),
sensitivity (SEN), and specificity (SPE).

The best phase and Vpt for MVI status prediction were
determined by comparing the AUC values. The top-3 ranked
models were identified by ten-fold CV on the training/validation
set from the best phase and Vpt. These top-3 ranked models were
then fused by two fusion methods, i.e., the plurality voting (PV)
and the weighted fusion (WF), to generate the final model that
was then verified on the independent testing set.

Each of the top-3 predictive models was regarded as a clinical
specialist providing a prediction of MVI. The PV gives a
consensus prediction based on the highest number of votes.
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PV counts the number of decisions for each class and assigns the
sample xi to class yg which obtained the highest number of votes.
All the classifiers have the same weight regardless of their respective
abilities pertaining to effective classification. The final prediction
result is calculated asH(x) = argmax

j
SL
i c

j
i(xi), where the c

j
i(x) is the

i-th classifier ci output on the j-th class yg and L is the number of
classifiers. Simply, the PV treats each vote with equal weight, to
assume that each specialist has an equal contribution to the final
prediction. While theWF assigns different weights to each classifier
Frontiers in Oncology | www.frontiersin.org 4
and integrates the classification results by a linear weighted summl:
H(x) = SL

i wici(x), where wi is the assigned weight to classifier ci(x)
satisfying wi > 0 and SL

i wici(x). In this paper, the wi is calculated
based on the validation accuracy acci of the i-th classifier computed
during the training stage: wi =

acci
SL
k=1 acck

:
The gain from model fusion was assessed by the metric: Net

Reclassification Improvement (NRI), which is a quantitative measure
for evaluating improvements in risk predictions from diagnostic
tests and prediction models (Supplementary Materials) (35, 36).
A

B

FIGURE 1 | (A) Study workflow. (B) Lesion VOIs delineation illustrated in 2D (first row) and 3D (second row). The Vtc (green) is the tumor core; the Vpt (red) is the
peritumor region at a given distance (2; 4; 6; 8; 10; 12; 14 mm) away from the tumor margin; the Vtc + Vpt (yellow) is the combination region of Vtc and Vpt. Vtc,
volume of tumor core; Vpt, peripheral tumor regions; Vtc + Vpt, combination of Vtc and Vpt.
March 2021 | Volume 11 | Article 660629
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Statistical Analysis
All statistical analyses were conducted using the SPSS 25.0
software (IBM SPSS Corporation, USA) and python 3.6.2
(Python Software Foundation (USA, https://www.python.org/
downloads/). Baseline patient characteristics were analyzed via
univariate analysis. The categorical variables were presented as
numbers and proportions and analyzed via the Chi-square test.
Two-sided p values less than 0.05 were considered statistically
significant. Comparisons between the 15 feature types were
conducted using independent samples Kruskal-Wallis test with
Bonferroni correction for adjusting for significant level in
pairwise comparison.
RESULTS

Demographics
The study cohort comprised of 57 MVI-positive and 54 MVI-
negative patients who met the inclusion criteria. No statistically
significant differences were seen in age, sex, presence of cirrhosis,
hepatitis B and C virus infection, serum AFP, WBC, RBC,
neutrophil count, Hb, ALB, PLT, PT, INR, AST, ALT, CB, TB,
Scr, ALP, and Child-Pugh class in the training/validation and
independent testing set (Table 1).

Radiomics Analysis
Optimal Setting Determination
All the established predictive models were comprehensively
compared to determine the optimal phases, tumor periphery, and
VOIs combinations. Figure 2 shows the prediction comparison
results on 15 phase combinations (F1

pha, F2
pha,…, F1;2;3;4

pha ) and
three VOIs combinations (Vtc, Vpt and Vtc +Vpt). The AUCs were
the mean values averaged for all the seven tumor peripheral
distances and all the 150 classifiers. The best performance was
seen in F3

pha (portal venous phase, PVP) and this conclusion was
consistent for both Vtc (AUC=0.78) and Vtc +Vpt (AUC=0.82).
Models inclusive of the PVP phase had the second (F3;4

pha with Vtc+
Vpt, AUC = 0.78) and third-best (F2;3;4

pha with Vtc+Vpt, AUC=0.76)
performances. In terms of VOIs combinations, the Vpt generally
achieved better predictive performance than the Vtc in almost all
phasic combinations (except for in F3

pha andF4
pha). The Vtc +Vpt

had improved prediction as compared with Vtc or Vpt alone in most
of the 15 phase. combinations (except in F2

pha, F4
pha, F1;3

pha, 
F2
pha, F2;3

pha, F1;2;3
pha ).

