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Gastric cancer (GC) is the fifth most common cancer in the world and a serious threat to
human health. Due to its high morbidity and mortality, a simple, rapid and accurate early
screening method for GC is urgently needed. In this study, the potential of Raman
spectroscopy combined with different machine learning methods was explored to
distinguish serum samples from GC patients and healthy controls. Serum Raman spectra
were collected from 109 patients with GC (including 35 in stage I, 14 in stage II, 35 in stage III,
and 25 in stage IV) and 104 healthy volunteers matched for age, presenting for a routine
physical examination. We analyzed the difference in serum metabolism between GC patients
and healthy people through a comparative study of the average Raman spectra of the two
groups. Four machine learning methods, one-dimensional convolutional neural network,
random forest, support vector machine, and K-nearest neighbor were used to explore
identifying two sets of Raman spectral data. The classificationmodel was established by using
70% of the data as a training set and 30% as a test set. Using unseen data to test the model,
the RF model yielded an accuracy of 92.8%, and the sensitivity and specificity were 94.7%
and 90.8%. The performance of the RFmodel was further confirmed by the receiver operating
characteristic (ROC) curve, with an area under the curve (AUC) of 0.9199. This exploratory
work shows that serum Raman spectroscopy combined with RF has great potential in the
machine-assisted classification of GC, and is expected to provide a non-destructive and
convenient technology for the screening of GC patients.
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INTRODUCTION

Gastric cancer (GC) is a clinically common malignant tumor of
the digestive tract, accounting for 5.7% of the total new
incidences of malignant tumors (1). Its mortality rate is about
the second highest among malignant tumor diseases, and the
high incidence of GC worldwide is concentrated in developing
countries, especially China (2). Because the early symptoms of
GC are not specific enough, people tend to ignore or misjudge
the condition, leading to some patients whose condition has
progressed to the middle and late stages when they are
diagnosed. Thus, the optimal treatment time is missed, and the
treatment effect and prognosis are relatively poor (3). Therefore,
improving the diagnosis rate detection rate of early GC is of
significance for reducing the mortality of GC. At present, the
clinical diagnosis of GC mainly uses CT and gastrointestinal
endoscopic biopsy techniques. However, during CT examinations,
breathing artifacts are prone to occur, affecting the diagnosis and
treatment results (4). Although gastroscopic biopsy, which is the
gold standard for GC diagnosis, has reliable accuracy, it is difficult
to popularize it to routine screening diagnosis because gastroscopy
is invasive and affected by patient compliance and operator
techniques. Therefore, there is an urgent need for simple and
practical serum detection technology in order to help accurately
identify GC patients.

Raman spectroscopy is a powerful spectroscopic technique to
assess the chemical composition of samples, which is based on
inelastic scattering generated by the rotational and vibrational
modes of molecular bonds (5). Therefore, the spectral distributions
produced by the Raman active functional groups of biomolecules
with distinct chemical and molecular features (proteins, nucleic
acids, lipids etc.) are different, and this can be used as “fingerprints”
of compounds and mixtures. Meanwhile, changes in these
“fingerprints” can provide disease information, which plays an
extremely important role in disease diagnosis and monitoring of
disease progress (6). With its unique technical advantages of non-
destructive testing, high sensitivity, simplicity and speediness,
Raman spectroscopy has shown good application potential in the
fields of biomacromolecule detection, pathogenic microorganism
detection, tumor disease diagnosis and other fields (7–9).

Biological fluids (such as blood, urine, saliva, etc.) contain a
variety of chemical components, reflecting the metabolism of the
body. Because of their advantages such as easy collection, low
risk of invasion, and repeatable sampling, biological fluids have
been widely applied in clinical. In recent years, label-free Raman
spectroscopy of biological fluids combined with machine
learning methods has been extensively exploited for early disease
screening and cancer staging research.

Because the scattering cross section of some molecules is very
small, the Raman scattering signal is weak and easily interfered
by the fluorescent background, resulting in the insignificant
difference in the spectra of normal and diseased serum samples
(10). Therefore, advanced statistical analysis techniques are
needed to extract effective information from the enormous
Raman spectra datasets to distinguish these samples. K-nearest
neighbor (KNN), a relatively mature, comprehensible and simple
machine learning method, has always been the classic algorithm
Frontiers in Oncology | www.frontiersin.org 2
in popularity. Support vector machine (SVM) is a powerful and
supervised machine learning algorithm. Employing kernel
functions, SVM transforms the original data to a higher
dimensional feature space, where the data might be linearly
separable. At the same time, a decision boundary (called
hyperplane) is created so that the two classes can be separated
correctly and the classification interval is maximum (11). Random
forest (RF) is a kind of ensemble learning algorithm with fast
training speed and high model robustness, which was proposed by
Breiman in 2001 (12). RF uses bootstrap sampling method to
extract multiple samples from the original data set. Each bootstrap
sample participates in the construction of a decision tree, and the
prediction results of the final model are determined by voting on
the classification results of multiple decision trees (13). By building
a large number of decision trees, RF has the advantages of anti-
noise, preventing over-fitting, and strong predictive ability, and
has been increasingly applied in various types of data mining.
Deep learning is one of the hottest areas of research in recent years,
and its development has created great opportunities in the fields of
chemistry and biology. Convolutional Neural Network (CNN) is
one of the representative deep learning algorithms for high-
dimensional data, which is constructed by imitating biological
visual perception mechanism. As an advanced technology with
strong learning ability, CNN has excellent performance in Raman
spectral analysis. For example, Wang et al. could assess the
biochemical signatures of different Arcobacter strains by using
Raman spectroscopy combined with CNN, and achieved a
recognition accuracy of 97.2% for 18 Arcobacter species (14).
Shao et al. used CNN model to identify the serum Raman
spectrum of prostate cancer patients with bone metastases, and
obtained a testing classification accuracy of 81.7% (15). In
addition, Hollon et al. completed a significant study that
combined stimulated Raman histology with CNN to automate
the diagnosis of intraoperative brain tumors in near real-time, the
diagnostic results can be predicted within 150 seconds with an
overall accuracy of 94.6% (16). These studies indicate the great
potential of combining deep learning and Raman spectroscopy
for classification.

