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Cancer stands out as one of the fatal diseases people are facing all the time. Each year, a
countless number of people die because of the late diagnosis of cancer or wrong
treatments. Glioma, one of the most common primary brain tumors, has different
aggressiveness and sub-regions, which can affect the risk of disease. Although
prediction of overall survival based on multimodal magnetic resonance imaging (MRI) is
challenging, in this study, we assess if and how location-based features of tumors can
affect overall survival prediction. This approach is evaluated independently and in
combination with radiomic features. The process is carried out on a data set entailing
MRI images of patients with glioblastoma. To assess the impact of resection status, the
data set is divided into two groups, patients were reported as gross total resection and
unknown resection status. Then, different machine learning algorithms were used to
evaluate how location features are linked with overall survival. Results from regression
models indicate that location-based features have considerable effects on the patients’
overall survival independently. Additionally, classifier models show an improvement in
prediction accuracy by the addition of location-based features to radiomic features.

Keywords: tumor location, feature selection, radiomics, glioblastoma, BraTS2019, artificial neural network,
machine learning
INTRODUCTION

Glioma presents as a common intra-axial brain tumor. About one third of all brain tumors are
gliomas (1), which begin in glial cells that support and protect neurons in the brain, like astrocytes,
oligodendrocytes, and ependymal cells (2). It is categorized into two groups: low-grade glioma
(grade I and II) and high-grade glioma (grade III and IV). Glioblastoma (GBM) is the most
aggressive type among glioma tumors, with a 5-year survival rate of 5% (3).
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Traditionally, pre-surgical overall survival (OS) was predicted
by numerous factors, such as patient’s age, histopathological
types, physical status, neurological disability, and medical image
analysis. Medical image analysis and histopathological report are
used to administer the cancer therapy. However, as the cancers’
variety and aggression are growing substantially, the tumor’s
molecular analysis would be a great way to have a more accurate
outlook on diagnosis and treatment. That is why the recent
molecular pathological studies have shown significantly different
OS for the higher-grade glioma patients with the same tumor
histopathology (4). These findings indicate that the traditional
survival prediction based on simple clinical information may not
be adequately accurate. Besides, oncologists, as erroneous human
beings, cannot consider all features in medical images. Instead,
although automatic analysis of these tumors is challenging, it is a
good alternative for traditional approaches and provides
better accuracy.

Radiomics is an emerging method that can extract a large
number of quantitative features from multidimensional medical
images by using an automatic feature extraction algorithm.
These features have the potential to give accurate
characteristics that would not be considered by the naked eye.
Radiomics leads to advanced image-based tumor phenotyping
that provides valuable clinical information for OS prediction.

In this study, a data set consisting of multimodal MRI scans of
brain tumor patients is used. Each of the sequences can show a
specific part of the tumor brighter. The tumor segmentation
map, which is essential for radiomic feature extraction, will be
obtained by employing all of the sequences. These sequences
include T1-weighted MRI (T1), T1-weighted MRI with contrast
enhancement (T1CE), T2-weighted MRI (T2), fluid-attenuated
inversion recovery (FLAIR), and so on.

The differences between the MRI acquisitions are two main
parameters: repetition time (TR) and time to echo (TE). The time
between successive pulse sequences applied to the same slice is
called TR, whereas TE is the time between the delivery and
reception of the radiofrequency (RF) pulse and the echo
signal, respectively.

T1-weighted images are produced using short TR and TE.
They are the most commonly used sequences for brain tumor
structure analysis because they allow for easy annotation of the
healthy tissues. In T1CE sequence images, the brain tumor borders
are brighter because of the accumulation of contrast agents, and
the necrotic core can be distinguished easily. Moreover, T2-
weighted images are produced using long TR and TE and can
show the edema region brighter than other parts. Since very long
TR and TE are used in the imaging process of FLAIR, FLAIR is
regarded as a highly effective sequence image to help distinguish
the edema region from the cerebrospinal fluid (CSF).
Incorporating these MRI sequences with different specifications,
radiomic features are extracted from the images (5).

