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Although platelets are critically involved in thrombosis and hemostasis, experimental and
clinical evidence indicate that platelets promote tumor progression and metastasis
through a wide range of physical and functional interactions between platelets and
cancer cells. Thrombotic and thromboembolic events are frequent complications in
patients with solid tumors. Hence, cancer modulates platelet function by directly
inducing platelet-tumor aggregates and triggering platelet granule release and altering
platelet turnover. Also, platelets enhance tumor cell dissemination by activating endothelial
cell function and recruiting immune cells to primary and metastatic tumor sites. In this
review, we summarize current knowledge on the complex interactions between platelets
and tumor cells and the host microenvironment. We also critically discuss the potential of
anti-platelet agents for cancer prevention and treatment.
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INTRODUCTION

Cancer is caused by uncontrolled cell division and growth of malignant cells, which can spread
throughout the body, resulting in metastasis (1, 2). For years, cancer biology focused on tumor cell
attributes, leading to life-threatening complications. Initial studies on tumor suppressor genes and
oncogenes fostered our understanding of the basic mechanisms of tumorigenesis and associated cell
signaling pathways that lead to tumor cell malignancy. In recent years, many studies provided
evidence that tumor progression is not tumor-cell autonomous, but rather involves cellular and
molecular cross-talk with the different components of the surrounding tumor environment (3, 4).
This tumor microenvironment is formed of complex tissues that contain extracellular matrix
(ECM), cytokines, growth factors, and adhesion molecules, also diverse cellular components such as
fibroblasts, immune cells, adipocytes, pericytes, epithelial cells, lymphatic and endothelial cells and
platelets (5). Stimulated crosstalk between tumor and the surrounding environment involves the
recruitment of various cell types, remodeling of the ECM, as well as stimulating the immune and
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coagulation system (6). The tumor microenvironment provides
the necessary milieu, nutrients, and blood supply which
stimulates tumor cell spreading and metastasis throughout
the body.

Platelets are small anucleated fragments derived from
megakaryocytes in bone marrow sinusoids, circulating in the
blood, which play a critical role in thrombosis and hemostasis,
arrest of bleeding in healthy conditions. Upon vascular injury,
(i) the exposure of subendothelial matrix proteins to the blood
flow, (ii) anchoring von-Willebrand-Factor (vWF) to the matrix
and platelet surface, thereby (iii) inducing platelet glycoprotein
(GP)Iba–vWF interaction and subsequent (iv) GPVI–collagen
interaction, are crucial steps in platelet adhesion and thrombus
formation (7, 8). Platelets express several integrins on the surface,
which interact with various ligands, including fibrinogen,
vitronectin, collagen, fibronectin, and laminin, which mediate
platelet attachment to the vessel wall. In secretory granules,
platelets store several bioactive plasma proteins (coagulation
factors, fibrinogen, vWF), regulatory factors and secondary
mediators, such as adenosine di- and triphosphate (ADP/ATP)
and serotonin, which are released upon platelet activation,
thereby enhancing pro-thrombotic events, stimulating the
recruitment of circulating platelets to the site of injury (8, 9).
Platelet accumulation at the site of vascular injury triggers
platelet aggregation and blood clotting, generating thrombin
and active coagulation factors. This process is regulated by the
extrinsic and intrinsic coagulation pathways. Upon the action of
thrombin, soluble fibrinogen is converted to fibrin, which
enhances platelet activation and aggregation responses.
Activated platelets expose phosphatidylserine (PS) facilitating
the recruitment of the prothrombinase complex, thereby
connecting the outer platelet surface to components of the
coagulation cascade (9–11).

Thrombotic events have been frequently observed in cancer
patients indicating an active involvement of platelets and factors
released from platelets in tumor progression, enhancing pro-
coagulant activity and blood clotting (12, 13). Although the
systemic effects of platelets in thrombotic complications of
cancer patients have been described, compelling experimental
and clinical evidence linked platelet function to tumor
angiogenesis, tumor progression and metastasis through the
interaction of platelets with cancer cells and tumor
microenvironment. However, the direct involvement of
platelets in the tumor-forming microenvironment has not yet
been convincingly demonstrated (14). Several open questions
have to be answered before we can begin to understand the
molecular mechanisms of platelet-dependent tumor growth and
metastasis. In the first part of this review, we summarize several
concepts that we described in 2015 (14) by presenting new
experimental and conceptual progress about the role of
platelets in different steps of tumor progression, including the
molecular mechanisms of cancer-associated thrombosis and
thrombo-inflammation, tumor angiogenesis and metastasis. In
the second part of our review, we discuss the advantage of the
clinical diagnosis of platelet-related molecular and cellular
signatures and highlight anti-platelet therapies to avoid
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hemostatic complications in cancer patients, and to increase
the efficacy of anti-cancer therapies.
CANCER-ASSOCIATED THROMBOSIS
AND THROMBO-INFLAMMATION

Cancer patients often suffer from thrombotic complications,
such as deep vein or arterial thrombosis, and pulmonary
emboli. Thromboembolic disease is the second leading cause of
death in cancer patients diagnosed with obesity, leukocytosis,
anemia or thrombocytosis. Thrombocytosis is associated with
poor survival and increased risk of tumor metastasis and venous
thromboembolism (VTE) in a wide variety of cancers, including
colorectal, breast, lung, renal and gastric cancers (15–18).
Depending on the disease state of cancer, patients have to face
a 4 to 8 times greater risk of venous thrombosis or
thromboembolism compared to patients without cancer (18).
However, the exact molecular mechanisms of thrombocytosis
and other aforementioned pathological complications are only
partially understood. Approximately one-third of newly
diagnosed ovarian cancer patients have exceedingly high
platelet counts that are associated with shortened survival (19).

Several studies suggested a molecular mechanism of the
development of cancer-associated thrombocytosis which can be
explained by the ability of some cancer cell types to produce
thrombopoiet in (TPO), a key cytokine st imulating
megakaryocyte differentiation and proliferation and resultant
platelet production. Elevated serum levels of TPO were
observed in cancer patients with reactive thrombocytosis (19,
20). Interestingly, in many cases, cancer patients with high
plasma levels of TPO also had increased production of
interleukin (IL)-6, and both parameters were linked to
advanced disease and poor survival (19, 21). Accordingly, in
mouse models of colorectal and ovarian carcinoma, the
inflammatory response of tumor and immune cells involves
IL-6 production that can stimulate platelet production by
enhancing TPO secretion from hepatocytes (19, 22). This
pathological process is inhibited in IL-6-deficient mice,
confirming the paraneoplastic effect of IL-6 in colorectal
carcinoma-induced thrombocytosis (22). Additionally, ovarian
cancer cells can secret functionally active TPO, directly affecting
platelet production in the bone marrow (23). Besides
thrombocytosis, cancer patients present with elevated
expression of platelet-derived markers, including CD40 and b-
thromboglobulin (24). P-selectin exposed on the activated
platelet surface and soluble form are increased in the blood,
and this increased level was associated with VTE in cancer
patients (24–26). Moreover, cancer patients frequently have
high levels of CD63-positive platelet-derived microparticles
(PMPs), inducing a pro-coagulant cancer environment
(Figure 1) (27, 28).

Cancer cells can directly activate platelets and enhance
thrombus formation. Tumor cell-induced platelet activation
and aggregation (TCIPA) has been detected in vitro using
neuroblastoma, small-cell lung, fibroblastoma, renal, gastric,
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melanoma, breast and colorectal cancer cells (29). Cancer cell-
resident podoplanin (PDPN) was proposed as a key regulator of
this process. PDPN is a type I transmembrane sialomucin-like
glycoprotein located on the surface of many tumor cells,
including squamous cell carcinoma, seminoma and brain
cancer cells (30). Increased expression of PDPN in cancer cells
is associated with a high risk of thrombosis (30). Overexpression
of PDPN in vascular endothelial cells could also induce
thrombo-inflammation, possibly promoting PDPN-induced
cellular interactions between platelets, cancer cells and
endothelial cells. Platelet aggregation was enhanced by PDPN-
positive oral squamous carcinoma cells, and mice developing
PDPN-positive tumors have a reduced survival rate (31).
Podoplanin expression by human brain tumors also induces
platelet aggregation and is associated with hypercoagulability
and a high risk of VTE (32). C-type lectin-like receptor-2 (CLEC-2)
was originally discovered as an important platelet hemi-
immunoreceptor tyrosine-based activation motif (ITAM)
receptor, which is activated by snake venom toxin rhodocytin
Frontiers in Oncology | www.frontiersin.org 3
and PDPN. Inhibition of platelet CLEC-2 function in a mouse
model of lung cancer significantly reduces thrombus formation
and metastatic events after injection of B16F10 melanoma cells,
suggesting that interaction between platelet CLEC-2 and cancer-
resident PDPN may also enhance thromboembolism, TCIPA
and platelet-dependent tumor cell spreading in human
patients (33).