In this study, we analyzed the differences in serum Raman
spectra of GC patients and normal subjects, and explored the
metabolic differences between them. Four promising machine
learning methods (1D-CNN, RF, SVM and KNN) were developed
for discriminant analysis of two groups of Raman spectral data,
and the actual performance of these four methods was evaluated.
This work may provide a non-destructive, fast and simple serum
test for screening of GC.
METHODS

Collection and Preparation of
Serum Samples
Serum samples of 109 patients with GC were collected in the
First Affiliated Hospital of Army Medical University from May
2019 to January 2020, including 35 cases in stage I, 14 cases in
stage II, 35 cases in stage III, and 25 cases in stage IV. All patients
September 2021 | Volume 11 | Article 665176
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need to meet the following conditions: diagnosed with GC by
gastroscopy plus pathological biopsy; no tumors of other
systemic systems; no serious dysfunction of heart, lung, liver,
kidney and other organs; no surgery or chemotherapy prior to
sample collection. In the meantime, serum samples of 104
healthy volunteers matching the age of the GC group from the
physical examination department were collected as the control
group. All the included healthy controls had no history of
gastrointestinal disease. Informed consent was obtained for all
participants in this experiment. And this study was approved by
the Ethics Committee of the First Affiliated Hospital of Army
Medical University (approval no.KY2020165).

After an overnight fast for 10 hours, 3 ml of peripheral blood
was collected from each subject. The blood was centrifuged at 3000
rpm for 10 min after coagulation. The supernatant serum sample
was collected in a special cryopreservation tube and stored in a
-80°C refrigerator until the Raman measurement was performed.

Raman Spectra Measurements and
Data Preprocessing
A Raman micro-spectrometer (XploRA PLUS, Horiba Scientifics,
France) was used to acquire serum Raman spectra at excitation
wavelength of 532 nm and power of 6.3 mW. The laser was
focused on the dried serum sample through a 100x magnification
objectives, and the Raman spectrum in the range of 600-1800 cm-1

was recorded. The total acquisition time of each spectrum is 20 s.
Every sample was measured five times in different spots, and the
average spectrum was taken for further analysis

Prior to data analysis, LabSpec 6 software (Horiba Scientifics,
France) was used to preprocess Raman spectra, including
smoothing, baseline correction and normalization, to filter the
interference noise and remove the fluorescence background. The
processed data was analyzed using different machine learning
methods, including 1D-CNN, RF, SVM and KNN. The specific
experimental flow chart is shown in Figure 1.

1D - CNN
Since Raman spectrum signals are one-dimensional, referring to
the classic model structure of LeNet-5, we developed a 1D-CNN
model to identify the serum Raman spectrum of GC. Its model
structure can be viewed in Figure 2. In the model, one input layer,
Frontiers in Oncology | www.frontiersin.org 3
three convolutional layers, three fully connected layers, and a
Softmax output layer are included. The input data is 764 nodes. In
the convolution layer, there are one convolution function, one
activation function and one pooling function. And the
convolution kernel size of each layer is set as 15x1, 7x1 and 5x1
respectively. After dimension reduction by the Max-Pooling
method on each layer, 32 Raman features are obtained. These
Raman features were flattened into a one-dimensional vector,
connected to the full connection layer with the number of neurons
of 1312,800,100, and finally connected to the last output layer. The
number of neurons in the output layer was set to 2, representing
negative (normal group) and positive (GC group). In this
1D-CNN model, the learning rate was 0.0005.

The accuracy-epoch and loss-epoch curves of the 1D-CNN
model were calculated, and the results are shown in Figure S1. As
the epoch increased, whether it was the training set or the test set,
the accuracy-epoch curves first raised quickly and then gradually
reached a plateau (Figure S1A). As shown in Figure S1B, the loss-
epoch curves had a downward trend in both the training set and
the test set. This indicates that the training process of the 1D-CNN
model is effective.

