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Background: Essential thrombocythemia (ET), polycythemia vera (PV), and primary
myelofibrosis (PMF) are clonal hematological diseases classified as Philadelphia
chromosome-negative myeloproliferative neoplasms (MPN). MPN pathogenesis is
associated with the presence of somatic driver mutations, bone marrow (BM) niche
alterations, and tumor inflammatory status. The relevance of soluble mediators in the
pathogenesis of MPN led us to analyze the levels of cytokines, chemokines, and growth
factors related to inflammation, angiogenesis and hematopoiesis regulation in the BM
niche of MPN patients.

Methods: Soluble mediator levels in BM plasma samples from 17 healthy subjects, 28
ET, 19 PV, and 16 PMF patients were determined using a multiplex assay. Soluble
mediator signatures were created from categorical analyses of high mediator producers.
Soluble mediator connections and the correlation between plasma levels and clinic-
laboratory parameters were also analyzed.

Results: The soluble mediator signatures of the BM niche of PV patients revealed a highly
inflammatory and pro-angiogenic milieu, with increased levels of chemokines (CCL2,
CCL5, CXCL8, CXCL12, CXCL10), and growth factors (GM-CSF M-CSF, HGF, IFN-g,
IL-1b, IL-6Ra, IL-12, IL-17, IL-18, TNF-a, VEGF, and VEGF-R2). ET and PMF patients
presented intermediate inflammatory and pro-angiogenic profiles. Deregulation of soluble
mediators was associated with some clinic-laboratory parameters of MPN patients,
including vascular events, treatment status, risk stratification of disease, hemoglobin
concentration, hematocrit, and red blood cell count.
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Conclusions: Each MPN subtype exhibits a distinct soluble mediator signature.
Deregulated production of BM soluble mediators may contribute to MPN pathogenesis
and BM niche modification, provides pro-tumor stimuli, and is a potential target for
future therapies.
Keywords: myeloproliferative neoplasms, soluble mediators, inflammation, angiogenesis, cytokines, bone
marrow niche
INTRODUCTION

Essential thrombocythemia (ET), polycythemia vera (PV), and
primary myelofibrosis (PMF) are classical myeloproliferative
neoplasms (MPN) also known as Philadelphia chromosome
(Ph)-negative MPN. These clonal diseases are characterized by
single or multilineage hyperproliferation of the bone marrow
(BM) that results in spontaneous accumulation of mature
myeloid cells in the BM and peripheral blood. The erythroid
lineage is the mostly affected in PV patients, while the
megakaryocytic lineage from ET and PMF patients exhibit
hyperplasia and atypia, and BM fibrosis. PMF patients also
have increased or decreased number of granulocytes,
monocytosis, and erythroid dysplasia (1, 2).

Disease pathogenesis is partially attributed to the presence of
acquired driver mutations in Janus Kinase 2 (JAK2), calreticulin
(CALR) or myeloproliferative leukemia virus (MPL) genes. These
somatic mutations lead to abnormal activation of the JAK
pathway, resulting in constitutive activation of their downstream
effectors, specially STATs (2, 3). JAK2V617F is the most frequent
driver mutation in MPN patients: it is detected in more than 90%
of PV patients, and in about 50–60% of ET and PMF patients (4,
5). The CALR mutation is found in about 20–30% of ET and PMF
patients, and is the second most frequent MPN-mutation (4, 5).
Triple negative and MPL mutation are present in less than 12% of
ET and PMF patients (4).

The crosstalk between inflammation and neoplastic cells plays a
crucial role in disease development and progression. The BM of
MPN patients is rich in inflammatory cytokines and growth factors,
which form a pro-tumorigenic microenvironment that supports
neoplastic cells and favors specific clinical phenotypes (6–8).

Cytokines and chemokines are key mediators of the immune
system that regulate many complex signaling processes, and whose
levels reflect the systemic and local immune activation status (9, 10).
The co-participation of cytokines may result in activation or
inactivation of immune pathways, and one cytokine can be
secreted by different cell types in the same environment (10). In
addition, cytokines act as important regulatory signals of
hematopoiesis by inducing proliferation and/or survival of
hematopoietic stem-cells (8, 11). Cytokines can also play a role as
extrinsic factors that contribute to BM pathological changes (6, 7).

MPN are considered tumor inflammatory diseases. Over the
past years, several studies have investigated how chronic
inflammation contributes to MPN pathogenesis (6, 7, 12). We
have recently described an altered cytokine profile in peripheral
blood of MPN patients (13). PMF patients exhibit high
inflammatory profile due overproduction of multiple pro-
2

inflammatory cytokines and chemokines (13, 14); in these
patients, the presence of JAK2V617F mutation is associated
with high CXCL10 levels (13).