A review of radiomic-based techniques for quantitative
imaging was investigated by Zou et al. (6). Also, various
researches have been carried out in the last 5 years to evaluate
the effectiveness of radiomic features and optimize their
application (7) and (8). Prateek Prasanna (7) used computerized
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texture (i.e., radiomic) analysis to evaluate the efficacy of the
peritumoral brain zone (PBZ) features from pre-operative MRI in
predicting long- (>18 months) versus short-term (<7 months)
survival in GBM, whereas Cho (8) applied radiomics to distinguish
between high-grade and low-grade glioma and the efficacy of PBZ
features from pre-operative MRI. Similarly, the research done by
Weninger et al. (9) worked on “age-only regression model” and
with the accuracy of 56% showing that adding radiomics to the age
parameter does not necessarily improve the prediction accuracy
for different resection statuses. Shboul et al. (10) used random
forest regression (RFR) with radiomic features and Feng et al. (11)
used linear models with geometrics. They achieved 58% and 62%
accuracy, respectively (12). Other researches also evaluated
radiomic features by using deep learning radiomics algorithm
for gliomas (DRAG) (13), full-resolution residual convolutional
neural network (FRRN) (14), and RFR with atlas locations,
tumor’s relative size with “pseudo-3D” method (15), and RFR
method (16).

Using the radiomic feature extraction method, a great
number of features will be extracted. These features need to be
analyzed by a proper model investigating the pattern between
these features and the OS of a patient. Therefore, machine
learning (ML) algorithms are chosen to analyze features.

Although some related factors have been clearly linked to the
OS of patients with GBM, the impact of location on survival has
been assessed less clearly. Motivated by this deficiency, this study
aims to extract location-based features of GBM and evaluate how
they affect the OS prediction independently and next to the
radiomic features.

In this paper, we analyze the efficacy of the tumor’s location
on BraTS 2019 data. It is important to note that to avoid
imperfect segmentations affecting our predictions, we only use
the training data sets of the BraTS 2019. The ground truth
segmentations of the training data set were extracted by one to
four experts with the same annotation protocol and also have
been approved by experienced neuro-radiologists. To assess the
effect of resection status, we divide the data set regarding
patients’ resection status. Thus, patients with gross total
resection status (GTR) and unavailable resection status (NA)
are used independently.

Dividing the data set into two main subgroups, we first extract
location-based features from MRI images. In this step, we use
several regression algorithms to assess each feature’s influence on
OS independently. Second, we extract radiomic features and
implement feature reduction algorithms to remove redundant
features. Finally, we concatenate radiomics and the location-
based features, put them into multivariate prediction models,
and evaluate the efficacy of adding the location-based features to
radiomics on OS prediction.
MATERIALS

Dataset
The BraTS challenge is held every year to compare different
segmentation algorithms since 2012. Since 2017, quantitative
July 2021 | Volume 11 | Article 661123
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image features have been investigated to see whether they can
enrich the clinical insight and improve the prediction accuracy of
the patients’ survival days (17).

In this project, BraTs 2019 glioma training data set (18–20) is
used, which includes data from 211 GBM patients with OS
ranging from 3 to 1,767 days. For each patient, four MRI
acquisitions (T1, T1CE, T2, and T2-FLAIR), segmentation
map including edema (ED), enhancing tumor (ET), and non-
enhancing necrotic tumor core (NEC), the survival days, and the
resection status are available.

The data set has been subdivided by resection status into
patients reported as GTR, subtotal resection (STR), and NA. In
BraTS 2018, a few patients were given as STR, but in BraTS 2019
data set, only data for patients reported as GTR and NA are
available. These resection status differences can affect the training
accuracy, so we chose to separately train the prediction models
on GTR and NA resection statuses.

In the BraTS challenge, the patients’ OS has been categorized
as long survivors (e.g., >15 months), short survivors (e.g., <10
months), and mid-survivors (e.g., between 10 and 15 months).
We considered the long survival parameter (450 days) as the
midpoint as we intended to have binary target values in our
classification. In regression models, however, all the data were
fitted to the exact survival days.

Cohort Study
The BraTS data set samples are mostly from The Center for
Biomedical Image Computing and Analytics from the University of
Pennsylvania (CBICA) and The Cancer Imaging Archive (TCIA).
Differences in population, imaging protocols, and treatment can
affect the predictionmodels noticeably. The following paragraphwill
clarify the similarities of the data set provided.