Cancer cells can also trigger indirect platelet activation by
enhancing the release of ECM proteins and tissue factor (TF)
from endothelial cells, building an active surface for platelet
adhesion and thrombus formation (34). Platelet-dependent
thrombin generation and consequent protease-activated
receptor (PAR) activation, phospholipase C (PLC) activation,
calcium store depletion, and activation of the small guanosine-5’-
triphosphate (GTP)-ase Rap1b signaling have been detected in
this process. Inhibition of PLC in platelets could prevent TCIPA,
indicating the major route of inositol trisphosphate (IP3)-
dependent calcium store release and diacylglycerol (DAG)-
mediated signaling in this process, probably acting on DAG/
FIGURE 1 | Cancer-associated thrombosis and thrombo-inflammation. Growing tumors can induce thromboembolic events through several mechanisms. Tumor
and immune cells (monocytes and macrophages) release inflammatory cytokines, such as IL-6, which regulate TPO levels in the liver, thereby enhancing the
proliferation of megakaryocytes and consequent platelet production. Some tumor cells can also produce TPO, thereby increasing platelet production. In a pro-
thrombotic tumor environment, TF and platelet and endothelial cell-derived vWF enhance platelet activation and aggregation. CLEC-2-PDPN-mediated interactions
enhance platelet-tumor cell cross-talk and TCIPA. Activated platelets release many pro-coagulant factors and also sP-selectin and ADP. Increased thrombin
generation and PS – exposure on the surface of activated platelets induce intravascular clotting and thrombosis. In addition, platelets and tumor microenvironment
activate immune cells, such as neutrophils, monocytes, macrophages and also endothelium thereby promoting the release of ETs, further inducing inflammation,
platelet activation, aggregation and fibrin-rich clot formation. During cancer progression, platelets also interact with T cells to enhance thrombosis. In addition,
endothelial PGE2, PMPs and extracellular vesicles can also enhance platelet activation and induce thrombosis and thrombo-inflammation in growing tumors.
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protein kinase C(PKC)-mediated Rap1b activation (35). IP3-
dependent calcium store release also induces PS exposure on
the platelet surface, activating the prothrombinase complex. In
line with this, PS-positive platelets were found to be significantly
higher in the blood samples of cancer patients, resulting in
shorter blood clotting time and increased prothrombinase
activity (28, 36).

Cancer-associated thrombosis can be induced independently
of TF. Gas6 is a vitamin K-dependent ligand for the receptor
tyrosine kinase family comprising Tyro3, Axl and Mer (TAM),
acting as pro-survival factors in both tumor and endothelial cells
(37). Although Gas6 regulates inflammatory functions in
immune and endothelial cells, in lung cancer cell-associated
venous thrombosis model, Gas6 enhanced prostaglandin E2
(PGE2) secretion from the endothelium leading to platelet
activation and venous thrombosis (37). The interactions of
platelets with T cells also contribute to an inflammatory pro-
coagulant phenotype and thrombosis in patients with lung
cancer (38).

The inflammatory response often results in increased levels of
vWF released by activated platelets and endothelial cells, e.g. in
post-operative patients with malignant prostate cancer (39). The
thrombogenic lesions also increase the risk of TCIPA after
surgical intervention (39). Interestingly, deficiency or
inhibition of androgen receptor function in prostate cancer
cells could induce TCIPA in vitro (40). Conclusively, the loss
of androgen receptors in cancer cells accounted for the increased
thrombogenicity, due to the enhanced expression of
prothrombin. In sharp contrast, androgen receptor-positive
prostate cancer cells cannot induce TCIPA (40). Mitrugno
et al. reported that FcgRIIa expressed on human platelets can
mediate P3 prostate cancer cell-induced platelet activation and
that these tumor cells directly induce ADP release (41).
Interestingly, this platelet-tumor cell crosstalk is also induced
by direct interaction of platelet FcgRIIa with cancer cell-derived
immunoglobulin G (42).

Neutrophil extracellular trap (NET) formation is frequently
observed in cancer patients, increasing levels of histones,
deoxyribonucleic acid (DNA), and other nucleosome
compounds in the blood. NET release is associated with the
incidence of cancer-associated thrombosis and organ failure,
mainly triggering cancer-related coagulopathy (43). NET
release was proposed as a causative factor in pancreatic cancer
and more than 25% of cancer patients develop VTE (44).
Increased levels of TF, extracellular vesicles, citrullinated
histone H3 and extracellular vesicle TF activity were observed
in these patients. Using different in vivo experimental settings,
inhibition of TF, depletion of neutrophils, or administration of
deoxyribonuclease I (DNAse I) in mice could inhibit venous
thrombosis (45). These results suggest that systemic DNAse I
treatment degrading NETs can inhibit cancer-associated
thrombosis and tumor growth. Interestingly, in many
experimental models, DNAse I treatment, but not neutrophil
depletion could inhibit tumor growth and thrombosis, indicating
alternative sources of ETs (46–50). Increasing evidence suggests
that monocytes, macrophages and endothelial cells can also
Frontiers in Oncology | www.frontiersin.org 4
extrude their granular and nuclear content and in some cases,
activated platelets contribute to the process of ETosis (48, 50–
52). Pro-coagulant cancer cells can also release ETs (53).
Altogether, these results suggest that platelets and their
granular content may contribute to the formation of ETs,
supporting thrombus formation and coagulopathy in
cancer patients.
PLATELETS AND VASCULAR
NETWORK OF TUMORS

Vascular Sprouting
After reaching a certain size, solid tumors need to stimulate
angiogenesis, receiving more nutrients and growth factors, which
are required for energy metabolism, signaling and tumor growth
(54). Tumor angiogenesis includes vessel sprouting,
intussusceptive endothelial cell growth, remodeling and
differentiation into arterioles, venules and capillaries. Vascular
sprouting is a tightly regulated process involving the action of
motile tip cells at the leading edge, that migrate towards pro-
angiogenic signals and guided by pro-angiogenic vascular
endothelial growth factor (VEGF) and proliferating stalk cells,
elongate vascular sprout and generate the vessel lumen. This fully
formed vessel recruits mural cells, pericytes and vascular smooth
muscle cells, and promotes vessel integrity and blood
perfusion (54).

Platelet a-granules are the major store of the angiogenic
factors that simultaneously control hemostasis and
angiogenesis in the tumor microenvironment (55) (Figure 2).
Activated platelets release a-granule-resident pro-angiogenic
factors, such as VEGF, epidermal growth factor (EGF), basic
fibroblast growth factor (bFGF) and also release anti-angiogenic
factors, such as angiopoietin-1 (ANGPT1), sphingosine 1-
phosphate (S1P), thrombospondin-1 (TSP1) and endostatin.
Depending on external stimuli, platelets can selectively release
these factors to stimulate or inhibit vessel formation in the
growing tumor. For instance, ADP-stimulated platelets can
release VEGF, but not endostatin, while thromboxane A2

(TxA2) stimulation induces more endostatin release than
VEGF in vitro conditions (56). ADP-stimulated platelet-
releasate promotes the capillary formation of human umbilical
vein endothelial cells (HUVEC), while thromboxane A2

(TxA2)-stimulated platelet-releasate inhibits this process (56).
Platelet granule release may have anti-angiogenic effects in the
tumor microenvironment, because higher endostatin, TSP1,
angiostatin levels were measured in serum and urine of
different cancer patients (57–59). However, the concept of
co-clustering of proteins in distinct granules and differential
granule release was challenged by several studies using
quantitative enzyme-linked immunosorbent assay (ELISA),
confocal immunofluorescence microscopy and proteomic
approaches (60–64), which did not observe any functional
pattern. Recently, it has been proposed that Stimulated
Emission Depletion (STED) imaging can be applied to study
platelet granule content and protein clustering in a more precise
July 2021 | Volume 11 | Article 665534
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manner (65, 66). Whether depending on the time course and the
activating stimuli, platelets can enhance or inhibit tumor
angiogenesis by selective release of pro- or anti-angiogenic
factors is an intriguing question, which needs to be addressed
in an in vivo context.

