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Purpose: Synaptophysin (SYP) gene expression levels correlate with the survival rate of
glioma patients. This study aimed to explore the feasibility of applying a multiparametric
magnetic resonance imaging (MRI) radiomics model composed of a convolutional neural
network to predict the SYP gene expression in patients with glioma.

Method: Using the TCGA database, we examined 614 patients diagnosed with glioma.
First, the relationship between the SYP gene expression level and outcome of survival rate
was investigated using partial correlation analysis. Then, 7266 patches were extracted
from each of the 108 low-grade glioma patients who had available multiparametric MRI
scans, which included preoperative T1-weighted images (T1WI), T2-weighted images
(T2WI), and contrast-enhanced T1WI images in the TCIA database. Finally, a radiomics
features-based model was built using a convolutional neural network (ConvNet), which
can perform autonomous learning classification using a ROC curve, accuracy, recall rate,
sensitivity, and specificity as evaluation indicators.

Results: The expression level of SYP decreased with the increase in the tumor grade.
With regard to grade II, grade III, and general patients, those with higher SYP expression
levels had better survival rates. However, the SYP expression level did not show any
significant association with the outcome in Level IV patients.

Conclusion: Our multiparametric MRI radiomics model constructed using ConvNet
showed good performance in predicting the SYP gene expression level and prognosis
in low-grade glioma patients.

Keywords: synaptophysin (SYP), MRI radiomics model, convolutional neural network, glioma, machine learning
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INTRODUCTION

In 2016, the World Health Organization (WHO) updated the
tumor classification in the central nervous system and precisely
introduced several molecular biomarkers that were integrated
into the diagnostic criteria of glioma along with conventional
histopathological diagnosis, aiding the advancement of precise
diagnosis in glioma (1, 2). Likewise, under the guidance of
molecular typing, the precise treatment of glioma has also been
considerably expanded (3). Given these significant molecular
markers, detecting them early and quickly has become
extremely crucial.

Synaptophysin, the most commonly expressed neural marker,
exists widely in a variety of lesions of primary central nervous
system neoplasms, from gliomas to the lowest differentiated
primitive neuroectodermal tumors (4, 5). The higher the
degree of dedifferentiation of the tumor, the higher is the
malignant degree. Therefore, as the most common neural
marker, it is worth exploring whether the expressive level of
synaptophysin is related to the malignant degree of gliomas and
the survival prognosis of patients (6, 7).

In recent years, with the dramatic expansion of medical image
analysis technology, radiomics has become a promising
technique to bridge the gap between universal images and
histopathological or molecular signatures (8). From medical
images, a large number of high-throughput imaging features,
including the extraction of tumor characteristics, can be used to
quickly obtain heterogeneous information about tumors in a
non-invasive manner (9, 10). The radiomics model established
using machine learning has a high predictive potential and has
been widely used for the precise prediction of various molecular
types of glioma (11–13).

In this study, we used a convolutional neural network
(ConvNet) to bui ld a rad iomics mode l based on
multiparametric magnetic resonance imaging (MRI) to predict
SYP expression levels in patients with low-grade glioma. The
model is aimed at facilitating the implementation of molecular
diagnosis in the early preoperative stage and the individualized
treatment for patients with glioma.
MATERIALS AND METHODS

Data Acquisition and Annotation
The imaging data and corresponding TCGA sequencing data of
124 patients with low-grade gliomas (WHOII, WHOIII) were
downloaded from the TCIA. As the patients’ private information
was de-identified by the TCGA/TCIA organization and their
information was made available for download by the public, we
Abbreviations: SYP, Synaptophysin; LGG, low grade glioma; MRI, Magnetic
resonance imaging; TCGA, The Cancer Genome Atlas; TCIA, The Cancer
Imaging Archive; ROC, Receiver Operating Characteristic; PRC, precision recall
curve; ROI, region of interest; GBM, Glioblastoma multiform; ConvNet/CNN,
convolut ional neura l network ; MGMT,O-6-methylguanine-DNA
methyltransferase; IDH, Isocitrate dehydrogenase; TR, Repetition time; TE,
Echo time; FOV, Field of view.
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did not have to apply for the approval of the Institutional Review
Board or the health organizations following the Health Insurance
Portability and Accountability Act.

The image were acquired using a 3.0-T MRI (Achieva,
Philips). The T1WI(TR, 2000 ms; TE, 10 ms; FOV, 240 mm;
slice thickness, 5 mm; and matrix size, 256 × 256), T2WI(TR,
3000 ms; TE, 80 ms; FOV, 240 mm; slice thickness, 5 mm; and
matrix size, 256 × 256), and T1WI-enhanced (TR, 6.3 ms; TE,
3.1 ms) cross-sectional images of the tumor were imported into
the 3D slicer analysis software in the Nifti format (14). Two
neurosurgeons with over 10 years of working experience
manually outlined the region of interest (ROI) along the tumor
contour under double-blind conditions. The ROI included
tumor parenchyma, necrosis, and cystic area, as well as
surrounding edema. After finishing the outlining, the
neurosurgeons analyzed the accuracy of the ROI and adjusted
it after negotiating for the parts in dispute.