Considering the relevance of cytokines, chemokines, and growth
factors (hereafter referred to as soluble mediators) as mediators of
inflammation, angiogenesis and hematopoiesis regulation, here we
examined the soluble mediator signature in the BM niche of ET,
PV, and PMF patients. We also analyzed the correlation between
cytokine levels and clinic-laboratory parameters.
MATERIALS AND METHODS

Patients and Samples
The Ethics Committees for Human Research from the School of
Pharmaceutical Sciences of Ribeirão Preto, from the University
Hospital of the Ribeirão Preto Medical School (HC-FMRP;
Ribeirão Preto, Brazil), and from the Euryclides de Jesus
Zerbini Transplant Hospital (São Paulo, Brazil) approved the
study protocol.

The studied groups consisted of 17 healthy volunteers (CTRL
group) and 63 MPN patients (28 ET, 19 PV, and 16 PMF
patients). The patients were recruited at the Bone Marrow
Transplantation Unit of HCFMRP-USP and at the Euryclides
de Jesus Zerbini Transplant Hospital. All MPN patients were
diagnosed according to the 2016 World Health Organization
criteria (1). Healthy BM donors were recruited at the Bone
Marrow Transplantation Unit of HCFMRP-USP.

BM aspirates were collected from the left posterior iliac crest
into EDTA tubes at the time of diagnosis. Plasma was separated
from the BM samples by centrifugation at 400×g for 10 min at 4°C
(Eppendorf 5810R centrifuge), and aliquots were stored at −80°C
for further cytokine analysis.

Risk-Stratification of MPN Patients
PV patients were classified into two risk categories: high and low.
High-risk patients were the ones with age >60 years and/or
history of vascular complications (including previous
thrombosis, cardiovascular events and/or strokes). The patients
who did not present the abovementioned two risk factors were
classified as low risk (15).

The revised IPSET-thrombosis (r-IPSET-t) risk score splits
ET patients into four risk categories: very low (age <60 years and
absence of JAK2 mutation), low (age <60 years and presence of
JAK2 mutation), intermediate (age >60 years and absence of
JAK2 mutation), and high risk (age >60 years and presence of JAK2
mutation or vascular complication) (16).
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The DIPSS-Plus scoring system was used to classify PMF
patients into four categories: low, intermediate-1, intermediate-2,
and high risk. The prognosis score considered the following risk
factors: age, white blood cell and platelet counts, peripheral blood
blast percentage, hemoglobin concentration, transfusion
dependency, presence of constitutional symptoms, and
unfavorable karyotype (17).

Multiplex Assays
Soluble mediator levels were determined using a customized
microbeads multiplex assay (Human Magnetic Luminex® Assay,
R&D Systems) performed on the Luminex1 MAGPIX1 System
(Luminex Corporation). The cytokines and chemokines
measured were interleukins (IL) IL-6, IL-1b, IL-12p70, IL-10,
IL-17a, and IL-18; interferon gamma (IFN-g); tumor necrosis
factor alpha (TNF-a); IL-6 receptor subunit alpha (IL-6Ra); C–
X–C motif ligands (CXC) CXCL8 (also known as IL-8), CXCL12
(also known as SDF-1, stromal cell-derived factor 1), CXCL10
(also known as IP-10, interferon-induced protein 10); and C–C
motif chemokine ligands (CCL) CCL2 (known as MCP-1,
monocyte chemotactic protein 1) and CCL5 (known as
RANTES). The growth factors granulocyte-macrophage colony
stimulating factor (GM-CSF), macrophage colony stimulating
factor (M-CSF), granulocyte colony stimulating factor (G-CSF),
hepatocyte growth factor (HGF), vascular endothelial growth
factor (VEGF), and VEGF receptor 2 (VEGF-R2) were also
quantified. Data were analyzed using the Milliplex Analyst
software v3.5 (Millipore; VigeneTech Ind).

Data Analyses
Mann–Whitney test was applied to compare differences in
distribution of soluble mediators among MPN groups (ET, PV,
and PMF) and patients’ JAK2V617F status. Spearman test was
used for the correlation analysis of hematological parameters.
GraphPad Prism 6.0 software (GraphPad Software) was used for
statistical analysis. Significance was set at 0.05.

Cytoscape 3.7.2 software (available at htpp://cytoscape.org,
National Institute of General Medical Sciences of the National
Institutes of Health, USA) was used to construct the soluble
mediator signatures (18), using the r-values (correlation
coefficient) from the Spearman test that had p-value <0.05.

Overall soluble mediator profi le was obtained by
characterizing the general cytokine pattern of each group (18,
19). Each individual was classified as high or low mediator-
producer, based on overall median values, as described
previously by Vitelli-Aguiar et al. (19). The complete protocol
of overall analyses was adapted from our previous work (13).
RESULTS

Demographic Data and Clinic-Laboratory
Profile of Study Cohort
The median age of MPN patients was 65.5 years (20–85),
distributed as 63 (31–78), 62 (20–85), and 68.5 (54–80) years
for ET, PV, and PMF patients, respectively. The median age of
Frontiers in Oncology | www.frontiersin.org 3
CTRL subjects was 49 (19–83) years. Male–female proportions in
the studied CTRL, ET, PV, and PMF groups were 6–11, 5–23,
12–7, and 12–4, respectively. Demographic and clinic-laboratory
characteristics of the MPN cohort, including age, gender,
mutation status, risk stratification, fibrosis rate, transfusion
dependency, treatment status, hematological parameters, and
reticulin rate are summarized in Table 1. The individual
characteristics of CTRL volunteers and MPN patients are
summarized in Tables S1–S4.
TABLE 1 | Demographic data and clinic-laboratory parameters from
polycythemia vera (PV), essential thrombocythemia (ET), and primary
myelofibrosis (PMF) patients.