Using the optimal phase (F3
pha) and VOIs combination (Vtc+

Vpt), the optimal tumor peripheral distance was determined by
comparing the predictions on F3

pha and Vtc+Vpt with the
aforementioned seven different peripheral distances. As shown in
Figure 3, the predictive accuracy (in terms of the mean AUC
averaged over all the 150 classifiers) increased gradually (maximal at
12mm) as larger tumor peripheral distance was involved.

Microvascular Invasion Prediction
Performance
The training/validation set was cross-validated with features
from F3

pha and Vtc+Vpt (with 12mm tumor peripheral distance)
Frontiers in Oncology | www.frontiersin.org 5
on the 150 prediction models (classifiers + feature selection). The
performances of all models were ranked, and the top-3 models
were respectively combinations of “Random forest” & “t_score”;
“Random forest” & “f_score” and “k-Nearest Neighbor”
& “f_score”.

The predictive performances in terms of AUC of the top-3
models were 0.788, 0.776, and 0.775 on the training/validation
set (with ten-fold CV), and 0.792, 0.78, and 0.803 respectively on
the independent testing set (Table 2). Fusion of the top-3 models
further improved the predictive accuracy to AUC = 0.795 with
the PV method and AUC=0.811 with the WF method.
Comparison between the top-3 models and the two fusion
methods were quantified by the NRI metric, with a positive
NRI value indicating superiority. It was observed that PV or WF
fusion outperformed prediction using any of the top-3 models
(lower-left corner in Figure 4).

Top-Ranked Features
We also counted the number of times for each feature (with F3

pha,
Vtc+Vpt(12mm)) being selected as the top features in the 150
prediction models using ten-fold CV (Figure 5). The five most
frequently selected features included: four first-order features
(10th percentile (20%), mean (11.31%), median (11.31%) and
root mean square values (11.03%)) as well as one texture feature
GLSZM-based Gray Level Non-uniformity Normalized
(GLNN) (16.28%).
DISCUSSION

Image features extracted from the portal venous phase (PVP)
with Vtc+Vpt(12mm) were shown to be the most reliable features
for MVI prediction in HCC. An AUC of 0.81 on the independent
testing set was achieved by the WF fusion method by integrating
the top-3 models ranked from the training/validation set. Also,
one GLSZM-based texture feature GLNN and four first-order
features were found to be most associated with MVI.

Previous studies using conventional CT/MR imaging
reported the common manifestations indicative of positive
MVI, as pseudo-capsule, unsmooth tumor margins, rim or
peritumoral enhancement in the arterial phase, and peritumoral
hypointensity in the hepatobiliary phase. Chou et al. reported that
unsmooth tumor margin which has been confirmed to be
correlated with pathologically extra nodules, multinodular
fusion, or infiltrative margin, is indicative of positive MVI in
HCC lesions. A correlation between focal extra nodules on CT
images and MVI in the pathologic specimens was also found (20).
Research work by Matsui et al. suggested that peritumoral regions
had a concentration of tumor drainage vessels which presented as
corona enhancement in CT hepatic arteriography (CTHA) and
CT arterio-portography (CTAP) (37). Nishie et al. reported that
MVI positive HCCs, especially those with lesion diameter < 3 cm,
tended to have larger area of peritumoral enhancement (due to
peritumoral hemodynamic change) than MVI negative HCCs (38).
Although conventional radiological manifestations are known to
provide hints regarding MVI status in HCC, inconsistent results
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TABLE 1 | Demographics and clinical characteristics.