RF
Given the Raman spectroscopy dataset contains N samples, which
is defined as LN = {l1, l2, l3,…, ln} ∈ RN×K. Each sample in it has K-
dimension frequency response features, which defines the attribute
dataset as A = {a1, a2, a3,…, aK}. There are two possible values V =
{Positive, Negative} for every attribute, which directs over the
threshold and below the threshold, respectively. As the RF is a
special bagging method of decision trees, the Raman spectroscopy
RF classification model in this manuscript adopted classical CART
decision trees (17). For each node in CART decision tree, to get the
best optimization dividing of subtree, the Gini Index is instructed
to calculate the information gain rate of every decision node.
Firstly, the calculation of Gini is defined as:

Gini Lð Þ = o
N

n=1
o
n0≠n

pnpn0 = 1 −o
N

n=1
p2n

where the pn is the probability of the evaluation samples belong
to class n. Therefore, the smaller result of Gini(L), the more
FIGURE 1 | Flow chart of serum Raman spectroscopy combined with different machine learning methods for non-invasive screening of gastric cancer. Four popular
and high-performance machine learning methods include one-dimensional convolutional neural network (1D-CNN), random forest (RF), support vector machine
(SVM), and k-nearest neighbor (KNN).
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purity of the decision node. As the feature of Raman
spectroscopy is composed by a K-dimension frequency
response, the Gini Index which is used for optimizing the
dividing of subtree is defined below:

Gini_index L, að Þ = o
V

v=1

Lvj j
Lj j Gini L

vð Þ

where the Lv is represent the number of samples which the
attribute gets a value of v. The best optimization dividing of
subtree is the attribute has the smallest result of Gini Index. It can
convert to the object function:

a* = argmin Gini_index L, að Þ
where the a* is the attribute makes the Gini Index smallest.
Especially, when the output of Gini Index is zero, the current
evaluation node is set to the final leaf node which exports the
classification result. In our RF classification model, there were m
decision trees. We have trained all the decision trees by the
construction standard described above. The final output of the
RF classification model was the combination prediction results of
all the decision trees by majority voting algorithm. The
visualization of a single decision tree in our model is shown in
Figure 3. In the RF model, the number of decision trees
constructed was set as 300, and the maximum leaf node depth
was set as 200.

SVM
In this paper, SVM based on Radial Basis Function (RBF) was
used for experiments. There are two main parameters, the
penalty coefficient C and the gamma value of the RBF kernel
function. C is used to punish the tolerance of classification error
in training. Increasing the C value can make the model better fit
Frontiers in Oncology | www.frontiersin.org 4
the classification hyperplane of training samples, but it is easy to
cause overfitting. On the contrary, if the C value is reduced, it is
easy to cause underfitting. The gamma value determines the data
mapping to the new feature space. The larger the gamma value,
the less support vectors calculated by the model for classification
will be. In the experiment, a cross-validation evaluation method
was used to optimize parameter C and gamma. For the Raman
spectroscopy prediction task, the optimal C was 5 and gamma
was 0.5.

KNN
As a classic and simple supervised recognition method, KNN was
used for comparative research on effectiveness. In this paper,
KNN adopted the 3-nearest neighbor model. The distance of
reference point of sample classification was measured based on
Euclidean space.

Model Training and Test Performance
Evaluation
In this study, for all training and testing procedures, the four
machine learning methods were implemented using Pytorch and
Sklearn. At the same time, to ensure all the data including the GC
group and the normal group are randomly split into training set
and test set, the Dataloader class in Pytorch was imported and
the shuffle attribute was set to true. Since the sample sizes of the
gastric cancer group and the normal group are similar,
randomization can ensure the similar data distribution and
proportions in the process of division.

In order to test the validity and robustness of these
classification models, the data set was divided into two subsets.
The training set contains 70% samples of total dataset, and the
testing set consists of the left 30% samples. All the samples in
each set were selected by random sampling. In addition, for the
FIGURE 2 | One-dimensional convolutional neural network (1D-CNN) model architecture based on serum Raman spectra. Using 3-layer 1D convolution block,
combined with fully connected neural network, construct a gastric cancer serum Raman spectrum discrimination model.
September 2021 | Volume 11 | Article 665176
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purpose of exploring the 1D-CNNmodel classification effectiveness
on a small sample size dataset, three different proportions of
training sets and test sets were constructed, including 8:2
(retaining 20% of the samples as test samples), 7:3 (retaining 30%
of the samples as test samples) and 6:4 (retaining 40% of the
samples as test samples). For every different division ratio of each
method, 10 independent evaluation experiments were conducted.
The final result was an average of the 10 evaluation experiments.

In order to evaluate the diagnostic efficiency of the four
machine learning classification models, some common
parameters were used, including accuracy (Acc), sensitivity
(Se), specificity (Sp), positive predictive value (PPV), negative
predictive value (NPV). Their calculation equations are as
follows:

Acc =
TP + TN
P + N

 

Se =
TP

TP + FN

Sp =
TN

TN + FP

PPV =
TP

TP + FP
 

NPV =
TN

TN + FN
 

Where P, N, TP, FP, FN and TN represent actual positive,
actual negative, true positive, false positive, false negative and
true negative, respectively.
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RESULTS

Baseline Characteristics
In this study, there were 109 people in the GC group and 104
people in the control group. The baseline characteristics are
shown in Table 1. There were 82 males and 27 females in the GC
group. The results are consistent with a previous study, which is a
significant gender difference in the incidence of GC (18). The
incidence of GC in men is significantly higher than that in
women. Besides, we found there was no significant difference in
age between the two groups (P =0.388).