Data PV (n=19) ET (n=28) PMF (n=16)

Age (years/range) 62 (20–85) 63 (31–78) 68.5 (54–80)
Gender (male %) 12 (63.16) 5 (17.86) 12 (75)
Mutation status
JAK2V617F+ (%) 19 (100) 13 (46.43) 9 (56.25)
CALR+ (%) 0 (0) 7 (25) 5 (31.25)
JAK2V617F- (%) 0 (0) 5 (17.86) 0 (0)
Double negative (%) 0 (0) 3 (10.71) 2 (12.5)
Treatment, n (%) 4 (21.06) 10 (35.71) 5 (31.25)
ASA 2 (10.53) 2 (20) 0 (0)
HU 2 (10.53) 6 (60) 3 (60)
ASA + HU 0 (0) 2 (20) 0 (0)
Anagrelide + ASA 0 (0) 0 (0) 1 (20)
Ruxolitinib 0 (0) 0 (0) 1 (20)
Vascular event, n (%) 7 (36.84) 5 (17.86) 5 (31.25)
NA 0 (0) 4 (14.29) 0 (0)
Transfusion
dependency, n (%)

0(0) 2 (7.14) 5 (31.25)

NA 1 (5.26) 3 (10.71) 0 (0)
Fibrosis rate n, (%)
0 10 (52.64) 20 (71.44) 1 (6.25)
1 5 (26.32) 3 (10.71) 0 (0)
2 1 (5.26) 2 (7.14) 3 (18.75)
3 1 (5.26) 1 (3.57) 8 (50)
4 1 (5.26) 0 (0) 4 (25)
NA 1 (5.26) 2 (7.14) 0 (0)
Reticulin rate n, (%)
0 0 (0) 14 (50) 0 (0)
1 0 (0) 4 (14.29) 0 (0)
2 0 (0) 1 (3.57) 4 (25)
3 0 (0) 1 (3.57) 8 (50)
4 0 (0) 1 (3.57) 4 (25)
NA 19 (100) 7 (25) 0 (0)
Hematological
parameters
WBC count,
×103/mm³ (range)

12.1 (3.59–21) 7.28 (3.35–15.6) 5.85 (1.46–15.3)

RBC count,
×106/mm³ (range)

6.33 (3.09–7.46) 4.34 (2.98–5.19) 3.66 (2.49–6.01)

Hemoglobin, g/dl
(range)

16.3 (11.1–21.5) 13.2 (10.1–22.4) 11.1 (8.62–17.4)

Hematocrit, % (range) 49.1 (33.7–62) 40.65 (34.6–64.7) 35.15 (26.3–55.3)
PLT count, ×103/mm³
(range)

605 (161–1502) 665.5 (304–1293) 305 (71.7–917)
M
ay 2021 | Volume 1
ASA, acetylsalicylic acid; CALR+, positive for calreticulin mutation; Double negative,
negative for JAK2V617F and CALR mutation; HU, hydroxycarbamide; JAK2V617F+,
positive for JAK2V617F mutation; JAK2V617F−, negative for JAK2V617F mutation; NA,
data not available; PLT, platelets; RBC, red blood cells; VE, previous vascular event; WBC,
white blood cells.
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Soluble Mediator Levels in the BM Niche
of PV, ET and PMF Patients
Compared with CTRL, the BM niche of PV patients presented
increased levels of inflammatory cytokines and angiogenesis-
and hematopoiesis-related factors, including CCL2, CCL5,
CXCL8, CXCL10, CXCL12, GM-CSF, HGF, IFN-g, IL-1b, IL-
6Ra, IL-12p70, IL-17a, IL-18, M-CSF, TNF-a, VEGF, and
VEGF-R2 (Figure 1 and Table S5).

ET patients exhibited augmented levels of CCL2, CCL5, CXCL8,
CXCL10, GM-CSF, IFN-g, IL-1b, IL-17a, IL-18, TNF-a, and VEGF,
when compared with CTRL. MF patients displayed higher levels of
only CXCL8, CXCL10, IL-6Ra, and IL-18, as compared with CTRL
(Figure 1 and Table S5).

All MPN categories presented high production of the
chemokines IL-18, CXCL10 and CXCL8. Compared with PV
patients, ET patients had lower levels of G-CSF, HGF, IFN-g,
Frontiers in Oncology | www.frontiersin.org 4
IL-10, and IL-17a in the BM niche, while PMF patients presented
lower levels of CCL2, CCL5, CXCL12, G-CSF, GM-CSF, HGF,
IFN-g, IL-1b, IL-10, IL-17a, IL-12p70, M-CSF, TNF-a, and
VEGF. The BM niche of ET patients exhibited higher levels of
CCL5, IL-6 and VEGF than PMF patients.