Variable Training/Validating set Testing set

MVI−(n = 41) MVI+(n = 47) p values* MVI−(n = 13) MVI+(n = 10) p values*

Age
0, ≤50 years 8(19.5) 21(44.7) 3(23.1) 0(0)
1, >50 years 33(80.5) 26(55.4) 0.012 10(76.9) 10(100) 0.103
Sex
0, Female 5(12.2) 6(12.8) 1(7.7) 1(10)
1, Male 36(87.8) 41(87.2) 0.936 12(92.3) 9(90) 0.846
Hepatitis virus infection (HBV/HCV)
0, absent 7(17.1) 8(17.0) 4(30.8) 3(30)
1, present 34(82.9) 39(83.0) 0.995 9(69.2) 7(70) 0.968
Liver cirrhosis
0, absent 26(63.4) 22(46.8) 6(46.2) 3(30)
1, present 15(36.6) 25(53.2) 0.119 7(53.8) 7(70) 0.722
AFP
0, ≤20 µg/L (0–7.5) 17(41.5) 19(40.4) 3(23.1) 2(20)
1, ≤400 µg/L (0–7.5) 11(26.8) 9(19.2) 4(30.8) 2(20)
2, >400 µg/L (0–7.5) 13(31.7) 19(40.4) 0.597 6(46.1) 6(40) 0.785
WBC
0, ≤10 × 109/L 38(92.7) 42(89.4) 11(84.6) 9(90)
1, >10 × 109/L 3(7.3) 5(10.6) 0.719 2(15.4) 1(10) 0.704
Neutrophil
0, ≤6.3 × 10/L 37(90.2) 40(85.1) 11(84.6) 9(90)
1, >6.3 × 109/L 4(9.8) 7(14.9) 0.467 2(15.4) 1(10) 0.704
RBC
0, ≤3.8a/4b × 109/L 9(21.9) 5(10.6) 2(15.4) 4(40)
1, >3.8a/4b × 109/L 32(78.1) 42(89.4) 0.148 11(84.6) 6(60) 0.393
Hb
0, ≤128 g/L 13(31.7) 15(32.0) 3(23.1) 2(20)
1, >128 g/L 28(68.3) 32(68.0) 0.983 10(76.9) 8(80) 1
PLT
0, ≤100 × 109/L 5(12.2) 4(8.5) 2(15.4) 1(10)
1, >100 × 109/L 36(87.8) 43(91.5) 0.728 11(84.6) 9(90) 1
PT
0, ≤13 s 40(97.6) 45(95.7) 12(92.3) 8(80)
1 >13 s 1(2.4) 2(4.3) 1 1(7.7) 2(20) 0.807
INR
0, ≤1.0 35(85.4) 36(76.6) 11(84.6) 7(70)
1, >1.0 6(14.6) 11(23.4) 0.299 2(15.4) 3(30) 0.739
AST
0, ≤40 U/L 23(56.1) 23(48.9) 7(53.8) 5(50)
1, >40 U/L 18(44.9) 24(51.1) 0.502 6(46.2) 5(50) 1
ALT
0, ≤50 U/L 30(73.2) 37(78.7) 9(69.2) 7(70)
1, >50 U/L 11(26.8) 10(21.3) 0.542 4(30.8) 3(30) 1
DBIL
0, ≤6.8 µmol/L 29(70.7) 34(72.3) 9(69.2) 9(90)
1, >6.8 µmol/L 12(29.3) 13(27.7) 0.867 4(30.8) 1(10) 0.492
TBIL
0, ≤20 µmol/L 32(78.1) 31(66.0) 9(69.2) 6(60)
1, >20 µmol/L 9(21.9) 16(34.0) 0.21 4(30.8) 4(40) 0.985
ALP
0, ≤125a/135b U/L 31(75.6) 33(70.2) 11(84.6) 9(90)
1, >125a/135b U/L 10(24.4) 14(29.8) 0.571 2(15.4) 1(10) 1
Scr
0, ≤133 µmol/L 38(92.7) 45(95.7) 13(100) 10(100)
1, >133 µmol/L 3(7.3) 2(4.3) 0.661 0(0) 0(0) /
ALB
0, ≤40 g/L 16(39.0) 17(36.2) 1(7.7) 3(30)
1, >40 g/L 25(60.1) 30(63.8) 0.783 12(92.3) 7(70) 0.398

(Continued)
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have been reported in previous studies (perhaps owing to inter-
observer variations) and thus standard diagnostic consensus has not
been reached (16, 20).