First, all the patients with GTR are from the CBICA
institution, and patients with NA are from TCIA. Second, the
one-way analysis of variance (ANOVA: p-value) is a parameter
helping us to know whether the groups have significant statistical
differences or not. In this data set, since the p-value is over 0.05,
there are no significant statistical differences between age or
survival for the different data sources and the different types of
resection status, so it is rather safe to consider the groups with a
similar statistical situation (Figure 1).
METHODS

The OS prediction model entails five main steps: (1) image
preprocessing, (2) location features extraction, (3) radiomic
features extraction, (4) unsupervised feature reduction, and
(5) regression and classification predictive modeling. These
major steps can be vividly seen in Figure 2.
Image Preprocessing
MRI images have been acquired from different scanners, as well as
various imaging protocols. Such differences undoubtedly lead to
image intensities’ diversity, and subsequently, our features to be
extracted will be affected. To tackle this problem, two different
Frontiers in Oncology | www.frontiersin.org 3
filters, N4 bias field correction (21) and z-score normalization,
were used to remove local differences in image intensities and
normalize the image to unit variance and zero mean, respectively.

1) Z-score normalization
The formula for calculating a z-score is:

Z =
x − m
s

Eq: (1)

In Eq. 1, x, m, and s are the raw value, the mean value, and the
standard deviation of pixels of the image, respectively. This
procedure helped us to normalize all the images of the data
set. In the end, the mean value of all pixels would be zero, and the
standard deviation would be equal to one for all images.

2) N4 bias field correction
N4 bias field correction is a popular method in medical image

preprocessing that uses a multi-scale optimization approach to
correct low-frequency intensity non-uniformity present in MRI
image data. In addition to the “real” pixel, the “MaskImage” can be
used to specify the pixels required and avoid excessive processing.

Radiomic Feature Extraction
In this step, radiomic features were extracted by implementing
the Pyradiomics module (22). Generally, the extracted features
are as follows:

• First Order Statistics
FIGURE 1 | Differences in age and survival by resection status.
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• Shape-based (3D)
• Shape-based (2D)
• Gray Level Co-occurrence Matrix
• Gray Level Run Length Matrix
• Gray Level Size Zone Matrix
• Neighboring Gray Tone Difference Matrix
• Gray Level Dependence Matrix

The number of extracted features from images was 3,910. It is
clear from the data set supplied that the number of features for
each patient is highly bigger than the number of patients. Such
data are called wide data (23). Using such wide data usually
results in overfitting in the training set. Consequently, to avoid
overfitting, features have to be reduced.

Standardization and Preselection of
Features
First, as the scale of radiomic features varies significantly, we
standardized them using the scikit-learn object StandardScaler
Frontiers in Oncology | www.frontiersin.org 4
to avoid their excessive influence on prediction models.
Additionally, reducing radiomic features is compulsory because
of their redundancy (24). So, different reduction methods were
used to decrease radiomic features. In this study, supervised
methods were implanted for patients with different resection
status (the number of patients as GTR = 101, the number of
patients as NA = 99), which are as follows:

Correlation Matrix
In this method, each feature was linearly regressed against other
features. The correlation matrix is one of the simplest methods by
which the pairwise correlations between single features can be
investigated, and the representative features can be chosen (25).
Next, a correlation matrix was made, and areas of high correlation
(> 0.95) were reduced to the element with the highest variability.

Variance Inflation Factor (VIF)
To identify and exterminate multicollinearity, the VIF
preselection method was implemented in the remaining
FIGURE 2 | Methodology used to evaluate the predictiveness of location-based features independently and in combination with radiomics for overall survival.
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features. A threshold of 10 is the recommended reference for this
method. Consequently, a maximum VIF of 10 was chosen, and
those with higher VIF factors were omitted.

Principal Component Analysis (PCA)
Next to VIF feature reduction, PCA was carried out on radiomic
features to extract the vital information from the data set (26)
and reduce the dimension (27) to avoid overfitting in learning
algorithms. In this step, the features, which include 95% of the
variance in the data, were kept.

Statistical Hypothesis Testing
Hypothesis tests are needed in this step to control the false
discovery rate and reveal if single features have a considerable
effect on OS prediction. The subset selected by VIF and PCA
feature selection was tested with the Benjamini–Hochberg
procedure (28), which controls the false discovery rate at a
specific level a = 0.05.