Images were re-sampled by the PyRadiomics toolkit
(Version2.1.0, https://github.com/Radiomics/pyradiomics) to
guarantee a 1.0 mm pixels interval among images on 3
anatomical directions, eliminating inconsistent spatial
resolutions’ interference caused by the use of different models
of MRI machine. Meanwhile, z-score normalization was applied
to normalize the T1, T2, and T1E images, thereby obtaining the
standard normal distribution of image intensity.

The transcriptome expression data of 614 gliomas were
collected and downloaded online (http://cancergenome.nih.
gov), ranging from WHO grade II to grade IV (150 GBM and
464 LGG samples). Information on age, sex, diagnosis, WHO
grade, molecular data, and the patient prognosis was also
collected. Patients were selected and grouped according to
their median SYP expression (15, 16).
Model Establishment and Performance
Evaluation
Considering the shortcomings of traditional machine learning
techniques, such as insufficient performance in classifying brain
tumors, high complexity of manual feature extraction, and
network degradation of conventional deep learning in deep-
going networks, an automatic model of classifying brain tumors
based on the ResNet50 network is proposed in this paper. First,
the weight parameters of the model are obtained by training the
source data, and then the performance of the model is tested
using the test set.

In deep learning, the main problems associated with network
depth are gradient vanishing and gradient exploding. The
traditional solution is to initialize and regularize the data, which
deepens the depth and addresses the problem of the gradient but
leads to the degradation of network performance. ResNet50 is a
residual learning framework based on the existing deep network of
training, which is easy to optimize and has the advantage of a small
computational burden. Residuals are designed to address the
problems of degradation and gradient, as a result of which the
performance of the network improves. There are 49 convolutional
layers and 1 fully connected layer in ResNet 50. Among them, the
ID Block x2 in the second to the fifth stages represents two residual
May 2021 | Volume 11 | Article 663451
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blocks that do not change the dimension, and the Conv Block
represents the residual block with the dimension. Each residual
Block contains three convolutional layers; therefore, there are 49
convolutional layers in total, that is, 1 + 3 × (3 + 4 + 6 + 3) = 49
(Figure 1). The structure is as follows:

The size of the input data of the ResNet50 neural network is
224 × 224 × 3. After the image passes through the continuous
convolution operation of the residual blocks, the channels of the
pixel matrix of the image become deeper and deeper.
Subsequently, after passing through the Flatten layer, the size
of the image pixel matrix is changed to 2048. Finally, it is input
into the fully connected layer, and the corresponding category
probability is output through the SoftMax layer. The ResNet50
structure contains cross-layer connections, which pass the input
across layers through shortcuts, and then adds the output after
convolution to fully train the underlying network. As a result, the
accuracy is significantly improved with the increase in depth
(Figure 2). The structure of the residual block of the ResNet is
as follows:

The shortcut connection, as seen in the figure above, has a
function equivalent to performing equivalent mapping directly.
However, this operation does not add any additional parameters,
nor does it lead to computational complexity. Therefore, the model
is reduced to a shallow network to a certain extent. To avoid this, the
identical mapping function H(x) = x must be learned, but directly
fitting such a function is challenging. Let us suppose that the output
Frontiers in Oncology | www.frontiersin.org 3
of the residual network is H(x) and the output after the convolution
operation is F(x), H(x) = F(x) + x. For F(x) = (w3d(w2d(w1x))),
where w refers to the convolution operation and d represents the
activation function. Therefore, if F(x) = 0, the aforementioned
FIGURE 1 | The learning framework of the ResNet50.
FIGURE 2 | The structure of the residual block of the ResNet.
May 2021 | Volume 11 | Article 663451
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identical mapping function H(x) = x can be easily obtained, and the
problem that needs to be addressed is learning an easily fitted
residual function F(x) = H(x) - x.