Raman Spectra Analysis
A total of 545 serum Raman spectra from GC patients and 520
serum Raman spectra from normal individuals were collected
successfully. Figure 4 shows the normalized average spectra ±1
standard deviations from the two sample groups. Stable and distinct
peaks at 1000, 1152, 1445, 1514 and 1658 cm-1 were observed in all
the Raman spectra of diseased and control group. According to the
previous literatures and studies, the peak position, the vibrational
mode and tentative molecular assignments of these major Raman
peaks are summarized in Table 2 (19–21). The bottom of the figure
shows the difference spectrum of the normalized average spectrum
of the GC group minus the normalized average spectrum of the
normal group, reflecting the spectral differences between the two
groups more clearly and intuitively. Compared with the normal
group serum Raman spectra, the Raman peak intensity of GC
serum at 1000, 1152, 1514 cm-1 is lower. However, the Raman peaks
of GC have higher intensity at 1445 and 1658 cm-1.

Machine Learning Methods
In order to evaluate the ability of serum Raman spectroscopy to
distinguish between the GC group and the normal group,
FIGURE 3 | Single decision tree structure diagram of random forest (RF) model.
September 2021 | Volume 11 | Article 665176
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exploratory analysis was performed using four machine learning
classification models. In this study, 70% of the total data was
randomly selected as the training set, and the remaining 30% was
used as invisible data to assess the classification and prediction
ability of the model. 10 trials were conducted for each method,
and the final result adopted an average of these trials.

Table 3 shows the test performance evaluation index results
of four machine learning classification models, including
accuracy, sensitivity, specificity, PPV and NPV. For 30% of the
total data as test samples, the classification accuracy of 1D-CNN,
RF, SVM and KNN are 88.6%, 92.8%, 91.5% and 88.9%,
respectively. It is clear that the RF and the SVM classification
Frontiers in Oncology | www.frontiersin.org 6
models provide very promising results. Specifically, the RF model
performed well in the following evaluation indicators: Se, Sp,
PPV and NPV were 94.7%, 90.8%, 91.4% and 94.3%, respectively,
and all evaluation indicators reaching more than 90%. The Sp
and PPV of SVM classification model were 94.3% and 94.2%,
respectively, which achieved a better result, but the sensitivity
was sacrificed, and its Se and NPV were 88.9% and 89.1%,
respectively. The sensitivity results of the 1D-CNN and KNN
models are 94.7% and 92.6%, respectively.

The experiment shows that the 94th and 95th Raman spectral
bands can effectively distinguish the patient with GC or not by
previously modeling and training. Therefore, the two-dimensional
feature space of the 94th and 95th Raman spectral bands was
constructed to process data visualization and analysis in our
research, which was shown in Figure 5. The Multidimensional
Scaling (MDS) graph can clearly reveal the similarity between GC
samples and normal samples in the created feature space. Each
point indicates an enrolled sample, red represents the GC group
and green represents the normal group. The distance between
every two samples demonstrates their similarity in this feature
space, the closer the distance, the higher the similarity and the
further the distance, the lower the similarity. As can be seen from
the MDS graph, most of the samples, come from different groups,
can be effectively distinguished in this feature space (the distance
between samples is far away). But a small amount of overlapping
samples are displayed that it cannot robust classify all the samples
only with the information of the 94th and 95th Raman spectral
bands. These samples are too close, which reveals the relationship
between them is similar in this feature space. In order to
distinguish the overlapping samples, the remaining Raman
spectral bands would be integrated together and construct the
multi-dimensional feature space, as in every classification module.

In order to further evaluate the diagnostic performance of the
four machine learning models, the receiver operating characteristic
(ROC) curve was generated and shown in Figure 6. The larger the
area under the curve (AUC), the better the diagnostic performance
of the model. The AUC values of 1D-CNN, RF, SVM and KNN are
0.8859, 0.9199, 0.8881 and 0.8407, respectively.

The box plot Figure S2 shows the distribution of GC
prediction probability in different machine learning algorithms.
Each light blue box represents the normal probability and the
light yellow box indicates the GC probability. The orange line in
each box shows the median value of sample distribution, and the
green triangle shows the mean value of sample distribution. The
whole box reveals the prediction probability range of test samples
in 95% confidence intervals. And the maximum and minimum
values in the distribution space are displayed at the top and
FIGURE 4 | Normalized average Raman spectra of gastric cancer (red) and
normal (blue) serum samples. The shaded areas represent the standard
deviations. Also shown at the bottom is the difference spectrum of gastric
cancer minus normal. For the purpose of clarity, spectra have been offset.
TABLE 1 | Detailed information about the subjects in this study.