Location Feature Extraction
In this project, the main concern goes to the tumor’s exact
location and its diameter on patient survival rate. To find the
tumor center’s location, first, the brain schematic was fitted in
the Cartesian coordinates system (Figure 3). Then the exact
tumor location was calculated using the following steps.

Using the Euclidean distance measurement algorithm, the
tumor’s transverse diameter was calculated in all the 154
transverse sections. Next, the section with the biggest diameter
was considered as the tumor’s middle surface (Slice). The center
of the tumor’s longitudinal (X) and transverse (Y) distance from
the center of the brain (midline crossing) were calculated
(Figure 4). Finally, the slice number, the diameter of the
tumor, X, and Y were used in univariate and multivariate
prediction models to evaluate their robustness. Implementing
these steps helped to have clear information about the location of
the tumor in the brain.
Frontiers in Oncology | www.frontiersin.org 5
Prediction Models
This project evaluates regression and classification predictive
models simultaneously for patients with GTR and NA resection
status. In regression predictive models, features were directly
fitted to the patients’ survival days, whereas in classification,
survival days were divided into two main groups (short and
medium survival, < 450 days; long survival, > 450 days).

For univariate feature evaluation, linear regression (LR),
random forest regression (RFR) models, and support vector
regression (SVR) were used. LR attempts to model the linear
relationship between two variables. One variable is considered an
explanatory variable, and the other is regarded as a dependent
variable. RFR fits several classifying decision trees on various
sub-samples of the data set and uses averaging to improve the
predictive accuracy and control over-fitting. SVR is considered a
nonparametric technique as it relies on kernel functions. All
regression models show the effect of location-based
features independently.

For multivariate feature evaluation, we chose artificial neural
network (ANN), random forest classifier (RFC), and k-nearest
neighbors (KNN). An ANN is a computing system that operates
like the human brain. It includes several interconnected nodes in
different layers helping to find the complex correlation between
the inputs and the target values. In the random forest, a large
number of individual decision trees are used simultaneously to
predict the output based on input values. Each tree in the
random forest method leads to a prediction model, and the
class with the most votes becomes our model’s prediction. KNN
is one of the simplest ML supervised learning algorithms. KNN
algorithm investigates the similarity between the new case and
available cases and puts the new case into the most similar
category. Consequently, all the available data are stored, and a
new data point is made.
FIGURE 3 | Cartesian coordinates system fitted on brain schematic (29).
 FIGURE 4 | Longitudinal and transverse distance calculation.
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RESULTS

Radiomic Feature Reduction Approaches
First, the correlation matrix clustering method reduced radiomic
features from 3,910 to 1,601 based on the features’ pairwise
correlation. Second, the VIF-based feature reduction algorithm
removed redundant features with multicollinearity correlation
and decreased the preselected features to 153. These extracted
features were used in prediction models, as their number is
acceptable for our limited data set. Furthermore, the PCA feature
extraction method was used on VIF preselected features and
reduced from 153 to 67. This allows us to see whether
implementing different feature reduction methods at the same
time can be effective in the prediction models or not.

Hypothesis Testing
In the subset selected by VIF and PCA methods, hypothesis
testing is feasible. After Benjamini–Hochberg correction on VIF-
based and PCA-based subsets, only six and four radiomic
features remained significant, respectively.
Frontiers in Oncology | www.frontiersin.org 6
Univariate Prediction Models
First, the robustness of location-based features was investigated
independently. Results from LR (Figure 5) indicated that X, Y,
slice (tumor’s height from the bottom of the brain), and tumor
diameter features had impact on prediction of patients with
GTR. However, the results for patients with NA were not
promising. This shows the effect of resection status on better
evaluation. Also, using RFR and SVR, Spearman R, mean square
error (MES), median absolute error (MAE), mean absolute error,
and p-value were calculated. Similarly, they indicated better
influences on GTR patients (Table 1).