Model Development
Pytorch framework was used for model development. In the
implementation of our model, an open-source repository is
used (available at https://pytorch.org/). During training, we
use ADAM as the optimizer, which is initialized with the
learning rate of 1e-4. In the analyses of the results, we use the
CAM technique implemented in an open-source repository
(https://github.com/yizt/Grad-CAM.pytorch). The data were
divided into a training set and a test set in a ratio of 8:2.
ResNet50 was used as the classifier, and the original images
were directly inputted into the network to achieve end-to-end
prediction. While training the model, we divided the data set
into five parts (No.1–No.5) and trained five models at the same
time. No. 1 was considered as the test set for the first model,
and the others were considered as the training set; No. 2 was
considered as the test set for the second model, and the others
were considered as the training set, and the rest were done in
the same manner. In the evaluation phase, we recorded the
performance of the model on the classification task of high and
low expression of SYP. Taking high expression of SYP as a
positive event, we obtained TP, TN, FP, and FN based on the
confusion matrix and the following indicators were calculated.
Sensitivity = TP/(TP + FN), Specificity = TN/(FP + TN),
Positive predictive value = TP/(TP + FP), Negative
predictive value = TN/(TN + FN), Accuracy = (TN + TP)
/(TN + FP + FN +TP).

Statistical Analyses
JMP 10.0 software (SAS Institute Inc., Cary, NC, USA) was used
to conduct the statistical analyses. Comparison between groups
was conducted using the chi-square test, Fisher’s exact test, or
binomial distribution test for categorical variables, while the
independent t-test for continuous variables. The Kaplan–Meier
estimate and Cox proportional-hazards regression model were
used for the survival analysis. The P value less than 0.05 is
deemed as statistically significant.
RESULTS

Clinical Significance of SYP
After analyzing the sequencing data of 614 cases from TCGA, we
found the expression level of SYP in the glioma to be correlated
with the tumor grade and the survival rate of the patient, and that
the expression level of SYP decreased with an increase in tumor
grade (Figure 3A). In glioma patients, particularly in grade II
and grade III patients, the higher the expression level of SYP, the
better was the survival rate of the patient (Figures 3B–D). In
grade IV patients, the expression level of SYP was not associated
with the survival rate (Figure 3E). It is suggested that SYP can be
a molecular index to judge the tumor grade and predict
prognosis, especially for low-grade gliomas.
Frontiers in Oncology | www.frontiersin.org 4
Molecular Markers and SYP
At the same time, we verified the expression levels and status of
well-known molecular markers including MGMT promoter
methylation, IDH1 mutant, and co-deletion of 1p19q in low-
grade glioma patients (WHOII, WHOIII) between high and
low expression of SYP (Supplementary Figures S1A–C). A
total of 288 patients had co-deletion of 1p19q, and the
expression level of SYP was 11.7 ± 0.068; 169 patients had no
co-deletion of 1p19q and the expression level of SYP was 10.93
± 0.0886, p < 0.0001. It prompted that the expression level of
SYP in the patients with common deletion of 1p19q was higher
(Supplementary Figure S1C). Among the patients of the
WHOII l eve l , 160 pat ien ts had MGMT promoter
methylation, and the expression level of SYP was 11.82 ±
0.0915; 31 patients had no MGMT promoter methylation,
and the expression level of SYP was 11.48 ± 0.2512, p = 0.15.
There was no significant difference between the two. It was
shown that the expression level of SYP was higher in patients
with MGMT promoter methylation. Among the patients of the
WHOIII level, 195 patients had MGMT promoter methylation,
and the expression level of SYP was 11.32 ± 0.0659; 49 patients
had no MGMT promoter methylation, and the expression level
of SYP was 10.68 ± 0.2058, p = 0.006. Among patients with
WHOIII gliomas, it was shown that the expression level of SYP
was higher in patients with MGMT promoter methylation
(Supplementary Figure S1A). Among the patients of the
WHOII level, the IDH genes of 19 patients were of the wild
type and the expression level of SYP was 11.91 ± 0.399; the IDH
genes of 198 patients were mutant and the expression level of
SYP was 11.67 ± 0.082, p = 0.46. There was no significant
difference between the two. Among the patients of the WHOIII
level, the IDH genes of 67 patients were of the wild type and the
expression level of SYP was 10.47 ± 0.169; the IDH genes of 177
patients were mutant and the expression level of SYP was
11.46 ± 0.715, P< 0.0001. It was shown that the expression
level of SYP was higher in patients with mutant IDH genes
(Supplementary Figure S1B). In order to make clear the
influence of related genes on prognosis, we performed a
regression analysis of a single factor and multi-factors
(Figure 4) (Supplementary Figures S1D, E).
Analysis of Predictive Results of a Neural
Network Model
Based on the good predictive performance of the SYP gene in
low-grade gliomas, preoperative MRI data of 124 patients with
WHO grades II and III were downloaded from the TCGA
database. Among them, 4 patients who lacked sequencing
results and 12 patients who lacked complete T1, T2, and T1
enhanced phase sequences were excluded. A total of 108
patients were selected and grouped according to their the
previous median SYP expression. There were 48 cases with
high SYP expression and 60 cases with low SYP expression.
There was no significant difference in sex and age between the
group with high expression of SYP and the group with low
expression of SYP.
May 2021 | Volume 11 | Article 663451
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A
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FIGURE 3 | Expression of SYP genes in different grades of gliomas and their relationship with the survival rate of patients. (A) Expression level of SYP genes is
significantly correlated with the grade of gliomas. (B–E) In terms of patients with grade II, III and the overall, the higher the level of SYP expression, the higher the
survival rate of patients, while in terms of patients with grade IV, the level of SYP expression is not related to prognosis.
A B