Gastric Cancer (n = 109) Normal (n = 104)

Stage I (n = 35) Stage II (n = 14) Stage III (n = 35) Stage IV (n = 25)

Age 55.00 ± 12.353 55.71 ± 10.194 55.77 ± 12.932 59.44 ± 9.904 55.18 ± 7.500
Gender
Male 22 (62.9%) 12 (85.7%) 27 (77.1%) 21 (84.0%) 54 (51.9%)
Female 13 (37.1%) 2 (14.3%) 8 (22.9%) 4 (16.0%) 50 (48.1%)
September 2021 | Volume 1
TABLE 2 | The peak position and tentative vibrational mode assignment of the
serum Raman spectra.

Raman shift (cm-1) Vibrational mode Assignment

1000 C-C aromatic ring stretching Phenylalanine
1152 C-C stretching Carotenoid
1445 CH2 bending Collagen, phospholipids
1514 C=C stretching Carotenoid
1658 C=O stretching Amide I (a-helix)
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bottom of each box plot, respectively. In particular, the red dots
represent outlier samples in every distribution model.

As shown in Figure S2, the prediction probability distributions
of the RF model and SVM model have large variances, which are
0.017 for the normal group and 0.016 for the GC group in the RF
model; 0.018 for the normal group and 0.008 for the GC group in
the SVM model. There is a wide range of test samples at 95%
confidence intervals. The RFmodel has a 95% confidence intervals
range of [0.895, 0.999] in normal prediction distribution and
[0.738, 0.946] in GC. The SVM model is [0.792, 0.987] for the
normal group and [0.849, 0.969] for the GC group. From the
figure, it also indicates the variances of CNN are small, which are
0.004 for the normal group, 0.004 for the GC group, respectively.
The 95% confidence interval range of normal and GC prediction
probability are [0.907, 0.909] and [0.909, 0.910]. In addition, KNN
is a special model that the classification has no probability score.
So, the variances in KNN are 0, and the distribution of prediction
only has one point with value 1.

In this study, 1D-CNN was further divided into training and
test sets in different proportions, including 8:2 (retaining 20% of
the samples as test samples), 7:3 (retaining 30% of the samples as
test samples) and 6:4 (retaining 40% of the samples as test
samples). Table 4 shows the Acc, Se, Sp, PPV and NPV of the
1D-CNN model under these three sample partition ratios. When
the division ratio of data training set is 0.8, 0.7 and 0.6, the
average accuracy is 91.4%, 88.6% and 89.5%, respectively. This
indicates that there is little correlation between test results and
different proportions of data division.
DISCUSSION

As one of the most commonmalignant tumors, GC brings a heavy
economic burden to the country and society. Therefore, early
diagnosis and treatment of GC are of great significance to improve
the prognosis of patients and reduce mortality. As a non-invasive
method, Raman spectroscopy technology has attracted widespread
attention in the field of tumor detection due to its advantages of
non-destructive detection, simplicity and rapidity.

The Raman spectrum of serum is the result of different
vibration modes of various biomolecules, which can reflect the
changes of protein, nucleic acid and lipid in serum. Compared
with normal human serum, the composition and content of
biomolecules in the serum of cancer patients may have subtle
changes. By analyzing the difference of the serum Raman spectra,
the metabolic changes of the disease can be better understood.
Our research results show that the intensity of the Raman peak at
TABLE 3 | Evaluation of diagnostic efficiency of one-dimensional convolutional
neural network (1D-CNN), random forest (RF), support vector machine (SVM),
and K-nearest neighbor (KNN) classification models.

1D-CNN (%) RF (%) SVM (%) KNN (%)

Acc 88.6 92.8 91.5 88.9
Se 94.7 94.7 88.9 92.6
Sp 83.1 90.8 94.3 85.0
PPV 84.1 91.4 94.2 86.5
NPV 94.2 94.3 89.1 91.7
(Acc, Accuracy; Se, Sensitivity; Sp, Specificity; PPV, Positive Predictive Value; NPV,
Negative Predictive Value).
FIGURE 5 | The scatter plots of the gastric cancer group and the normal
group based on the spectral frequency response characteristics of the random
forest (RF) classification model. Red represents the gastric cancer group, and
green represents the control group.
FIGURE 6 | ROC curves of serum Raman spectra generated from four
machine learning models, including one-dimensional convolutional neural
network (1D-CNN), random forest (RF), support vector machine (SVM), and
K-nearest neighbor (KNN).
TABLE 4 | Test performance evaluation of one-dimensional convolutional neural
network (1D-CNN) model under three division ratios.