Tumor cells can secret VEGF and platelets isolated from
cancer patients selectively uptake and store VEGF in a-granules.
However, depending on the pathological conditions, cancer cells
can also stimulate the release of platelet-resident VEGF, thereby
regulating the local VEGF concentrations in the tumor
microenvironment, which strongly influences tumor
angiogenesis. Tumor-derived IL-6 increases VEGF expression
in megakaryocytes, and consequent platelet VEGF levels also
increased in platelet a-granules, suggesting a complex interplay
between platelets and cancer cells in the regulation of tumor
angiogenesis (67).

In tumor xenograft and ischemic hind limb hypoxia models,
platelets promoted the homing of bone marrow-derived cells to
the neovascularized hypoxic tissues. This process was dependent
on platelet granule releseate, containing growth factors and
cytokines (68). In the xenograft breast cancer model, platelets
sequestered cytokines released by human luminal breast cancer
Frontiers in Oncology | www.frontiersin.org 5
cells and delivered them to indolent tumors, thereby ensuring
tumor outgrowth during angiogenesis (69).

Tumor-derived VEGF mediates endothelial cell activation,
vWF release, and platelet aggregation thereby provoking the
coagulation cascade in patients with melanoma cancer (70). vWF
release was accompanied by local inhibition of proteolytic
activity and protein expression of vWF cleaving protease
ADAMTS13, (a disintegrin-like and metalloproteinase with
thrombospondin type I repeats 13). VEGF can also enhance
TF expression in the endothelium and inflammatory cells, which
further increases platelet adhesion and thrombin generation (71).
Accumulation of activated platelets was also observed on the
fibrinogen/fibrin-coated endothelial surface. In turn, this
provisional fibrin matrix supports endothelial cell survival and
migration (72). Interestingly, the platelet d-granule-resident
ADP, which was not critical for vessel formation, could
facilitate endothelial cell migration (73).

Besides platelet-releseate, platelets possibly regulate
angiogenesis independently of their granular content. Platelets
can promote tube formation of HUVEC in a matrigel assay and
this process was enhanced by direct contact between platelets
and endothelial cells (74). Using a monoclonal antibody c7E3
FIGURE 2 | Effects of platelets on different types of tumor angiogenesis and maintenance of vascular integrity. Platelets stimulate tumor neovascularization by
multiple mechanisms. Platelets induce secretion of pro-angiogenic growth factors, from tumor and tumor microenvironment. Platelets can also uptake and sequester
pro-angiogenic mediators from the tumor and surrounding environment and deliver and release them into the tumor. Additionally, PMPs enhance vessel formation.
Platelets also stimulate the recruitment of bone marrow-derived cells to the angiogenic tumor tissues. Platelets attach to activated endothelium, thereby inducing the
migration of endothelial cells on a platelet-rich fibrin matrix. Besides, platelets can maintain the integrity of tumor vessels, preventing hemorrhages, thereby enhancing
the survival of growing tumors. Platelets also maintain the lymphatic-endothelial separation during tumor lymphangiogenesis. In contrast to their activatory roles in
other angiogenesis types, vasculogenic mimicry-induced tumor angiogenesis is inhibited by platelets. As shown, all these processes can be regulated by platelet-
mediated processes involving different cellular and molecular mediators.
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Fab (abciximab, ReoPro), inhibiting integrin aIIbb3 function on
the platelet surface, the platelet-enhanced capillary formation
was reduced during tumor growth, hypoxia-induced retinal
angiogenesis, and also in HUVEC in vitro (75, 76). Recent
studies demonstrated that platelet tetraspanin could promote
endothelial colony-forming culture tube formation (77).
Tetraspanin function is also linked to laminin-specific integrin
a6b1, since blockade of this type of integrin in both platelets and
endothelial cells could attenuate the ability of platelets to
promote tube formation (77). In similar conditions, platelet
CD154 and endothelium-resident CD40 receptors further
enhance platelet aggregation and thrombus formation (71, 78).

Activated platelets shed PMPs which are vesicular fragments
with a size of 0.05 to 1 mm. PMPs contain several receptors
and proteins on the membrane surface, including P-selectin
and integrins, and store many growth factors, cytokines and
inflammatory molecules (79, 80). Elevated PMP levels were
detected in the plasma of cancer patients (81). Interestingly,
PMPs could induce angiogenic effects to a similar extent as whole
platelets. Increasing levels of VEGF, IL-6 and Regulated on
Activation Normal T Cell Expressed (RANTES) were detected
in PMPs isolated from patients with gastric cancer suggesting
that PMP-shedding contributes to tumor angiogenesis (82).
Platelets and PMPs also contain different types of miRNAs.
Transferring of PMP-specific miRNA let-7a or miR-27b into
endothelial cells could inhibit the expression of TSP1, thereby
enhancing platelet-dependent endothelial tube formation
(83, 84).

Lymphangiogenesis
Angiogenesis also occurs in lymphatic vessels, supporting tumor
growth and dissemination. During embryonic development,
platelets maintain the separated blood-lymphatic system by
interacting with PDPN at the lympho-venous junction (85). In
CLEC-2-deficient mice, lymphatic vessels were filled with blood,
resulting in embryonic lethality (85). In the tumorigenesis model
induced by intradermal injection of B16F10 melanoma cells,
CLEC-2 deficiency was also associated with blood filling in
lymphatic vessels (86). However, future studies are needed to
evaluate the molecular mechanism, how platelet-resident CLEC-
2 can regulate lymphatic vessel separation during tumorigenesis.

Vasculogenic Mimicry
Vasculogenic mimicry occurs often in patients with aggressive
cancer types, such as melanoma and cholangiosarcoma and
possibly promotes tumor metastasis (87). Vascular mimicry
reflects the ability of tumor or tumor stem cells to form vessel-
like networks for the obtention of oxygen and essential nutrients
independently of sprouting angiogenesis (54). Interestingly, in
contrast to other types of angiogenesis, platelets inhibit
vasculogenic mimicry, indicating that platelets tightly
coordinate the vascularization process, and may still potentiate
tumor malignancy (88).

Tumor Vascular Integrity
Besides their pivotal role in angiogenesis, platelets regulate
tumoral vascular integrity in primary tumors, thereby
Frontiers in Oncology | www.frontiersin.org 6
preventing tumor hemorrhages. Initial studies from Ho-Tin
Noé et al. showed that the maintenance of tumor vascular
integrity resulted in the secretion of platelet granular-resident
serotonin and ANGPT, which stabilizes the structure of tumor
blood vessels by counteracting with tumor-derived VEGF (89).
By maintaining vascular integrity, platelets could reduce tissue
damage, which was caused by tumor-infiltrating immune cells
(90, 91). Later, it was proposed that tumor vessel destabilization
might have beneficial effects, promoting effective delivery of
chemotherapeutic agents into growing tumors (92). Recent
studies showed that tumor vessel integrity depends on platelet-
specific receptor GPVI and blocking this receptor in primary
prostate and breast cancer tumors could increase the efficacy of
chemotherapy (91). Although these studies highlighted the role
of platelets and GPVI in the maintenance of tumor vessel
integrity, the underlying molecular mechanisms remain elusive.

Depending on the disease context, platelets could regulate
neovascularization, leading to the generation of permeable
vessels. On the other hand, platelets could also induce vessel
stabilization by maintaining vessel integrity, and in some cases,
facilitated vessel maturation (93, 94). Compelling experimental
and clinical pieces of evidence showed the heterogeneity and
plasticity of the tumor and host cells. Growing tumors need a
specific organization and structure of tumor vasculature.
Platelets are the major cellular regulators of this process.
Targeting tumor angiogenesis is an important concept in
cancer research, which led to the development of anti-
angiogenic therapeutic strategies. However, the beneficial
effects of anti-angiogenic therapies are often limited, due to
several factors expressed by the tumor, inducing diverse cell-
type-specific resistance mechanisms (95). Hence, platelets
regulate many functions of tumor vasculature, it is tempting to
speculate that targeting platelet-mediated pathways in
angiogenesis would be considered as an alternative anti-
angiogenic strategy.
PLATELET FUNCTIONS IN
TUMOR METASTASIS

Invasive tumor cells that are detached from primary tumors can
migrate and colonize and proliferate at distant sites, thereby
forming secondary tumors, called metastases. Invasive cells
entering into the vascular or lymphatic system undergo various
shear and oxidative stress, also cytotoxic effects of immune cells,
thereby reducing the number of cancer cells in the peripheral
blood. However, a few numbers of tumor cells can escape from
these processes, extravasate from vessels and colonize distant
organs (96, 97). During this transit in the circulation, platelets are
the first cells that encounter tumor cells, thereby supporting their
metastatic potential. Several molecular mechanisms have been
described in platelet-mediated steps of tumor metastasis
(Figure 3). First experimental evidence was described by Gasic
et al., who showed that thrombocytopenia was correlated with
reduced metastasis and transfusion of platelets into the
thrombocytopenic mice restored the capacity to form
July 2021 | Volume 11 | Article 665534
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metastases (98). In line with this, later studies described that
impaired megakaryopoiesis and platelet production also reduce
metastatic events in different mouse models (99).