The present results indicated that the BM levels of IL-17, IFN-g,
G-CSF, and HGF in PV patients were higher than those detected in
PMF and ET patients. Hence, PV patients seem those with more
unique soluble mediators profile as compared to the other MPN.

Categorical Analyses of Soluble Mediator
Production in BM Niche of MPN Subtypes
Categorical analyses were performed to better comprehend the
soluble mediator production patterns and the differences among
MPN subtypes. Patients were stratified into high and low
producers of soluble mediators using the overall median as
FIGURE 1 | Bone marrow plasma levels of inflammatory soluble mediators in healthy subjects (CTRL; n = 17) and patients with essential thrombocythemia (ET, n =
28), polycythemia vera (PV, n = 19), and primary myelofibrosis (PMF, n = 16). The concentration of all the soluble mediators was determined using a Multiplex assay.
Significant differences when p <0.05, Mann–Whitney test.
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cut-off point. High producer was the individual whose soluble
mediator production value was higher than the overall median,
while low producer was the individual whose soluble mediator
production level was equal to or lower than the overall median.
The frequency of high producers of each mediator was calculated
for all disease and CTRL subsets. The production of each
mediator was considered relevant when the frequency of high
producers exceeded 50% (13, 19, 20).

The CTRL group did not produce any of the mediators in
relevant amounts, since less than 50% of the individuals were
high producers (Figure S1). Soluble mediator production in BM
niche differed among MPN subtypes. PV patients exhibited
remarkably dysregulated production of soluble mediators, with
relevant production of the 20 mediators analyzed. Only PV
group showed high producers for IL-10, CXCL12, IFN-g, G-
CSF and HGF in a relevant frequency. Differently from PMF, PV
and ET group showed relevant production of IL-6, IL-1b, IL-17a,
IL-12p70, CCL5, VEGF, VEGF-R2, TNF-a, GM-CSF and
M-CSF.

ET patients produced most of the mediators in relevant
amounts, but PMF patients exhibited relevant production of
only five mediators (Figure S1), among them IL-6Ra, IL-18 and
Frontiers in Oncology | www.frontiersin.org 5
CXCL10 were present in PMF but not in ET patients.
Interestingly, all MPN categories presented high production of
the chemokines CXCL8 and CCL2 (>50% high producers).

Spider charts summarize the soluble mediator signatures and
enable visual comparison among the CTRL, ET, PMF, and PV
groups (Figure S2).

Soluble Mediator Networks in
MPN Subtypes
After identifying the soluble mediator signature for each disease
(ET, PV, and PMF) and CTRL group, we analyzed the existence
of correlation between the mediator levels (Figure 2).
Correlations were stratified into negative (r <0), weak (r ≤0.35),
moderate (r ≥0.36 and r ≤0.67) or strong (r ≥0.68). The CTRL
group exhibited the highest number of strong correlations, and
similar findings were obtained in ET patients (IL-1b with IL-17a
and IFN-g; IL-10 with IL-12p70, IFN-g and M-CSF; IL-17a with
CCL5 and IFN-g; IL-12p70 with CCL5 and IFN-g; CCL5 with IFN-g
and M-CSF; VEGF with VEGF-R2; and IFN-g with M-CSF). PMF
patients also showedmany strong interactions (between IL-17a with
IL-6Ra, CCL5, VEGF, GM-CSF, G-CSF and M-CSF; IL-10
with CXCL10 and GM-CSF; CCL5 with IFN-g and VEGF;
FIGURE 2 | Soluble mediators interaction networks in healthy subjects (CTRL, n = 17) and patients with essential thrombocythemia (ET, n = 28), polycythemia vera
(PV, n = 19), and primary myelofibrosis (PMF, n = 16). The correlations were stratified according to r-values: strong (blue lines, r ≥0.68), moderate (gray lines, 0.36 ≤ r ≥ 0.67)
and negative (dashed red line, r <0). The correlations depicted in this figure were significant (p <0.05).
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CXCL10 with GM-CSF; M-CSF with IFN-g and VEGF-R2), while
PV patients were highly different from the CTRL group and showed
the lowest number of strong correlations (CXCL8 with IL-6, IL-
12p70 and CCL2; IL-10 with GM-CSF and CXCL10; and M-CSF
with IFN-g). These results highlighted the deregulation of soluble
mediator network in PV patients versus other MPN categories and
CTRL group.

Correlation Between the BM Soluble
Mediator Levels and Patients’ Clinic-
Laboratory Parameters
We analyzed the potential correlation between soluble mediator
levels and the major clinic-laboratory parameters (Figure 3A).
The patients’ hematological parameters analyzed were
hemoglobin concentration, hematocrit, and white blood cell,
red blood cell, and platelet counts.