Division ratio Acc (%) Se (%) Sp (%) PPV (%) NPV (%)

8:2 91.4 96.1 87.4 87.2 96.4
7:3 88.6 94.7 83.1 84.1 94.2
6:4 89.5 95.5 83.6 85.7 94.9
September
 2021 | Volu
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1000 cm-1 attributable to phenylalanine is reduced in GC serum
than in the normal group, which is consistent with the previous
studies of the Raman spectrum of GC tissue (22). Moreover, the
intensity of Raman peak at 1152 and 1514cm-1 assigned for
carotenoids is also decreased. Carotenoids have antioxidant
properties and may help inhibit cancer formation. Hata et al.
found that the concentration of carotenoids in the skin of lesions
was lower than the skin of healthy people (23). Furthermore, the
Raman peak at 1445cm-1 caused by the CH2 bending mode of
collagen and phospholipid is increased in GC serum. This peak
has diagnostic significance as reported in previous studies of GC
and lung cancer serum Raman spectroscopy (24, 25). The Raman
peak at 1658 cm-1 belongs to the amide I band (a-helix), which is
associated with the structure of the protein. Compared with
normal serum, this peak is slightly increased in GC serum, which
has been reported in the Raman spectrum of GC tissue (22). The
metabolic disorder of tumor patients can produce the spectral
results of biomolecular changes, which are different from those in
normal people. But this difference is usually slight, so powerful
algorithms need to be developed to diagnose diseases.

In this paper, four popular machine learning methods with
high performance, including 1D-CNN, RF, SVM and KNN, were
used to identify the serum Raman spectrum of GC. Our results
show that the RF model has an excellent distinguishing effect for
the serum Raman spectrum of GC, and the classification
accuracy, sensitivity and specificity were 92.8%, 94.7% and
90.8%, respectively. Meanwhile, the ROC curve further
demonstrates the excellent performance of the RF model, with
an AUC value of 0.9199. The most anticipated 1D-CNN model
shows the worst classification accuracy among the four
algorithms, which is inconsistent with the previous excellent
classification results of CNN on serum Raman spectroscopy data
(15, 26). This may be because deep learning has better learning
effects on high-dimensional complex data, such as high-
dimension images with semantic information. Through tens of
thousands to millions of massive samples to learn, the
characteristics of semantic information can be obtained and
expressed well. However, traditional methods are hard to
extract those features well for this kind of data. Moreover, after
the normalization of Raman spectral data, the representation of
their features becomes more obvious, which is more suitable for
traditional machine learning algorithms, such as SVM, RF, etc.
Therefore, the performance results of deep learning with one-
dimensional data such as Raman spectroscopy are not much
different from traditional machine learning methods.
Meanwhile, for deep learning, more clinical samples should be
used for training to achieve better learning effect. The sample size
of this paper is not large, and in the future new samples can be
added to further evaluate the classification effect of the CNN
model. In addition, since the control group included in this study
was healthy volunteers without stomach disease, there may be
some limitations in exploring clinical applications. The exclusion
of gastric problem could be to avoid some undiagnosed cancer
being included in the control group, but it potentially introduced
an opposite bias. In order to make the differential diagnosis of
GC more reliable in the clinical setting, more clinical samples of
Frontiers in Oncology | www.frontiersin.org 8
gastritis, gastric ulcer, gastric polyp and other benign gastric
lesions may be needed to further establish a more complete and
reliable detection method.

In fact, the clinical diagnosis of disease is relatively complicated,
and it is difficult to confirm the diagnosis with a single inspection
result. The purpose of this study is to explore a non-invasive, fast
and convenient method to pre-screen high-risk population of GC,
and then perform targeted combined diagnosis of gastroscopy
biopsy, so as to help accurately identify patients with GC.
CONCLUSION

In conclusion, we measured the serum Raman spectra of GC
patients and healthy controls, and analyzed the attribution of the
major Raman peaks and the metabolic differences in the blood.
Then, four mainstreammachine learning algorithms, 1D-CNN, RF,
SVM and KNN, were employed to develop diagnostic models for
spectral data classification. At the same time, the overall accuracy,
sensitivity, specificity, PPV, NPV and the ROC curve were used as
evaluation indicators to judge the classification performance of
these four methods on these spectral data. The results show that the
RF classification model has better performance in the overall
evaluation, and it is expected to provide a more accurate
diagnostic model for the serum Raman spectrum of the disease.
DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.
ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Ethics Committee of the First Affiliated Hospital
of Army Medical University. The patients/participants provided
their written informed consent to participate in this study.
AUTHOR CONTRIBUTIONS

ML, YZ, and WF conceived and designed the research. ML, HH,
and GH conducted experiments. ML wrote the manuscript. ML,
HH, HT, KX, CY, and XZ collected clinical samples and processed
the data. ML and BL analyzed data. YZ and WF supervised the
research and elaborate the manuscript. All authors contributed to
the article and approved the submitted version.
FUNDING

This work was supported by the National Key Research Program
of China (2017YFC0909900), the China National Science
September 2021 | Volume 11 | Article 665176

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Li et al. Raman Spectroscopy of Gastric Cancer
Foundation (82172374), the Military Logistics Scientific Research
Project (AWS17J010).
SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fonc.2021.665176/
full#supplementary-material
Frontiers in Oncology | www.frontiersin.org 9
Supplementary Figure 1 | The accuracy-epoch curves (A) and loss-epoch
curves (B) of the One-dimensional convolutional neural network (1D-CNN) model.