Platelets and Immune Evasion
of Cancer Cells
From all the cancer cells that enter into the circulation, only a
small number forms metastatic foci (96, 100). Besides shear
stress, cytotoxic natural killer (NK) cells eliminate most cancer
cells from circulation. Platelets are the first blood cells to interact
with cancer cells and serve as a physical ring to protect cancer
cells from immune system surveillance (96). Studies inducing
thrombocytopenia in mice suggest that platelets impact NK cell-
mediated lysis of tumor cells (101) and this hypothesis was
followed by Palumbo et al., using fibrinogen or Gaq protein-
deficient mice and their mutant platelets (102). In both cases,
cancer cell survival was strongly reduced. These studies proposed
that activated platelets together with fibrinogen (or fibrin) could
cover cancer cells and protected them from NK cell-induced
killing mechanisms (102). However, others showed that platelets
Frontiers in Oncology | www.frontiersin.org 7
exert their pro-metastatic effects within the first hour following
the entry of tumor cells into the circulation, whereas anti-
metastatic effects of NK occur between 1 and 6 hours after
tumor cell intravasation (103). During interactions with tumor
cells, platelets transfer major histocompatibility complex (MHC)
class I molecules on tumor cells, thereby providing a self-signal
to NK cells to inhibit their killing activity in vitro (104). In
addition, platelet-mediated shedding of Natural Killer Group 2D
(NKG2D) ligands could also inhibit this cytotoxic effect of NK
cells (105). Platelets can store a significant amount of TGF-b in
a-granules (50-100 times more than other blood cells) (106), and
release it into the circulatory system (107) and tumor
microenvironment (108) during cancer progression and
metastasis. It has been shown that platelet-derived TGF-b
causes the downregulation of NKG2D on NKs upon
interaction with cancer cells, inhibiting anti-tumor immunity
(109). In line with this, the downregulation of NKG2D has been
associated with elevated levels of TGF-b in patients with
colorectal and lung cancer (110). TGF-b-docking receptor
glycoprotein A repetitions predominant (GARP) protein
FIGURE 3 | Role of blood platelets in tumor metastasis. During metastatic spread, tumor cells enter into the blood circulation where they encounter tumor cells.
Physical and functional interactions between platelets and tumor cells support metastatic dissemination of tumor cells and survival at distant metastatic organs.
Platelets protect tumor cells from immune system surveillance, thereby enhancing the survival of circulating tumor cells. Following interactions with platelets, epithelial
cancer cells can acquire mesenchymal phenotype, rapidly invading distant organs. Platelets form an active complex with inflammatory and tumor cells within the
vasculature, thereby supporting the formation of metastatic niches. Platelets also can directly bridge tumor cells to the endothelium and induce their extravasation,
leading to the seeding and proliferation of metastatic cells. As shown, each step of metastatic cascade is regulated by platelet-resident receptors and or other
platelet-derived bioactive molecules, such as growth factors, cytokines, chemokines and miRNA.
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activates the latent form of platelet TGF-b and this protein
complex together with platelet-secreted lactate inhibited
immune response against both melanoma and colon cancer
(108). Using the TGF-b-GARP complex, platelets could
directly inhibit T cell function in vitro and in vivo
experimental conditions, and TGF-b rich platelet releasate and
lactate can suppress both CD4+ and CD8+ T cell activity (108).
Interestingly, thrombin can contribute to immune evasion by
cleaving platelet-bound GARP thereby activating latent TGF-b
(111). TGF-b inhibitors, blocking peptides and aptamers are
currently used in clinical trials of patients with solid cancers
(112). Using adoptive T cell transfer, as a therapeutic approach to
stimulate the immune system, has been proposed as a promising
anti-cancer strategy (113). It worth postulating that inhibition of
TGF-b uptake by platelets could be a potential anti-cancer
strategy enhancing protective immune pathways.

Platelets and Cancer Cell Reprogramming
Epithelial-mesenchymal transition (EMT) is an important
developmental program, which can also occur during cancer
progression. Epithelial cancer cells change their morphology as
they lose contact with the basement membrane and form the
primary mesenchymal cell layer through EMT (114).
Interestingly, the process of EMT can be reversible and
primary mesenchymal cells can also be transformed into
epithelial cells, and vice versa. EMT is supported by immune
and stromal cells, also cells derived from the tumor
microenvironment as well as the component of the ECM
(114). Numerous factors are involved in the regulation of
EMT, such as TGF-b, Hepatocyte Growth Factor (HGF) and
EGF receptor, and transcription factors (ZEB1/2, Snail, Twist
and Tiam1). Interestingly, EMT-like events occur during the
intravascular transit of cancer cells when platelets interact with
them, and at this moment, platelets release EMT inducers. In
platelet-treated cancer cells, mesenchymal markers Snail family
transcriptional repressor-1, vimentin, N-cadherin, fibronectin
and matrix metalloproteinase 2 (MMP-2) are frequently
upregulated, while the epithelial markers (E-cadherin, claudin-1)
are downregulated (107). Activated platelets can release TGF-b
from a-granules, switching cancer cells to a pro-metastatic EMT
phenotype. Platelet-derived TGF-b and platelet-tumor cell
interaction activate the TGF-b and nuclear factor kappa light
chain enhancer of activated B cells (NF-kB) pathways in cancer
cells, resulting in EMT phenotype and enhanced metastasis
in vivo. In line with this, inhibition of NF-kB signaling in
cancer cells or ablation of TGF-b expression only in platelets
reduces metastasis in the lung (107). Altogether, these results
suggest a direct link between platelet-resident TGF-b and EMT
formation (107). Recently, tumor necrosis factor receptor-
associated factor (TRAF) family member-associated NF-kB
activator (TANK)-binding kinase 1 (TBK1) was identified as a
mediator of platelet-induced EMT. Downregulation of TBK1
expression in cancer cells impaired platelet-induced EMT, which
is due to the suppression of NF-kB signaling, suggesting that
platelet-derived factors induce EMT in synergy with NF-kB
pathways (115). This regulation is quite complex since platelets
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can induce EMT independently of NF-kB pathways. In ovarian
cancer cells, platelet-derived TGF-b increased the invasive
potential of tumor cells and induced EMT by increasing the
phosphorylation of SMAD Family Member 2 (Smad2) (116).

ECM components, which are secreted by either tumor or
tumor surrounding microenvironment, were proposed to be
involved in EMT. Collagen and heat shock protein 47 (Hsp47),
a chaperone that facilitates collagen secretion and deposition,
was found to be highly expressed during EMT (117). Hsp47
expression induced mesenchymal phenotypes and enhanced
platelet accumulation, leading to lung retention and
colonization of cancer cells. Platelet depletion could abolish
Hsp47-induced cancer cell retention in the lung, suggesting
that Hsp47 promotes cancer cell colonization by enhancing
cancer cell-platelet interaction (117). Accordingly, blockade of
collagen receptor GPVI and integrin a2b1 on the platelet surface
could abolish Hsp47-induced platelet interaction with 4T1,
MDA-MB-231 and MCF10A breast cancer cells, indicating an
important role of these platelet receptors in EMT (117). When
MCF7 breast cancer cells were cocultured with platelets, EMT
formation was also observed, and this process was mediated
through direct contact with cancer-resident a2b1 integrin,
leading to the activation of the Wnt-b-catenin signaling
pathway (118). During systemic inflammation, platelet-fibrin-
rich extravascular environment strongly activates intestinal
inflammatory cells through aMb2 integrin and this interaction
can support the release of different cytokines and growth factors
thereby further supporting EMT (119).

Cathepsin family members are proteases that are highly
upregulated and secreted by different cancer cells. Cathepsins
are mainly localized in endosomal or lysosomal vesicles and are
also secreted, as soluble exo-enzymes, cleaving ECM components
around the cancer cells, and activate or inactivate surface
receptors by proteolytic cleavage (120). Interestingly, cathepsin
K isoform could induce platelet aggregation, and supporting
interaction with EMT-like cancer cells. This action is triggered by
cathepsin-mediated PAR-receptor cleavage on the platelet
surface (121). Hetero-aggregation of platelets with cancer cells
induces P-selectin exposure and CD44 activation, which further
enhances Hedgehog (Hdg)-signaling and also activates growth
factors such as sonic hedgehog (SHH), osteopontin (OPN),
parathyroid hormone-related protein (PTHrP), and TGF-b
(121). PMPs also modulate EMT. Coculture of ovarian cancer
cells with PMPs increases EMT (122). Overexpression or
knockdown of PMP-specific miRNA-939 strongly enhances or
inhibits EMT, respectively (122). PMP/miRNA-939 uptake by
cancer cells was regulated by secretory phospholipase A2 type
IIA (sPLA2-IIA), suggesting an important role for PMPs in the
crosstalk between platelets and cancer cells during EMT (122).