The following correlations among soluble mediators and
MPN clinical parameters were found:

In PV, hemoglobin concentration positively correlated with
VEGF and HGF, and negatively with CCL5 and IFN-g; red blood
cell count positively correlated with IL-6Ra and TNF-a;
hematocrit positively correlated with IL-6Ra, and negatively
correlated with CCL5 and IFN-g; white blood cell count
positively correlated with IL-6Ra and VEGF, and negatively
with CCL5; and platelet counts negatively correlated with
CXCL10 and CCL2 (Table S6).

ET patients displayed positive correlations between
hemoglobin concentration with IL-6Ra, IL-1b, IL-10, IL-18
Frontiers in Oncology | www.frontiersin.org 6
and G-CSF; red blood cell count with IL-6Ra and VEGF-R2;
hematocrit with GM-CSF and IL-1b; white blood cell count with
IL-6Ra; and platelet count with VEGF-R2 and CCL5 (Table S7).

In PMF, white blood cell count positively correlated with
VEGF-R2. Negative correlations among hemoglobin
concentration, red blood cell count and hematocrit with IL-6,
IL-10, CXCL10 and GM-CSF were also observed (Table S8). No
similar patterns of correlation between soluble mediator levels
and the clinic-laboratory parameter were obtained in PV, ET
and PMF.

Risk-stratification analysis showed in very low risk ET
patients (n = 6) higher CXCL8 levels than those detected in
low risk ET patients (n = 4) (Figure 4A). No relationships were
found among soluble mediators and PV and PMF risk status.

Rega rd ing the rapy , t r e a t ed PV pa t i en t s (w i th
hydroxycarbamide or acetylsalicylic acid) had lower G-CSF
levels than untreated PV patients (Figure 4B). There was no
association between soluble mediator levels and treatment in ET
and PMF patients

Five ET patients with vascular event (including thrombosis,
cardiovascular events and/or strokes) exhibited lower levels of
IL-17, CCL5, GM-CSF, and VEGF than ET patients with no
vascular event (n = 17) (Figure 4A). PV patients with vascular
event (n = 7) displayed higher levels of CXCL12, TNF-a and
VEGF-R2 than PV patients with no vascular event (n = 12)
(Figure 4B). PMF patients with vascular event (n = 5) had
increased levels of IL-6Ra when compared with patients with no
vascular event (n = 11) (Figure 4C).
A

B

FIGURE 3 | (A) Correlation between soluble mediator levels and laboratory parameters of healthy subjects (CTRL, n = 17) and patients with essential
thrombocythemia (ET, n = 28), polycythemia vera (PV, n = 19), and primary myelofibrosis (PMF, n = 16). The Spearman coefficient (r-value) was represented by a
color gradient that ranged from close to 1 (dark blue) to −1 (dark red); white indicates no correlation. The correlations depicted in this figure were significant
when p <0.05. HCT, hematocrit; HGB, hemoglobin concentration; PLT, platelet count; RBC, red blood cell count; WBC, white blood cell count. (B) Association
between driver mutation status and IL-6Ra, CXCL12, and M-CSF levels in bone marrow plasma from patients with ET. JAK2V617+ (n = 13 ET patients positive
for JAK2V617F mutation). JAK2V617F- (n = 5; ET patients negative for JAK2V617F mutation). CALR+ (n = 7; patients positive for calreticulin mutation). DN
(n = 3; double negative for CALR and JAK2V617 patients). Statistical difference when p <0.05, Mann–Whitney test.
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Finally, we analyzed, in PMF patients, the potential
association between soluble mediator levels and transfusion
dependency, and disease stages (Figure 4C). PMF patients
with transfusion dependency had higher CXCL10 levels than
those with no dependency. In addition, PMF patients in pre-
fibrotic/proliferative stage had elevated CCL2 levels when
compared with those in fibrotic stage.

JAK2V617F+ ET Patients Have High
IL-6Ra Levels
The soluble mediators levels of ET and PMF patients
were stratified according to their driver mutation status.
Frontiers in Oncology | www.frontiersin.org 7
ET JAK2V617F+ showed higher IL-6Ra levels than those with
CALR mutation, and double negative (DN) for JAK2V617F and
CALR. ET CALR mutated patients displayed elevated M-CSF
levels than DN; and JAK2V617F- patients showed lower levels of
M-CSF and CXCL12 than DN patients (Figure 3B). There was
no association between soluble mediators levels and mutation
status in PMF patients.