Supplementary Figure 2 | The distribution of prediction probability in different
machine learning algorithms. Each light blue box represents the normal probability
and the light yellow box indicates the GC probability. The orange line shows the
median value of sample distribution, and the green triangle shows the mean value of
sample distribution. The whole box reveals the prediction probability range of test
samples in 95% confidence intervals. And the maximum and minimum values in the
distribution space are displayed at the top and bottom of each box plot, respectively.
In particular, the red dots represent outlier samples in every distribution model.
REFERENCES
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global

Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality
Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin (2018) 68
(6):394–424. doi: 10.3322/caac.21492

2. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al.
Cancer Incidence and Mortality Worldwide: Sources, Methods and Major
Patterns in GLOBOCAN 2012. Int J Cancer (2015) 136(5):E359–86.
doi: 10.1002/ijc.29210

3. Siegel R, Ma J, Zou Z, Jemal A. Cancer Statistics 2014. CA Cancer J Clin (2014)
64(1):9–29. doi: 10.3322/caac.21208

4. Blackshaw GR, Stephens MR, Lewis WG, Boyce J, Barry JD, Edwards P, et al.
Progressive CT System Technology and Experience Improve the Perceived
Preoperative Stage of Gastric Cancer. Gastric Cancer (2005) 8(1):29–34.
doi: 10.1007/s10120-004-0311-6

5. Ember KJI, Hoeve MA, McAughtrie SL, Bergholt MS, Dwyer BJ, Stevens MM,
et al. Raman Spectroscopy and Regenerative Medicine: A Review. NPJ Regen
Med (2017) 2:12. doi: 10.1038/s41536-017-0014-3

6. Austin LA, Osseiran S, Evans CL. Raman Technologies in Cancer Diagnostics.
Analyst (2016) 141(2):476–503. doi: 10.1039/c5an01786f

7. Kong K, Kendall C, Stone N, Notingher I. Raman Spectroscopy for Medical
Diagnostics–From In-Vitro Biofluid Assays to In-Vivo Cancer Detection. Adv
Drug Deliv Rev (2015) 89:121–34. doi: 10.1016/j.addr.2015.03.009

8. Neugebauer U, Rösch P, Popp J. Raman Spectroscopy Towards Clinical
Application: Drug Monitoring and Pathogen Identification. Int J Antimicrob
Agents (2015) 46(Suppl 1):S35–9. doi: 10.1016/j.ijantimicag.2015.10.014

9. Joseph MM, Narayanan N, Nair JB, Karunakaran V, Ramya AN, Sujai PT,
et al. Exploring the Margins of SERS in Practical Domain: An Emerging
Diagnostic Modality for Modern Biomedical Applications. Biomaterials
(2018) 181:140–81. doi: 10.1016/j.biomaterials.2018.07.045

10. Winterhalder MJ, Zumbusch A. Beyond the Borders–Biomedical Applications
of Non-Linear Raman Microscopy. Adv Drug Deliv Rev (2015) 89:135–44.
doi: 10.1016/j.addr.2015.04.024

11. Huang S, Cai N, Pacheco PP, Narrandes S, Wang Y, Xu W. Applications of
Support Vector Machine (SVM) Learning in Cancer Genomics. Cancer
Genomics Proteomics (2018) 15(1):41–51. doi: 10.21873/cgp.20063

12. Breiman L. Random Forests. Mach Learn (2001) 45(1):5–32. doi: 10.1023/
A:1010933404324

13. Shen L, Du Y, Wei N, Li Q, Li S, Sun T, et al. SERS Studies on Normal
Epithelial and Cancer Cells Derived From Clinical Breast Cancer Specimens.
Spectrochim Acta A Mol Biomol Spectrosc (2020) 237:118364. doi: 10.1016/
j.saa.2020.118364

14. Wang K, Chen L, Ma X, Ma L, Chou KC, Cao Y, et al. Arcobacter
Identification and Species Determination Using Raman Spectroscopy
Combined With Neural Networks. Appl Environ Microbiol (2020) 86(20):
e00924–20. doi: 10.1128/aem.00924-20

15. Shao X, Zhang H, Wang Y, Qian H, Zhu Y, Dong B, et al. Deep Convolutional
Neural Networks Combine Raman Spectral Signature of Serum for Prostate
Cancer Bone Metastases Screening. Nanomedicine (2020) 29:102245.
doi: 10.1016/j.nano.2020.102245

16. Hollon TC, Pandian B, Adapa AR, Urias E, Save AV, Khalsa SSS, et al. Near
Real-Time Intraoperative Brain Tumor Diagnosis Using Stimulated Raman
Histology and Deep Neural Networks. Nat Med (2020) 26(1):52–8.
doi: 10.1038/s41591-019-0715-9
17. Freund Y, Mason L. “The Alternating Decision Tree Learning Algorithm”. In:
Proceedings of the Sixteenth International Conference on Machine Learning.
Morgan Kaufmann, San Francisco, CA: Morgan Kaufmann Publishers Inc
(1999).