Platelet-Mediated Interactions of
Circulating Tumor Cells With Vessels
Platelets play an important role in cancer cell trapping to
vascular endothelium, thereby enhancing extravasation and
dissemination to distant organs. Cancer cells are rolling along
the endothelium, and this movement is maintained by platelet
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integrin aIIbb3 and P-selectin to form stationary adhesion (123).
Consequently, genetic deficiency or blockade of b3 integrin and
P-selectin decreases cancer cell colonization in the lung (124,
125). P-selectin also binds mucins and P-selectin glycoprotein
ligand-1 (PSGL-1) on the surface of tumor cells, mediating the
interactions among platelets, leukocytes and endothelium
(126, 127).

It has been hypothesized that exposure of vWF on the
activated endothelial cell surface could also support the
recruitment of platelet-cancer cell aggregates since genetic
deficiency or antibody-mediated blockade of GPIba, a vWF
binding receptor on the platelet surface could inhibit TCIPA,
also platelet-tumor cell interactions with endothelial cells, and
consequent lung metastasis (128, 129).

Tumor cell-resident integrin aVb3 also supports tumor cell
interactions with platelets, allowing the interaction with
vasculature and inducing tumor metastasis (130–132). At the
invasive edge of tumor cells, aVb3 integrins colocalize with
nectin-like molecule 5 (NECL5). NECL5 interacts with CD226
on the platelet surface, enabling tumor cell adhesion to the
endothelial vasculature, thereby leading to tumor metastasis
(132). aVb3 integrin on breast cancer cells can bind to
platelet-derived autotaxin which is stored in a-granules and
secreted into the vasculature upon platelet activation (133,
134). This process could induce early bone colonization and
the progression of skeletal metastases in mice.

Although several tumor cell types adhere to the endothelium
together with platelet aggregates and rapidly form thrombi, other
cancer cells do not need platelets for increasing adhesion
properties to the endothelium. Different models exist to group
experimental pieces of evidence and explain platelet-dependent
or -independent cancer cell adhesion. Cancer cells are rarely
associated with platelets in the liver, rather directly bind the
ECM, exposed by the discontinuous endothelium of the
sinusoids (135, 136). Cell adhesion of leukemia cells was also
independent of platelets and in the arterioles of pulmonary
endothelium, thrombus formation was only observed at the
later stage of metastasis (137). In other cases, treatment of
mice with the thrombin inhibitor hirudin disrupted the
interaction between cancer cells and platelets in the circulation,
but this treatment did not affect cancer cell adhesion on the
endothelium (138). Altogether, platelet-cancer cell interaction
may support the intravascular arrest of cancer cells, thereby
promoting rolling and static adhesion on the endothelium.
However, the importance of platelet-cancer cell interactions
with the vasculature strongly depends on the type of cancer
cells and metastatic organs.

Platelets in Dynamics of Tumor
Cell Extravasation
After cancer cell arrest in the microvasculature, tumor cells
transmigrate through the endothelium to form metastases.
Most of the cancer cells attack capillaries and arterioles during
extravasation. The structural differences of these vessels
determine cancer cell behavior to rupture vessel barriers and
successfully extravasate the targeted organs (139). Therefore, it is
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important to understand the distinct molecular mechanisms of
extravasation related to vessel types, thereby designing selective
therapeutic approaches to prevent metastasis. Several models
exist to explain this complex pathological process, (i) how cancer
cells and platelets modify vascular permeability, and (ii) how the
endothelial cell layer and the basal membrane are ruptured,
thereby promoting cancer cell extravasation. Platelets may
promote endothelial cell retraction and paracellular migration
of tumor cells, although in many cases, this process can be
regulated independently of platelets (6). Platelets can damage the
endothelium layer, releasing inducers of necroptosis (140), also
damaging ECM network, thereby enhancing the extravasation of
the cancer cells. Here, we highlight some platelet-derived factors
that contribute to different stages of cancer cell extravasation.

Molecules stored in a- and d-granules can regulate vascular
permeability. Upon activation, degranulated platelets release
serotonin, VEGF, platelet-activating factor (PAF), thrombin,
ATP/ADP, HGF, fibrinogen, which can potentially induce
vascular permeability, and consequently promote cancer cell
transmigration (71, 97). Studies showed that the extravasation
of cancer cells into the lung parenchyma was reduced in Unc13d
(Munc-13-4) knockout mice, in which platelet d-granule
secretion was severely, and a-granule secretion was moderately
inhibited (141). Platelet-derived ATP induces the relaxation of
endothelial junctions and vascular permeability by activating
P2Y2 purinergic receptors on the surface of endothelial cells, and
this process consequently was inhibited in P2Y2 knockout mice
(141). Recently, we identified a novel molecular mechanism that
further supports ATP-mediated effects in cancer cell metastasis.
We showed that galectin-3 expressed on the surface of colon and
breast cancer cells interacted with platelet-specific receptor GPVI
and this receptor-ligand mediated cellular crosstalk could
enhance platelet activation and degranulation (ATP secretion)
which further support tumor cell extravasation (142). In line
with previous studies, impaired d-granule release and apyrase-
mediated blockade of ATP function in platelets, strongly
inhibited endothelial transmigration of tumor cells, indicating
an important role of platelet-derived nucleotides in this process
(141, 142).

Serotonin is a biogenic monoamine produced from
tryptophan. Serotonin synthesis takes place in the
enterochromaffin cells, located in the gastrointestinal tract, that
release serotonin into the blood, where platelets rapidly take it up
into d-granules (143). Local accumulation of serotonin
modulates the vascular tone thereby influencing shear-
dependent processes. Circulating tumor cells increase the
plasma levels of serotonin and blockade of serotonin receptors
or calcium channels could effectively inhibit experimental liver
metastasis, indicating multiple roles of serotonin in different
steps of cancer progression (144). However, the role of platelet-
derived serotonin in tumor progression, including the
extravasation stage, has not been investigated.

Activated platelets release lysophosphatidic acid (LPA) from
their a-granules, which can also induce tumor cell invasion and
influence the permeability of the endothelium, thereby promoting
transendothelial cell migration (145, 146). In line with this, lung
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metastasis was impaired in Neurobeachin-like 2 (Nbeal2) knock-
out mice lacking a-granules (147). Blocking platelet activation
leads to a decrease in LPA concentration in the blood. Autotaxin
is a secreted glycosylated enzyme with lysophospholipase D
(LPD) activity, which is responsible for the regulation of basal
LPA levels in the blood (148). Interestingly, cancer cell-resident
CD97/G-protein-coupled receptors (GPCR) can induce platelet
activation thereby enhancing both LPA release from a-granules
and ATP secretion from d-granules (145). Consequently, this
platelet releseate could increase tumor cell-induced vascular
permeability and lung metastasis (145).

ADAM9 is a member of the disintegrin and metalloproteinase
(ADAM) family, which induce the shedding of receptors (149).
Interestingly, this proteinase can promote tumor cell migration
and metastasis in both MMP-dependent and -independent
manner (149–151). Interaction of platelet-resident a6b1 with
the disintegrin-cysteine-rich domain of tumor cell-derived
ADAM9 also triggers platelet activation, a-granule release and
P-selectin exposure, increasing tumor cell extravasation (150).
Platelet-tumor cell interactions mediated by platelet toll-like
receptor 4 (TLR4) and tumor cell-released high-mobility group
box 1 protein (HMGB1) lead also to the a-granule release and P-
selectin exposure, subsequently increasing the number of
extravasating tumor cells in lung vessels (152).

To effectively cross the subendothelial layer, cancer cells
should damage and move through the basement membrane.
Platelets can store and release several exo-enzymes, such as
MMPs, platelet hyaluronidase-2, and heparanase, that can
degrade collagen-rich ECM components (153, 154). After
platelet depletion, the reduced extracellular activity of MMPs
was observed and consequently, the number of lung metastases
was also reduced in mice, highlighting the contribution of
platelet-derived MMPs in the degradation of the basement
membrane (155).