The extent of production (i.e. high versus low producers) of
soluble mediators according to the presence of driver mutations
was also analyzed in ET (Figure S3) and PMF (Figure S4)
patients. JAK2V617F+ ET patients were high producers of CCL2,
CXCL10, CXCL12, IL-1b, IL-6Ra, IL-18, and TNF-a; while
A

B

C

FIGURE 4 | Association between clinical parameters of patients with essential thrombocythemia (ET, n = 28), polycythemia vera (PV, n = 19), and primary
myelofibrosis (PMF, n = 16) and soluble mediator levels. (A) ET patients: association between VEGF, GM-CSF, CCL5, and IL-17 levels and the presence (n = 5) or
absence (n = 19) of VE; and CXCL8 levels and risk-stratification in very low (n = 6), low (n = 4), intermediate (n = 8) and high (n = 10) risk. (B) PV patients:
association between G-CSF levels and administration (n = 4) or not (n = 15) of drug treatment; and association between TNF-a, CXCL12, and VEGF-R2 levels and
the presence (n = 7) or absence (n = 12) of VE. (C) PMF patients: association between IL-6Ra levels and the presence (n = 5) or absence (n = 11) of VE; association
between CCL2 levels and fibrotic disease (n = 9) or pre-fibrotic/proliferative (n = 7) stage; and association between CXCL10 levels and transfusion dependency
(n = 5) or no transfusion necessity (n = 11).
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CALR mutated were high producers of GM-CSF, G-CSF, HGF,
IFN-g, IL-12p70, and IL-17a. The soluble mediators were
differentially produced in PMF subgroups, JAK2V617F+

patients were high producers of CXCL8, and low producers of
G-CSF, M-CSF, and VEGF-R2, while CALR mutated patients
showed the opposite profile of these mediators’ production.
DISCUSSION

Both the MPN clone and BM-resident cells maintain the
cytokine-mediated inflammatory microenvironment in a
feedback loop mechanism that also maintains a pro-
tumorigenic environment. Neoplastic cells secrete pro-
inflammatory and angiogenic mediators that promote
autocrine and paracrine stimulation of fibroblasts, endothelial
cells, and stromal cells. In contrast, mediators produced in the
BM have the potential to modify the phenotype of resident cells,
stimulate angiogenesis and fibrosis, and thereby influence
neoplastic cell survival, proliferation, and progression (7, 21, 22).

Little is known about the cytokine milieu in the BM niche of
MPN patients. Most of the studies have reported the presence of
angiogenesis-related molecules by immunohistochemistry
analysis and associated their high levels with the presence of
neo-angiogenesis and fibrosis in BM (23, 24).

In physiological state, the control of cytokines and
chemokines production include an intricate of regulatory
mechanism, with an inhibitory feedback and synergic actions
to guarantee the balance of mediators levels, non-inflammatory
status, and tissue homeostasis (25, 26).

PV patients exhibited a unique soluble mediator signature, as
demonstrated by the overall and single analysis of soluble
mediators. PV patients had higher levels of IL-17, IFN-g, G-
CSF and HGF, as compared with PMF and ET patients. These
cytokines may be a useful tool in differential diagnosis of MPN.

The increased soluble mediator levels in BM niche fromMPN
patients could be partially explained by chronic inflammation
associated with oncogenesis (7, 21). Chronic inflammation may
be linked to hypoxia due to cell accumulation in the BM, which
in turn was associated with JAK/STAT pathway activation by IL-6,
IL-11, VEGF, HGF, PDGF, and TGF-b that mediates cell survival
and proliferation, and thereby contributes to MPN pathogenesis
(27, 28). Cytokine overproduction could also result from cancer-
associated genetic mutations (27). Most of our results demonstrate
that soluble mediators are not influenced by driver mutation status
and corroborate previous studies on MPN patients (13, 28–31).

It is worth to note that IL-6Ra andM-CSF levels, in this study,
were associated with JAK2V617F and CALR driver mutations,
respectively. JAK2V617F+ ET patients presented high BM IL-
6Ra levels, while CALR+ ET patients exhibited high M-CSF
levels. Categorical analysis of soluble mediator production
according to driver mutation status identified that the group of
CALR+ ET patients had the lowest number of high producers.

The trans-signaling of IL-6/IL-6R soluble receptor (sIL-6R)
complex lead to subsequent activation of JAK/STAT, MAPK and
PIK pathways, and it can be activated in all types of cells,
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including cells not responsive to IL-6 alone (32). An
observat ional epidemiologica l s tudy reported that
polymorphisms that cause loss of IL-6R function are associated
with reduced risk of JAK2V617F mutation and MPN (33).

M-CSF-stimulated human macrophages have growth-
promoting and proangiogenic phenotype with tissue repair
potential under conditions of induced inflammation (34). In
the present study, CALR+ MPN patients had higher M-CSF
levels than JAK2V617F+ patients. It is well-known that CALR+

patients have better prognosis and higher overall survival than
JAK2V617F+ patients (35). Our results, combined with the
abovementioned references (32–35), may suggest that: 1) high
IL-6Ra levels favor JAK/STAT pathway activation and the
oncoinflammatory state in ET patients; 2) high M-CSF levels
favor tissue homeostasis and attenuate inflammation in BM from
CALR+ patients.

The BM milieu and the peripheral blood systemic profile
from MPN patients are distinct. Many authors have reported
that MPN patients develop a robust and systemic inflammatory
response in peripheral blood (13, 29, 36, 37). In our study, ET
and PMF patients had mild BM niche inflammation, while PV
patients exhibited the most prominent and diffuse inflammatory
response in BM niche, among the studied MPN categories.