18. Karimi P, Islami F, Anandasabapathy S, Freedman ND, Kamangar F. Gastric
Cancer: Descriptive Epidemiology, Risk Factors, Screening, and Prevention.
Cancer Epidemiol Biomarkers Prev (2014) 23(5):700–13. doi: 10.1158/1055-
9965.Epi-13-1057

19. Movasaghi Z, Rehman S, Rehman IU. Raman Spectroscopy of Biological Tissues.
Appl Spectrosc Rev (2007) 42(5):493–541. doi: 10.1080/05704920701551530

20. Zheng X, Lv G, Zhang Y, Lv X, Gao Z, Tang J, et al. Rapid and Non-Invasive
Screening of High Renin Hypertension Using Raman Spectroscopy and
Different Classification Algorithms. Spectrochim Acta A Mol Biomol
Spectrosc (2019) 215:244–8. doi: 10.1016/j.saa.2019.02.063

21. Yue X, Li H, Tang J, Liu J, Jiao J. Rapid and Label-Free Screening of
Echinococcosis Serum Profiles Through Surface-Enhanced Raman
Spectroscopy. Anal Bioanal Chem (2020) 412(2):279–88. doi: 10.1007/
s00216-019-02234-x

22. Luo S, Chen C, Mao H, Jin S. Discrimination of Premalignant Lesions and
Cancer Tissues From Normal Gastric Tissues Using Raman Spectroscopy.
J Biomed Opt (2013) 18(6):67004. doi: 10.1117/1.JBO.18.6.067004

23. Hata TR, Scholz TA, Ermakov IV,McClane RW, Khachik F, GellermannW, et al.
Non-Invasive Raman Spectroscopic Detection of Carotenoids in Human Skin.
J Invest Dermatol (2000) 115(3):441–8. doi: 10.1046/j.1523-1747.2000.00060.x

24. Feng S, Pan J, Wu Y, Lin D, Chen Y, Xi G, et al. Study on Gastric Cancer Blood
Plasma Based on Surface-Enhanced Raman Spectroscopy Combined With
Multivariate Analysis. Sci China Life Sci (2011) 54(9):828–34. doi: 10.1007/
s11427-011-4212-8

25. Zhang K, Liu X, Man B, Yang C, Zhang C, Liu M, et al. Label-Free and Stable
Serum Analysis Based on Ag-NPs/PSi Surface-Enhanced Raman Scattering
for Noninvasive Lung Cancer Detection. Biomed Opt Express (2018) 9
(9):4345–58. doi: 10.1364/BOE.9.004345

26. Cheng N, Chen D, Lou B, Fu J, Wang H. A Biosensing Method for the Direct
Serological Detection of Liver Diseases by Integrating a SERS-Based Sensor
and a CNN Classifier. Biosens Bioelectron (2021) 186:113246. doi: 10.1016/
j.bios.2021.113246
Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Li, He, Huang, Lin, Tian, Xia, Yuan, Zhan, Zhang and Fu. This is
an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.
September 2021 | Volume 11 | Article 665176

https://www.frontiersin.org/articles/10.3389/fonc.2021.665176/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2021.665176/full#supplementary-material
https://doi.org/10.3322/caac.21492
https://doi.org/10.1002/ijc.29210
https://doi.org/10.3322/caac.21208
https://doi.org/10.1007/s10120-004-0311-6
https://doi.org/10.1038/s41536-017-0014-3
https://doi.org/10.1039/c5an01786f
https://doi.org/10.1016/j.addr.2015.03.009
https://doi.org/10.1016/j.ijantimicag.2015.10.014
https://doi.org/10.1016/j.biomaterials.2018.07.045
https://doi.org/10.1016/j.addr.2015.04.024
https://doi.org/10.21873/cgp.20063
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.saa.2020.118364
https://doi.org/10.1016/j.saa.2020.118364
https://doi.org/10.1128/aem.00924-20
https://doi.org/10.1016/j.nano.2020.102245
https://doi.org/10.1038/s41591-019-0715-9
https://doi.org/10.1158/1055-9965.Epi-13-1057
https://doi.org/10.1158/1055-9965.Epi-13-1057
https://doi.org/10.1080/05704920701551530
https://doi.org/10.1016/j.saa.2019.02.063
https://doi.org/10.1007/s00216-019-02234-x
https://doi.org/10.1007/s00216-019-02234-x
https://doi.org/10.1117/1.JBO.18.6.067004
https://doi.org/10.1046/j.1523-1747.2000.00060.x
https://doi.org/10.1007/s11427-011-4212-8
https://doi.org/10.1007/s11427-011-4212-8
https://doi.org/10.1364/BOE.9.004345
https://doi.org/10.1016/j.bios.2021.113246
https://doi.org/10.1016/j.bios.2021.113246
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

	A Novel and Rapid Serum Detection Technology for Non-Invasive Screening of Gastric Cancer Based on Raman Spectroscopy Combined With Different Machine Learning Methods
	Introduction
	Methods
	Collection and Preparation of Serum Samples
	Raman Spectra Measurements and Data Preprocessing
	1D - CNN
	RF
	SVM
	KNN
	Model Training and Test Performance Evaluation

	Results
	Baseline Characteristics
	Raman Spectra Analysis
	Machine Learning Methods

	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