Altogether, these studies suggest that platelets are involved in
tumor cell extravasation, although only limited in vivo
experiments showed the importance of platelet receptors and
enzymes in the process of basement membrane degradation.

Platelets and Metastatic Seeding
During systemic inflammation, the release of ECM stimulates the
environment of distant organs to accept tumor cell seeding,
thereby actively enhancing tumor metastasis (156). Once tumor
cells metastasized and formed certain tumor mass in host organs,
evolved metastatic niches can again contribute to the recruitment
of circulating blood and inflammatory immune cells (156, 157).
In different steps of metastatic niche formation platelets are
involved: (i) platelets can support cancer cell adhesion and
granulocyte recruitment in the early metastatic niche, (ii)
platelets can release different chemokines which stimulate the
recruitment of host cells to build the tumor microenvironment,
(iii) platelets also release pro-angiogenic factors at a later stage to
induce local tumor vessel formation within the host
microenvironment, (iv) platelets create an immune cell-rich
environment around the developing metastases thereby
supporting tumor cell proliferation and survival.
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Growing tumors release angiogenic growth factors, allowing
cancer cells to develop a niche before they metastasize. Tumor
cell-derived VEGF alters the microenvironment of distant
organs. VEGF triggers inflammation, also increases
cyclooxygenase (COX) products and PGE2, leading to the
homing of cancer cells to the lungs (158). Several ECM
components, integrins and VEGF receptors have been
identified as main regulators of organ-specific cancer cell
tropism and niche formation (159). In line with this, platelet
ADP receptor P2Y12 induces the recruitment of VEGFR1+ bone
marrow-derived cell clusters and fibronectin deposition, which
creates a premetastatic niche, selectively promoting lung
metastasis (160).

During tumor metastasis, monocytes and macrophages are
recruited to the metastatic niches and support cancer cell
seeding. Platelet-resident chemokines (CXC motif ligand
(CXCL) 5 and CXCL7) have been shown to promote the early
stage of the metastatic niche through activation of granulocyte-
derived C-X-C chemokine receptor 2 (CXCR2) (161). When
cancer cells interact with platelets, chemokines from platelet a-
granules are released which recruit granulocytes to the cancer-
platelet aggregates thereby supporting the seeding of metastatic
cells (161).

Fibrin-rich platelet aggregates also provide a provisory matrix
that further supports metastatic seeding. Indeed, TF expressed in
brain cancer cells induces the coagulation cascade that results in
thrombin formation, subsequent platelet activation and fibrin
formation (162). Impairment of macrophage function in Mac- or
CD11-deficient mouse models inhibits tumor cell survival,
suggesting that the recruitment of functional macrophages to
the platelet-rich clots is essential for this process (162). TxA2

stimulates macrophage infiltration and cytokine release (163).
Using an experimental metastasis model with B16F10 melanoma
cells, Lucotti et al. showed that the platelet-specific COX-1/TxA2

pathway induces platelet-tumor cell aggregation, endothelial
activation, tumor cell adhesion to the endothelium, and also
recruitment of monocytes/macrophages, thereby promoting
premetastatic niche formation in the lung (164).

On the other hand, depending on the developmental phase of
cancer and environmental stimuli, immune cells and granulocytes
could also induce cell death in metastatic cancer cells. Derivates of
PC3 prostate and MDA-MB-231 breast cancer cells with poor
metastatic capacity can recruit pro-metastatic Gr+ myeloid cells
and generate a metastasis-refractory microenvironment by
inducing the secretion of TSP1, which seems to inhibit lung
metastasis (165). In contrast, platelet-resident TSP1 had the
opposite effect on bone metastasis. Within the bone
microenvironment, TSP1/TGF-b axis is involved in the
regulation of premetastatic niche formation and bone
metastasis (166).

Therapeutic targeting of early stages of cancer, evolving
metastatic soil, is important in cancer patients. It could be
interesting to evaluate the platelet-derived protein signature
and the presence of platelet-tumor-immune cell conjugates in
cancer patient tissues can represent prognostic and diagnostic
tools, thereby helping an earlier intervention.
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THERAPEUTIC TARGETS

Platelet adhesion, activation, and aggregation are tightly
regulated at different steps of tumor progression, thereby
influencing the coagulation cascade and thrombus formation
in cancer patients. Integrins, glycoproteins, and many other
signaling receptors on the platelet surface are involved in these
processes. Below, we discuss the therapeutic effects on the
function of the main platelet receptors and regulatory
mechanisms controlling tumor progression and metastasis.

Integrins
Platelets express different integrins, including a2b1, a5b1 and
a6b1, to facilitate the binding to collagen, fibronectin and laminin,
respectively. Integrin a2b1 together with GPVI mediates direct
interactions of platelets with collagen, exposed by the
subendothelial matrix (167). Although it has been shown that
blockade of a6b1 integrin on platelets could abolish platelet-
tumor cell interaction and tumor metastasis (150), in vivo
functions of other types of b1 integrins have not been established.

In tumor metastasis models injecting B16F10 melanoma, AT-
3 breast or MC38 colon cancer cells, we showed that platelet
integrin a6b1 promotes metastasis through the binding to the
tumor cell-derived ADAM9 (150). Blockade of integrin a6
functions with GoH3 antibody could inhibit platelet-tumor cell
interaction in vitro and tumor metastasis in vivo (150). Genetic
or antibody-mediated blockade of a6 functions in mice did not
alter hemostasis or platelet numbers (150). Remarkably, this
antibody had no additive effects on tumor metastasis when
administered intravenously to platelet a6b1-deficient mice, at
the same time as tumor cells, indicating a predominant role of
this platelet integrin during the early steps of tumor metastasis
(150). Of note, a6b1 is also detected in other cells, such as cancer
and endothelial cells, and pericytes, transferring pro-tumorigenic
effects into the tumor environment (168). Targeting a6b1
integrin inhibits several routes of integrin-mediated tumor
malignancy, therefore blockade of their functions may be a safe
anti-cancer strategy. Recent studies by De Archangelis et al.
showed that a6 integrin deficiency in mouse intestinal epithelial
cells resulted in disruption of hemidesmosome integrity, and
mice developed colitis and colorectal carcinoma (169). Integrin
a6 deficiency in mice and humans also caused skin and mucous
disorders, such as pyloric atresia and epidermolysis bullosa
(170). Therefore, determining the in vivo side-effects of a6b1
blockade is necessary before the therapeutic implication.

Integrin aIIbb3 is the major platelet integrin with a high copy
number on the surface, switching from an inactive to an active
ligand-binding conformation after agonist stimulation thereby
regulating platelet aggregation, thrombosis and hemostasis (171).
This transformation allows aIIbb3 integrin to bind fibrinogen and
vWF and those bridge platelets together (8, 171). Antagonists of
aIIbb3 integrin already used in the treatment of patients with
acute coronary diseases (172). Integrillin, a potent aIIbb3 integrin
blocker, could effectively inhibit TCIPA and breast cancer-
associated bone metastasis (173). Consistently, the genetic
ablation of b3 integrins in mice inhibited bone metastasis (124).
Frontiers in Oncology | www.frontiersin.org 11
Of note, deficiency of aIIb subunit in mice also decreased early
steps of lung metastasis, but surprisingly opposite effects were
observed at later stages of metastasis (174). The expression of
aIIbb3 integrin is not exclusive to platelets, it is also detected on
the surface of breast cancer cells (175). In addition, integrillin
inhibits avb3 integrin function (176), and this integrin was also
detected in cancer and endothelial cells, macrophages, and at low
levels on the platelet surface (168), Therefore, blockade of b3
integrin function has been suggested as a beneficial therapeutic
approach against tumor cells within their environment. However,
blockade of aIIbb3 integrin functions in cancer therapy can result
in serious side-effects on hemostasis, causing bleeding
complications with life-threatening consequences. A possible
compromise would be to develop more specific inhibitors that
only target the active form of aIIbb3 integrins, reducing the risk of
bleeding complications. Recently, several groups have been
proposed an alternative strategy to prove this concept, and also
partially delete aIIbb3 integrin functions. An antibody-based
strategy blocking the thiol-isomerase function of aIIbb3
integrins could inhibit thrombosis without inducing bleeding
(177, 178). Alternatively, using a single-chain antibody (ScFv)
directed against the active form of aIIbb3 integrin, similar anti-
thrombotic effects were observed without any hemostatic
complication (179). In line with this, in human cancer xenograft
models (breast: MDA-MB-231, SKBr3; fibrosarcoma: HT-1080;
Burkitt’s lymphoma: Ramos) ScFv antibody effectively targeted the
active form of platelet aIIbb3 integrins (180). Recently, an
antibody-drug conjugate (ADC) was developed, linking ScFv to
a potent chemotherapeutic microtubule inhibitor monomethyl
auristatin E (MMAE), against the active form of platelet aIIbb3
integrins and simultaneusly blocking tumor growth andmetastasis
by MMAE (181). In the tumor microenvironment, MMAE is
cleaved from the ADC by cathepsin B, thereby locally releasing the
bioactive form of MMAE, killing cancer cells without bleeding
complications (181). This promising therapeutic tool would be
important to follow in the future using immunocompetent mouse
models of cancer.