PMF is the MPN subtype with higher number of alterations in
the BM niche, including the presence of fibrosis and defective
hematopoiesis (1). Indeed, BM fibrosis seems to result from
continuous and long-lasting shift of the cytokine milieu rather
than a specific genetic trigger (38). In our study, the cytokine
milieu in PMF patients was similar to the CTRL group, despite
the increased levels of CXCL8, CXCL10, IL-18, and IL-6Ra.
Indeed, we identified CCL2, CXCL8, CXCL10, and IL-18 as
MPN-associated cytokines, due to their prominent levels in BM
niche of all MPN subtypes.

IL-18 is considered an inflammasome product whose main
function is to promote IFN-g secretion (39). IL-18 secreted by
BM stroma elicits the growth of leukemia blast cells and
contributes to progression of T-cell acute leukemia (40).
Elevated BM IL-18 levels are also associated with poor overall
survival of multiple myeloma patients (41). IL-18 has been
implicated in induction of fibrosis in idiopathic pulmonary
fibrosis and heart inflammation; blockage of IL-18 activity has
antifibrotic effects (42, 43). As described in other hematological
malignancies and diseases characterized by accentuated fibrosis,
we hypothesize that IL-18 may contribute to tumorigenesis and
BM fibrosis process in MPN.

CXCL8 and CXCL10 are important to regulate hematopoietic
stem cells (44, 45) and mediate inflammation-driven
angiogenesis due to CXCL10 angiostatic activity and CXCL8
angiogenic properties (46). The contribution of CXCL8 to
tumorigenesis has been described in patients with acute
myeloid leukemia, in which high CXCL8 levels are secreted by
BMmesenchymal stromal cells and support the proliferation and
survival of leukemic cells (47). Blockage of CXCL8 expression in
PMF CD34+ cells promotes cell proliferation and megakaryocyte
differentiation (48). Neutralization of the CXCL8 receptors
CXCR1 and CXCR2 enhances PMF megakaryocyte cell
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proliferation, indicating that CXCL8 and its receptor are
involved in megakaryocyte abnormalities and contribute to
PMF pathogenesis (48). The two last reports cited (47, 48)
confirmed our findings and stressed the importance of these
mediators in MPN subtypes, manly by regulating neoplastic cell
proliferation, survival, and differentiation.

CXCL8 is a pre-fibrotic cytokine (21) whose levels are
increased in BM biopsies of PMF patients, as demonstrated by
immunohistochemistry. MF CD34+ CXCL8-secreting clones are
associated with patients with high-grade reticulin fibrosis in BM
(49). Moreover, elevated CCL2 levels in MPN patients are
associated with fibrosis and poor prognosis (28, 29, 36, 37).
The expression of inflammatory genes, especially CCL2 and
CXCL10, is upregulated in patients with overt fibrosis,
indicating that pro-inflammatory gene upregulation is
associated with BM fibrosis, independently of the MPN (30).
CCL2 and CXCL8 also exert a myelosuppressive effect that can
disturb normal hematopoiesis (50).

In summary, these reports corroborate our findings and
reinforce the contribution of CCL2, CXCL8, CXCL10, and IL-
18 for MPN pathogenesis by promoting hematopoietic niche
modifications, activation of angiogenesis, and deregulation of
hematopoiesis. Only CXCL8 has been previously reported as a
MPN-associated cytokine (21, 22, 51); this could be explained by
the distinct cytokine levels detected in peripheral blood and BM.

The network analysis of soluble mediators revealed a distinct
integrative system among PV and the other studied groups (ET,
PMF and Control). Most of the soluble mediators interaction
found in our study presented biological relevance, and resides in
their synergistic interactions, which could be observed between:
1) IL-1b and IL-12 inducing IFN-g secretion (52); 2) IL-1b, TNF-
a and IL-6 promoting VEGF secretion (53); 3) GM-CSF
interaction with M-CSF/G-CSF resulting in increase of
granulopoiesis and monocytopoiesis (54); 4) IFN-g with IL-1b
and TNF-a upregulates CCL5 expression (55). These
correlations were observed in ET and PMF patients.

PV patients display very strong positive correlations only
between a few cytokine and chemokine molecules (IL-6, CXCL-
8, IL-12 and CCL2). This data suggests that the immune
imbalance in BM microenvironment is more prominent in PV
than in ET and PMF patients. Literature reported that these
molecules are associated with a pro-inflammatory status,
occurrence of vascular events and oncoinflammation.

We demonstrated that soluble mediator levels in the BM
niche correlated to clinic-laboratory parameters, including
hemoglobin concentration, hematocrit, and white blood cell,
red blood cell, and platelet counts. Many studies corroborate
our findings and have demonstrated cytokine-phenotype
associations related to pro-inflammatory status in MPN
patients’ serum (13, 36, 37). In PMF patients, CXCL8 is
associated with leukocytosis, and CXCL10 levels correlate with
thrombocytopenia (37). In PV patients, high levels of IL-12 are
associated with hematocrit; high IL-1b and HGF levels are
associated with leukocytosis; low IL-6 and FGF (fibroblast
growth factor) levels are associated with hemoglobin
concentration; and low GM-CSF levels are associated with
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thrombocytosis (36). In PMF patients, the elevation of
CXCL10 was associated with thrombocytosis and decreased
levels of CXCL10 and IL-17 with erythropenia, while in ET
patients the low levels of TNF-a was associated with
thrombocytosis (13). The different soluble mediator association
patterns among MPN subtypes may explain their distinct
clinical features.