Indeed, traditional radiological imaging analysis can be integrated
with radiomics analysis for prediction modeling. However,
radiographic diagnosis confirmed by naked-eye observation is
usually limited by one’s visual perception, which is insensitive to
subtle image differences. Furthermore, diagnostic performance of
traditional radiological imaging analysis is closely related to the
radiologist’s clinical experiences and can be easily biased by
subjectivity. While radiomics provides an auxiliary alternative for
radiologists to explore more hidden image patterns in characterizing
diseases. Several studies have attempted to predict MVI status via
radiomics analysis on DCE-CT or MRI (26–28, 30, 39, 40). For
instance, Ma et al. extracted textural/non-textual features from the
DCE-CT arterial phase (AP), PVP, and delay phase (DP) of the
tumor core for MVI prediction. The PVP-based radiomics model
was reported to achieve an AUC of 0.783 and 0.793 in the training
Frontiers in Oncology | www.frontiersin.org 7
and validation datasets, respectively (27). Similarly, Xu et al.
compared radiomic features from the entire-volumetric interest
(VOIentire), 50% of the entire tumor volume (VOI50%) and a 5mm
annular region neighboring the tumor surface (VOIpenumbra). It was
shown that VOIentire and VOIpenumbra (with AUC 0.841 and 0.829 in
the training and validation sets respectively) outperformed VOI50%
in MVI prediction, which was consistent with this study (28).
However, the combinational effect of VOIentire +VOIpenumbra was
not addressed. Nebbia et al. used multi-parametric MRI radiomics to
predict MVI from the tumor core, at a fixed (10mm) peritumoral
region, as well as the tumor core + peritumoral region (39). However,
the fixed 10mm peritumoral margin was heuristically proposed
which may omit MVI occurring in regions beyond this distance.
The HCC pathological specimen collection standard may
additionally support this as it includes liver tissue within a 2cm
range from the tumor margin (6).

Previous investigations were conducted on a single (or two)
DCE CT/MRI AP, PVP, or DP phase(s) and have not addressed
FIGURE 2 | Prediction performance in terms of AUC on 15 phase combinations (F1
pha, F

2
pha,…,F1;2;3;4

pha ) and 3 VOIs combinations (Vtc, Vpt and Vtc + Vpt). Vtc, volume

of tumor core; Vpt, peripheral tumor regions; Vtc + Vpt, combination of Vtc and Vpt; AUC, area under the ROC curve.
TABLE 1 | Continued

Variable Training/Validating set Testing set

MVI−(n = 41) MVI+(n = 47) p values* MVI−(n = 13) MVI+(n = 10) p values*

Child–Pugh
0, A 36(87.8) 40(85.1) 12(92.3) 9(90)
1, B/C 5(12.2) 7(14.9) 0.713 1(7.7) 1(10) 1
March 20
21 | Volume 11 | Artic
Unless indicated otherwise, data are numbers with percentages in the parentheses. HBV, hepatitis B virus; HCV, hepatitis C virus; AFP, serum alpha-fetoprotein; WBC, White blood cell;
RBC, Red blood cell; Hb, Hemoglobin; PLT, platelet count; PT, prothrombin time; INR, international normalized ratio; AST, aspartate aminotransferase; ALT, alanine aminotransferase;
DBIL, Direct bilirubin; TBIL, total bilirubin; ALP, Alkaline phosphatase; Scr, serum creatinine; ALB, serum albumin. *Chi-square test; afemale; bmale. A value of p ˂ 0·05 was considered
statistically significant.
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the combination of phases (26–28). This study is the first attempt,
to our knowledge, to provide a comprehensive analysis aimed at
substantiating the predominant role of the PVP phase (27). More
diagnostic attention should be emphasized on PVP. Also, EAP
had limited contributions to MVI prediction. Exemption of an
EAP scan is therefore recommended in routine enhanced CT to
reduce the radiation exposure.