FIGURE 4 | Forest map of clinical characters in univariate (A) and multivariate analysis (B). The coordinate of the blue diamond represents the odds ratio. Univariate
and multivariate Cox regression analysis were performed. Subgroup with a value of p < 0.05 was considered statistically significant.
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MRI images were classified according to median SPY values.
Those greater than the median were considered positive, and
those lower than the median as negative. After picking out the
images with tumor regions and classifying them by cross-section,
3822 positive patches and 3444 negative patches were obtained
(Figure 5). The model trained 250 rounds in total. The ROC
curve, accuracy, positive predictive value, negative predictive
value, sensitivity, and specificity were used as evaluation
indexes. For the prediction model in the test group, the ROC
curve area = 0.98 (Figure 6A), accuracy = 0.93, sensitivity =
90.34%, specificity = 95.44%, positive predictive value = 95.62%,
and negative predictive value = 89.96% (Figure 6B).
Frontiers in Oncology | www.frontiersin.org 6
DISCUSSION

Glioma, a type of malignant tumor originating from neuroglial
cells, is one of the most common primary intracranial tumors
(17). Grade II and III gliomas are regarded as low-grade gliomas
that are well-differentiated, slow-growing, and biologically less
invasive (18). However, they usually show significantly different
clinical manifestations, recurrence rates, and prognosis (19).
According to previous studies, patient age (>40 years), tumor
resection, and tumor histology classification are important
predictors of poor prognosis in low-grade gliomas (20–23).
Nevertheless, Daniel J Brat used the TCGA database to divide
FIGURE 5 | Convolutional neural network for the extraction of image features. Through the automatic extraction of image features by class activation mapping
(CAM), the areas marked red in the image are the ones with high activation response to the visualized image.
May 2021 | Volume 11 | Article 663451
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LGGs into three categories based on isocitrate dehydrogenase
mutation and 1p/19q gene deletion state in 2015 (2), including
neuroglioma with IDH mutation and 1p/19q gene deletion,
neuroglioma with IDH mutation, and without 1p/19q gene
deletion, and neuroglioma with wild-type IDH. Furthermore, it
was found that the new classification scheme could be more
precise in reflecting the biological characteristics of LGGs,
instructing patient treatment, and predicting prognostic status
than the traditional classification (24); therefore, the significance
of molecular biomarkers has attracted widespread attention (1).

In accordance with clinical work, synaptophysin (SYP) can be
used as a predictor of disease progression and clinical prognosis of
gliomas, especially low-grade gliomas (7). Unlike the malignant
progression of glioblastoma, there is a great heterogeneity in the
prognosis of patients with low-grade gliomas, ranging from one or
two years tomore than ten years. Therefore, it is highly significant to
make a personalized and accurate prediction of the prognosis of
patients with low-grade gliomas. The expression results of SYP,
which is a common index for the pathological diagnosis of glioma,
are easy to obtain. Further, it is simple, rapid, and highly effective for
evaluation of prognosis of patients.

However, traditional CT and MR imaging techniques cannot
be applied to the molecular diagnosis of gliomas, and the rise of
imaging technology makes the connection between machine
learning and molecular diagnosis possible (25). This study adds
ConvNet technology to the traditional machine learning method.
Consequently, the considerable improvement in image processing
enables automated feature extraction, filters characteristics free
from manual design, and avoids subjective results, eventually
acquiring a better predictive performance. This is the core
advantage of model building suggested in this study.

There are some limitations to this study. First, the input
images are only tomographic MRI, which might enhance the
predictive performance of the study’s model further in case of
Frontiers in Oncology | www.frontiersin.org 7
segmentation in the coronal plane, sagittal plane, or other
multilevel reconstruction of images. Second, the study includes
relatively few cases, so the inclusion of more data to further
enhance the accuracy and universality of the ConvNet model
is suggested.

In conclusion, the ConvNet model built in this study is able to
discern the expression level of glioma SYP impartially and
effectively. In consideration of a better predictive result, the
ConvNet model is groundbreaking in the development of a
multi-parameter model to help enhance the individualized
diagnosis and treatment of gliomas.
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