In our study, soluble mediator levels were not significantly
associated with disease prognosis risk, probably due to the small
number of patients enrolled. The reduced soluble mediator levels
in treated MPN patients suggest that drug treatment influenced
the production of many soluble mediators, although most of the
comparisons did not reach statistical significance—except for G-
CSF levels in PV patients.

It is well-known that hydroxycarbamide (hydroxyurea), a
cytoredutor drug indicated for MPN treatment, is capable of
lowering serum inflammatory markers such as TNF-a, IL-6,
CXCL8, and IL-1b in sickle cell disease patients (56, 57). This
drug suppresses production of pro-inflammatory cytokines in
monocytes from sickle cell anemia patients (57); however, its
effect on cytokine levels of MPN patients is poorly studied. The
anti-inflammatory action of hydroxycarbamide relies on the
hematological remission resulting from myelosuppression,
reduction of leukocyte counts (58), and the drug effects on
monocytes, as pointed out in sickle cell anemia.

The frequency of vascular events was associated with different
setups of soluble mediators among MPN subtypes. PV patients
exhibited increased TNF-a, CXCL12, and VEGFR2 levels; ET
patients displayed increased IL-17, CCL5, GM-CSF, and VEGF
levels; and PMF patients had increased IL-6Ra levels. Elevated
GM-CSF and IL-12 serum levels are associated with the lack of
vascular complications in ET and PV patients; these cytokines
may also help to select the treatment regimen (29). In addition,
CCL5 levels are associated with microvascular manifestations in
PV patients (36). Augmented levels of angiogenic cytokines as
VEGF, soluble vascular endothelial growth factor receptors 1 and
2, and placenta growth factor, as well as the increased number of
endothelial cells and endothelial precursors are associated with
high risk of thrombotic events in ET and PV patients (59). The
levels of coagulation activation markers did not differ with
respect to the JAK2V617F mutational status, but the
association between endothelial cells and leukocytes may
contribute to thrombosis (59).

Activated platelets are the mainly secretors of CXCL12.
Upregulated CXCL2 expression and secretion may favor the
development of cardiovascular diseases, while the fast increase of
CXCL12 in peripheral blood platelets can be used as biomarker
for cardiac injury (60). Patients with ischemic stroke have
increased TNF-a serum levels and higher risk for
cardiovascular diseases, compared with healthy volunteers (61).
The studies reported in the two last paragraphs (26, 33, 53, 54)
corroborate our findings on the influence of soluble mediators on
vascular events and support the concept that the inflammatory
environment is a crucial stimulus for the initiation and
deve lopment of thrombo-hemorrhag ic events and
cardiovascular diseases (7).
May 2021 | Volume 11 | Article 665037

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Cominal et al. Soluble Mediator Signatures of MPN
In PMF patients, there were associations between high
CXCL10 levels and transfusion requirement, and high CCL2
levels and pre-fibrotic/proliferative disease stage. These results
are supported by the association between upregulated CXCL10
and CCL2 gene expression and increased fibrosis in BM niche
(30). Our findings revealed a potential utility of monitoring
CCL2 levels during PMF course, and provide a new tool to
measure BM fibrosis evolution.
CONCLUSIONS

Taken together, our findings demonstrate the existence of
different soluble mediator signatures for each MPN subtype,
among which PV patients present the highest levels of
inflammatory and angiogenic soluble mediators. We identified
CXCL8, CXCL10, IL-18, and CCL2 as MPN-associated soluble
mediators; IL-17, IFN-g, and HGF as biomarkers for PV; and
CCL2 as biomarker for monitoring the BM fibrosis. In addition,
specific mediators are potential targets for developing future
therapies to prevent BM transformation in MPN patients. The
molecular mechanisms involved in cellular malignant
transformation by the inflammatory/angiogenic BM milieu in
MPN patients are currently unknown and further investigations
are underway.
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33. Pedersen KM, Çolak Y, Ellervik C, Hasselbalch HC, Bojesen SE, Nordestgaard
BG. Loss-of-Function Polymorphism in IL6R Reduces Risk of JAK2V617F
Somatic Mutation and Myeloproliferative Neoplasm: A Mendelian
Randomization Study. EClinicalMedicine (2020) 21:100280. doi: 10.1016/
j.eclinm.2020.100280

34. Hamidzadeh K, Belew AT, El-Sayed NM, Mosser DM. The Transition of M-
CSF–derived Human Macrophages to a Growth-Promoting Phenotype. Blood
Adv (2020) 4(21):5460–72. doi: 10.1182/bloodadvances.2020002683
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