Multivariate Prediction Models
All classifier models were used on patients reported as GTR and
NA independently, and the results were provided in Tables 2 and
3. As the patients’OSwere divided into two classes (long-survivors
> 450 days, short-survivors < 450 days), and there was no
significant imbalance in the data set, the binary cross-entropy
was used as the loss function of the algorithms. ANN, RFC, and
KNN were used on two different radiomic feature reduction
FIGURE 5 | Linear relationship between location-based features and patients' OS in the different resection status (the first row is for patients with GTR resection
status, and the second row is for patients with NA resection status).
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methods to assess the influence of adding the location-based
features to radiomics. The following statistics were computed:
accuracy, precision, sensitivity, and specificity. Furthermore, the
results for the GTR data set are much better than NAs, which
shows the importance of using univariate resection status in the
prediction models. In the GTR data set, ANN had the highest
accuracy of 69% in VIF-selected radiomic features. Furthermore,
with the addition of location-based features, the accuracy of ANN
rose by 9%, which is slightly higher than other classification
methods. On the contrary, in the NA data set, the highest
accuracies have been achieved from RFC with 60% for PCA-
selected radiomic features. Also, adding the location-based
features in the RFC method showed an increase of 6%.
Frontiers in Oncology | www.frontiersin.org 7
DISCUSSION

Previously published research worked on the applications of
artificial intelligence (AI), especially convolutional neural
networks (CNN). Although various methods were used to
predict the patients’ OS, a few researchers divided the data set
into subgroups based on patients’ resection status (9). Most
researches were done irrespective of the patients’ resection status.
Like the TCGA glioblastoma data set studied by Gutman et al.
(30), the medical reports of patients with GB who have been
diagnosed at the University of Pennsylvania investigated by
Macyszyn et al. (31), researches done by Kickingereder et al.
(32), Lao et al. (33), and Li et al. (34). Also, radiomics were used
TABLE 1 | Performance comparison of regression models for the different types of resection status.

Feature Model Spearman R MSE Median AE Mean AE p value Model Spearman R MSE Median AE Mean AE p value

NA resection status GTR resection status

Diameter LR -0.294 78049.28 223.23 239.85 0.82 LR -0.097 37428.03 159.01 168.15 0.36
RFR -0.06 159280.9 282.93 331.82 0.85 RFR -0.41 58338.01 131.43 187.91 0.22
SVR 0.05 81374.4 126.03 190.16 0.88 SVR -0.21 26817.23 133.65 138.92 0.55

X
LR -0.03 80363.53 122.71 206.21 0.08 LR -0.081 42009.9 139.48 154.29 0.90
RFR -0.39 219679.9 315.4 369.96 0.25 RFR -0.23 56161.69 175.35 184.85 0.51
SVR -0.1 81958.81 126.64 190.72 0.77 SVR 0.13 26420.36 133.99 139.04 0.70

Y
LR 0.083 77261.72 125.21 203.08 0.75 LR -0.51 38447.94 174.54 165.92 0.005
RFR 0.6 78563.14 180.54 219.7 0.06 RFR -0.41 104772.9 229.62 268.94 0.23
SVR 0.11 81732.79 125.23 190.29 0.75 SVR -0.71 26733.7 132.54 139.14 0.01

Slice
LR -0.103 74304.09 151.36 203.15 0.60 LR 0.105 39080.92 161.89 167.2 0.04
RFR -0.16 141523.20 329.26 333.14 0.65 RFR -0.13 36495.76 159.84 162.59 0.04
SVR 0.13 81892.96 128.79 189.75 0.70 SVR -0.11 26869.68 134.1 139.53 0.03
July
 2021 | Volume
 11 | Article
Note that MSE, Median AE and Mean AE are Mean Square Error, Median Absolute Error and Mean Absolute Error respectively.
TABLE 2 | Performance comparison of classification models for patients’ reported as GTR.

Model Accuracy Precision Sensitivity Specificity Model Accuracy Precision Sensitivity Specificity

VIF-based feature subset VIF-based feature subset and location-based features
ANN 0.69 0.5 0.77 0.5 ANN 0.78 0.6 0.8 0.6
KNN 0.57 0.66 0.4 0.77 KNN 0.63 0.71 0.5 0.77
RFC 0.68 0.83 0.5 0.88 RFC 0.73 0.85 0.6 0.88
PCA-based feature subset PCA-based feature subset and location-based features
ANN 0.62 0.55 0.75 0.42 ANN 0.66 0.6 0.8 0.6
KNN 0.63 0.66 0.6 0.66 KNN 0.63 0.71 0.5 0.77
RFC 0.68 0.7 0.7 0.66 RFC 0.68 0.75 0.6 0.77
TABLE 3 | Performance comparison of classification models for patients’ reported as NA.