GPIb-V-IX Complex
Glycoprotein (GP)Ib-V-IX complex regulates platelet adhesion
to the injured sites of a vessel, and platelet aggregation,
particularly under the condition of high shear stress (8). This
receptor complex is composed of four membrane glycoproteins:
GPIba, GPIbb, GPIX and GPV (8). Using GPIba/IL4R
transgenic mice, replacing the extracellular domains of GPIba
to IL4R, Jain et al. showed that deletion of vWF binding and
other binding sites located in these domains of GPIba could
inhibit experimental lung metastasis which was induced by
B16F10-melanoma cells (128). Later studies by Erpenbeck
et al., showed that treatment with a mixture of GPIba
antibodies (p0p3 and p0p4) directed against vWF binding site
on GPIba could also inhibit tumor metastasis using a similar
mouse model of lung metastasis (182). However, p0p3/p0p4
antibodies against GPIba induced severe thrombocytopenia
(182), which probably accounts for this inhibitory effect.
Surprisingly, another GPIba antibody (p0p/B Fab fragment)
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enhanced tumor metastasis in this study (182). Although p0p/B
Fab was described to block vWF and thrombin binding to mouse
GPIba and the functional blockade of GPIba with p0p/B Fab
was proved using different platelet functional tests (183, 184), the
binding epitope on GPIba has not been mapped at a biochemical
level. Taken these results together, it is difficult to conclude at the
moment which step of the metastatic cascade is regulated by
GPIba. Nevertheless, mice treated with p0p/B Fab displayed
prolonged tail-bleeding times (185), indicating a major drawback
of such antibody treatment in experimental cancer models.

Recently, the role of GPIba was further analyzed in
experimental (Lewis lung carcinoma) and spontaneous (4T1
breast cancer) lung metastasis models using a YQ3 antibody
which specifically inhibits GPIba-vWF interaction (129). The
authors showed that platelet-tumor cell and platelet-endothelial
cell interactions, and TCIPA were inhibited in vitro and also lung
metastasis in vivo (129). Control experiments showed that the
Fab fragment of YQ3 antibody did not induce platelet activation
or clearance, or any off-target effects when it was injected into the
GPIba/IL4R transgenic mice, indicating that this blocking
strategy can avoid thrombocytopenia or bleeding complications
in cancer mouse models (129).

GPIba function was also studied in the disease context of
inflammation-related carcinogenesis. Platelet-Kupffer cell
interaction involves hyaluronan-CD44 binding and early platelet
activation in the liver, which contributes to non-alcoholic
steatohepatitis (NASH)-associated liver carcinogenesis (186).
Genetic deficiency or blockade of GPIba function using p0p6
antibody, which was earlier described as GPIba and GPIX
inhibitor (186, 187), suppressed NASH-inducing pathological
effects, and this process was independent of the interactions of
GPIba with vWF, P-selectin, or aMb2 integrin (186). GPIba
blockade is known to inhibit TPO production in the liver.
Theoretically, this may influence consequent platelet production
and response to TCIPA in this cancer model (188). Future studies
are required to test this hypothesis.

A snake venom-derived antagonist anfibatide and humanized
anti-GPIba monoclonal antibody h6B4-Fab have been also
proposed as safe antithrombotic agents in different preclinical
and clinical studies (189–191). In the future, it would be
important to study their functions also in similar mouse
models of cancer as mentioned above.

Besides GPIba specific antibodies, GPIbb blocking antibody
RAM.1 has been tested in vivo thrombosis models (192).
Although RAM.1 treatment had strong anti-thrombotic effects,
bleeding times were not affected in mice, excluding major impact
on hemostasis (192). However, the physiological role of GPIbb
and other subunits of the receptor complex (GPV and GPIX)
have not been further studied in mouse models of cancer.
Glycoprotein VI
Glycoprotein VI (GPVI) is a receptor of ITAM-signaling, which
is activated with collagen, laminin and fibrin (193). Activation of
this receptor regulates diverse physiological processes in
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platelets, including adhesion, activation, aggregation and pro-
coagulant activity. Although the role of GPVI function in cancer
metastasis has been investigated by injecting Lewis lung
carcinoma or B16F10 melanoma cells into mice (194), only
limited studies explained the exact molecular mechanisms of
how platelet GPVI contributes to this process. A soluble form of
GPVI, Revacept has been developed and evaluated in clinical
trials of patients with thrombotic diseases to disrupt the
interaction of platelet-resident GPVI from collagen thereby
inhibiting thrombus formation (195, 196). Using galectin-3-
expressing HT29 cells, Dovizio et al. showed that Revacept had
an inhibitory effect on COX-2 and platelet-mediated EMT in
vitro (197). Recently, we showed that GPVI supports platelet
adhesion on colon and breast cancer cells. We identified galectin-
3 on the surface of these cancer cells and proposed a model that
the collagen-like domain of galectin-3 interacts with GPVI (142).
This interaction triggered platelet activation and subsequent
extravasation of tumor cells, leading to tumor metastasis (142).
Using in vitro and in vivomodels, we showed that the blockade of
this interaction could prevent platelet-tumor cell interactions
and inhibited colon and breast cancer cell-associated lung
metastasis in mice (142). The effect of galectin-3 can be shared
by other members of the galectin family, such as galectin-1 and
galectin-8. Both of these molecules can induce platelet activation
(198) and the release of pro-angiogenic molecules that enhance
HUVEC angiogenic responses including proliferation and
in vitro tubule-like formation (199).

Besides collagen, GPVI can also bind other ECM components,
such as fibrin, linking its function to the coagulation cascade and
fibrin-dependent pathomechanisms (200–202). Fibrin-GPVI
interactions contribute to thrombus growth (200, 201), which
can also occur in patients with cancer, leading to thromboembolic
events. Therefore, it would be necessary to further investigate the
role of GPVI in the context of fibrin-dependent cancer
progression and metastasis. Only abrogating fibrin binding to
GPVI would be important to evaluate in the future and find the
distinct role of fibrin-GPVI interaction in tumor malignancy and
cancer-induced coagulopathy. Of note, GPVI also interacts with
many ECM components and adhesion molecules, such as
fibronectin, vitronectin, adiponectin, MMP13, EMMPRIN and
histones (193, 203). Therefore, we proposed that GPVI-mediated
platelet-tumor cell interactions would be cell type-specific, and it
may also depend on the repertoire of various ligands, which are
overexpressed in different cancer cells. Furthermore, we also
showed that genetic deficiency or antibody-mediated inhibition
of GPVI can induce intratumoral hemorrhage, thereby increasing
the efficacy of chemotherapeutic drugs within the prostate and
mammary tumors (91). Although this has been observed in two
distinct cancer models, the treatment of humanized GPVI mouse
model with B16F10 skin tumor and blocking human GPVI
function with Glenzocimab (ACT017) did not cause tumor
bleeding (204). Depending on the cancer types, tumor
progression and vascularization seem to be regulated by
different oncogenic signaling pathways that modify the
hemostatic effects of GPVI.
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GPVI has been considered as a potentially safe anti-
thrombotic target based on the observations that its signaling
blockade reduces experimental thrombosis without impairing
hemostasis (193). GPVI is exclusively expressed in platelet/
megakaryocyte lineage. Antibody blockade or genetic
deficiency of GPVI does not influence platelet production or
hemostasis, neither in mice nor in humans (193, 205).
Altogether, these results strongly indicate that therapeutic
strategies based on selective blockade of GPVI function or its
interactions with the indicated ligands in some cancer types may
blaze the trail for new anti-cancer therapies, preserving
normal hemostasis.