One GLSZM-based feature GLNN and four first-order
features were shown to exhibit strong predictive capabilities of
MVI. The GLNN measures the variability of gray-level intensity
values in the image, with a lower value indicating greater
similarity in intensity values (41). Our results implied that the
MVI positive HCCs are associated withmore heterogeneity within
the Vtc+Vpt(12mm) than the MVI negative HCCs. This can be
explained by the underlying HCC hemodynamic mechanism, that
is, tumor cells may implant to the surrounding normal liver
parenchyma from the tumor-draining vessels (37, 38).
Furthermore, the MVI positive groups demonstrated higher 10th

percentile, mean, median and root mean square values. Perhaps,
this may be attributed to the hyper-attenuation resulting from
excretion of CT contrast agent via the tumoral drainage vessels to
the surrounding normal liver parenchyma in PVP.
Frontiers in Oncology | www.frontiersin.org 8
This study also employed a novel method of using classifier
fusion for MVI prediction modeling, such as a process analogous
to disease diagnosis by a MDT, produce more reliable and
accurate predictions compared with a single classifier. This was
based on two reasons: 1) First, there is large performance
differences between different classifiers, which has been
confirmed in our previous study (31). It is not practical to
select a suitable classifier for a given task from a large pool of
classifiers, since different classifiers are built on different
mathematical grounds; 2) Second, fusion of classifiers has been
proved to generate more stable and reproducible classification
performance than an individual classifier, and is effective in
improving classification/prediction accuracy in decision-making
(32, 32, 42–44).
LIMITATIONS

Our study has several limitations. First, this was a retrospective
and single-center study with a relatively small sample size due to
an inclusion requirement of the EAP phase. However, EAP is
seldom performed in the local institutions. Future investigations
TABLE 2 | Predictive performances of the top-3 models and their fusion on the training/validation and independent testing sets.

Classifier + feature selection Training/Validation set (n = 88) Testing set (n = 23)

AUC ACC SEN SPE AUC ACC SEN SPE

Randomforest + trace_ratio 0.788 0.704 0.70 0.67 0.792 0.739 0.818 0.667
Randomforest + f_score 0.776 0.684 0.65 0.65 0.78 0.70 0.727 0.667
k-Nearest Neighbor + f_score 0.775 0.70 0.784 0.61 0.803 0.70 0.818 0.583
Ensemble Methods PV 0.795 0.739 0.818 0.667

WF 0.811 0.783 0.818 0.75
Mar
ch 2021 | Volum
e 11 | Article 6
The highest values are marked in bold.
FIGURE 3 | The prediction accuracy (AUC) trend with respect to increasing peripheral distances in Vtc + Vpt (with F3
pha).
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should thus include more participants across different centers to
confirm this study’s findings. Secondly, manual VOI delineation
is time-consuming and has uncertainties on subsequent
radiomics analysis and prediction modeling (45). Semi- or
automatic segmentation methods are expected to generate
more consistent and reproducible results.
Frontiers in Oncology | www.frontiersin.org 9
CONCLUSION

In conclusion, this study demonstrated the feasibility of
noninvasive MVI prediction via CT radiomics analysis and a
MDT-like fusion-based radiomics prediction modeling. Image
features extracted from the portal venous phase on the tumor
FIGURE 5 | A pie chart showing the number of times (%) of the features in F3
ph being selected into the top 10 features in the 10-fold cross-validation of all predictive

models with AUC > 0.7.
FIGURE 4 | Quantitative comparisons of NRI between different models. Positive (or negative) NRI value indicates superiority (or inferiority). The NRI value in each cell
represents the superiority (or inferiority) of a model in the y-axis to a model in the x-axis. NRI, Net Reclassification Improvement.
March 2021 | Volume 11 | Article 660629
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core and within 12 mm of the tumor peripheral region may be
considered as potential quantitative imaging biomarkers.
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