Model Accuracy Precision Sensitivity Specificity Model Accuracy Precision Sensitivity Specificity

VIF-based feature subset VIF-based feature subset and location-based features
ANN 0.46 0.37 0.5 0.44 ANN 0.53 0.44 0.66 0.44
KNN 0.6 0.5 0.66 0.55 KNN 0.6 0.5 0.33 0.77
RFC 0.46 0.37 0.5 0.44 RFC 0.53 0.44 0.66 0.44
PCA-based feature subset PCA-based feature subset and location-based features
ANN 0.65 0.25 0.72 0.25 ANN 0.65 0.33 0.75 0.33
KNN 0.53 0.42 0.5 0.55 KNN 0.6 0.5 0.33 0.77
RFC 0.6 0.5 0.5 0.66 RFC 0.66 0.57 0.66 0.66
661123
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in the quantitative volumetric analysis of MRI (35) and 3D deep
feature learning (4), without considering the patients’ resection
status. The BraTS 2019 data set contains data of the patients with
glioblastoma that underwent GTR and NA resection status. In
this research, we separated them to evaluate the effectiveness of
resection status. Results from regression and classification
models indicated that the resection status is an important
parameter in the prediction models. The models were far more
easily trained on the data set with unique resection status (GTR)
than the data set with various resection statuses (NA).

In this paper, binary output has been chosen for classification
methods. This is the main reason, which resulted in higher
accuracy compared to the research carried out by Weninger et
al. (9), who categorized the OS into three subgroups.
Additionally, results in the LR method investigating the effect
of location-based features independently showed that these
features can play an important role in patients’ OS. Although
ML algorithms can identify the influence of location-based
features, a larger data set is required to make this evaluation
more applicable for GBM diagnosis. Many quantitative image
analysis researches have been done based on radiomics. Sun et al.
(36) used various ML algorithms on different radiomic feature
groups and the maximum performance of feature selection and
ML methods was 0.682. Wijethilake et al. (37) evaluated the
influence of radiomics with different ML algorithms, and their
results varied between 40% and 53%. Similarly, Baid et al. (38)
used multi-layer perceptron (MLP) on radiomic features and the
accuracy and p value of the algorithm were 0.571 and 0,427
respectively. Such results show that radiomic features are not
promising enough in patients’ OS prediction. So, to increase the
robustness of radiomics, they have to be combined with other
effective features (38) in more powerful methods.

In the results, we indicated that the location-based features
positively impact patients’ OS either independently or with
radiomics. However, we do not consider our algorithms as the
best strategies, and future studies, which use a larger data set and
new learning strategies, can extract better results.

Cancer, especially GBM, is an ill-posed problem. A staggering
number of parameters can be adequate for patients’ OS. However,
current computer-aided methods for diagnosis and treatment
have helped clinicians to analyze the patients’ disease and their
treatment more quantitatively. That is why computational analysis
of medical images has gained popularity in recent decades. There
would be a great potential for researchers to use the power of AI
on medical images.

Like many previous published papers, in this research,
accuracies for both regression and classification models are not
very high. This is no doubt because of the limited data set used.
By using a larger data set, we can tackle the overfitting problem
in the training and the validation set and extract higher precision
Frontiers in Oncology | www.frontiersin.org 8
and accuracy from learning algorithms to take advantage of
algorithms in medical treatment.
CONCLUSION

In this paper, the BraTs 2019 data set was used. The results
showed that adding the brain tumor location feature to the
extracted radiomic features can improve the accuracy of the
prediction models. To demonstrate this, we first evaluated
the influence of the location-based features independently with
the regression models and then, we added them to the radiomics
in the classification models. Results indicated their robustness
even in this limited data set. Also, dividing the data set into two
different groups based on patients’ resection status helped us to
highlight the positive effect of the unique resection status on a
more accurate prediction of patients’ OS.

To move from fundamental research to translational
medicine, future studies have to be done on a larger data set,
which includes more information about patients’ physical and
social health. It seems that this information, along with
quantitative features from patients’ medical images, can have
an excellent potential for OS prediction.
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