C-Type Lectin-Like Receptor-2
C-type lectin-like receptor-2 (CLEC-2) has a restricted expression
pattern in humans, mainly detected in megakaryocytes, platelets,
dendritic cells, and Kupffer cells. Genetic or pharmacological
blockade of CLEC-2 in mice does not influence platelet
production or hemostasis. Therefore, CLEC-2 would be an
attractive target for cancer therapy (33). Recently, targeting
CLEC-2 function in cancer was proposed to be effective in
decreasing hematogenous cancer metastasis, cancer-associated
thrombus formation and thrombo-inflammation (33). Injection
of B16F10 melanoma cancer cells into the back skin of CLEC-2-
depleted mice followed by injection of the 2A2B10 monoclonal
antibody inhibited thrombus formation in the tumor vessels
without developing intratumoral hemorrhages (206). However,
the functional vessel density was significantly increased in CLEC‐
2-depleted mice, improving oxygen and nutrient supply in the
tumor environment, indirectly promoting tumor proliferation
(206). These interesting pathological aspects of CLEC-2
deficiency opens the question of whether pharmacological
blockade of CLEC-2 function could be beneficial in
cancer patients.

Interestingly, aberrant O-glycosylation was detected on
cancer-origin PDPN. The LpMab-2 antibody recognized this
specific site and effectively inhibits PDPN-CLEC-2 interaction
only in the cancer microenvironment (207). Therefore, it was
proposed that an LpMab-2 antibody would be an excellent tool
for selectively targeting PDPN-positive cancer cells, inhibiting
cancer-related thrombosis within tumor vessels, without
interfering with normal cells that are located in lymphatic
vessels (207). Other functional blocking monoclonal antibody
(mAb, SZ168) against the extracellular domain of human PDPN
also significantly inhibited the growth and pulmonary metastasis
of human malignant melanoma (208). Of note, simultaneously
blocking both CLEC-2 and GPVI receptor functions may cause
severe bleeding complications, as it was demonstrated in CLEC-
2/GPVI-depleted mice (209).

Platelet aggregation-inducing domains (PLAGs) of PDPNwere
recently identified, linking its function to CLEC-2. Using anti-
PLAG-neutralizing antibodies, the function of PLAGs was
confirmed in CLEC-2 binding, platelet aggregation, and tumor
emboli formation indicating that simultaneous inhibition of
PLAGs is efficient to block PDPN-mediated tumor growth and
metastasis (210). Besides blocking antibodies, several CLEC-2-
binding small molecules can interrupt CLEC-2-PDPN interaction.
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The water extract of Chinese medicine from leaves of Artemisia
argyi could irreversibly block CLEC-2-PDPN interaction in a
dose-dependent manner (211). This action may result in the
prevention of tumor metastases. Another drug, 5-nitrobenzoate-
2CP also inhibits PDPN-CLEC2 interaction and consequent
TCIPA formation without a risk of bleeding (211). Therefore, it
was proposed that inhibition of PDPN-CLEC-2-mediated TCIPA
may provide effective therapy against metastasis and
thromboembolic complications. The modified form of snake
venom toxin rhodocytin was also proposed as a potential tool to
target CLEC-2 for both anti-platelet and anti-metastatic therapy
(212, 213).

Altogether, these results suggest that selective blockade
of CLEC-2 function on the platelet surface or disruption of
PDPN-CLEC-2 interaction would be effective for anti-cancer
therapy. Further studies are required using different
experimental cancer models and humanized CLEC-2 mice
before clinical application.
CYCLOOXYGENASES

Upon platelet activation, thromboxane A2 (TxA2) secretion
enhances platelet aggregation and thrombus formation through
its thromboxane-receptor (TP) and also induces diverse
paracrine effects on neighboring cells in thrombotic and
tumorigenic conditions (214). Aspirin (acetylsalicylic acid)
irreversibly inhibits the enzymatic activity of cyclooxygenases
(COXs) which are involved in arachidonic acid metabolism,
producing TxA2 (172). Aspirin binding covalently modifies
COX-1 and COX-2 isoforms through acetylation of serine
residues 529 and 516, respectively (215, 216). Although
platelets constitutively express COX-1, COX-2 expression is
dramatically upregulated during inflammatory or tumorigenic
conditions. Increased COX-2 expression was detected in many
cancer types, such as breast, bladder lung, pancreatic, gastric and
lung (217, 218).

An inhibitory role of aspirin in cancer development was first
reported by Gasic et al. in 1973, who observed metastatic
inhibition of MCA6 ascites sarcoma cells in aspirin-treated
mice (219). Later, many in vitro and preclinical studies
analyzed platelet-dependent effects of aspirin on cancer.
Pretreated platelets with aspirin could effectively inhibit cancer
cell-induced platelet aggregation (220), but in another study this
treatment did not inhibit platelet degranulation, adhesion or
micro-aggregate formation (221). These processes are possibly
triggered by purinergic signalings which are not inhibited by
aspirin in platelets (222).

The effect of aspirin on cancer was also investigated in clinical
studies. Kune et al, found a lower incidence of colorectal cancer
among subjects using aspirin-containing medication (223). In
the APACC trial, patients with early stages of colorectal cancer,
colorectal adenomas daily use of lysine acetylsalicylate (160 or
300mg) demonstrated a positive effect in adenoma recurrence
(224). In another clinical trial, a daily low dose of aspirin (81mg)
could slightly decrease the incidence of adenomas in patients
compared to the placebo group after one year of treatment (225).
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In a randomized clinical trial, patients with familial adenomatous
polyposis were treated with aspirin. Polyps were mainly detected
in the epithelium of the large intestine and polyp size was
decreased compared to the placebo group (226). In Lynch
syndrome, which is a non-polyposis colorectal cancer type, the
regular aspirin intake (600mg) also decreased the cancer
incidence (227). Frouws et al. showed that regular use of
aspirin (≤100mg) significantly improved patient survival with
gastrointestinal cancer, including oesophageal, hepatobiliary and
colorectal cancer (228), and aspirin treatment could also reduce
the risk of pancreatic cancer (229). Later, Rothwell et al., studied
data from five large randomized clinical trials of daily aspirin use
(≥75 mg), including the United Kingdom Thrombosis
Prevention Trial (TPT) (230). These studies showed that
regular low-dose aspirin is associated with reduced cancer
incidence of colorectal cancer both in women and men,
smokers and non-smokers (230). They also demonstrated that
daily aspirin intake at low dose reduces the risk of cancer
metastasis, which also account for the inhibition of cancer
deaths at earlier steps (231). Consistent inhibition was
observed in the risk of other cancers, e.g. breast, lung and
prostate cancers (230–233).

Taken together, it was a long-standing question, how aspirin
treatment influences cancer progression and metastasis, whether
these mechanisms are platelet-dependent and/or independent.
Hypotheses supporting the role of platelet-dependent
mechanisms in cancer were based not only on cellular
characteristics of platelets but also pharmacodynamics of
aspirin treatment and its effects on COX enzymes. The lifetime
of human platelets is only 10 days, platelet turnover is very fast in
the human body, therefore patients are regularly treated with
aspirin every 24 hours (234, 235). 100 mg/day aspirin intake
leads to maximal acetylation of circulating platelets and this
could significantly reduce TxB2 levels, metabolite product of
TxA2 synthesis (215, 236). Aspirin has a short half-life
(approximately 20 minutes) in the blood, it is rapidly
hydrolyzed to salicylic acid by enzymes located in the blood
and liver (237). A low dose of aspirin intake could completely
and irreversibly inhibit COX-1 activity in platelets, suggesting
that aspirin uptake in platelets is a very fast process. Protein
synthesis is limited in platelets compared to nucleated cells, that
is due to the lack of nuclei and limited mRNA content received
from megakaryocytes. Therefore the inhibitory effect of aspirin is
more robust in platelets than other nucleated cells in which
acetylated COXs can be easily replaced within few hours with
newly synthesized enzymes (215). Although COX-1 activity is
completely blocked by aspirin, acetylated COX-2 can still form
15R-hydroxyeicosatetraenoic acid (15R-HETE) from
arachidonic acid (238). Furthermore, aspirin can target
megakaryocytes in the bone marrow as well, therefore aspirin
treatment could inhibit COX-1 function in newborn platelets,
released by acetylated megakaryocytes (239). Consistently, in
studies by Lucotti et al., transfusion of COX-1+/+ platelets
resulted in increased number of B16F10 melanoma cell-
induced lung metastases in thrombocytopenic mice, compared
with using COX-1-/- platelets (164, 240). This study summarized
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that aspirin has broad platelet-dependent inhibitory effects on
different steps of metastasis, including (i) tumor-induced platelet
aggregation, (ii) endothelial cell activation, (iii) tumor cell
adhesion to the endothelium, and (iv) recruitment of
monocytes/macrophages, and (v) formation of a premetastatic
niche (240). Altogether, these results suggest that the anti-
metastatic effects of aspirin could be mainly due to the
inhibition of platelet COX-1 activity.

In an experimental cancer mouse model of human familial
adenomatous polyposis, deletion of COX-2 reduces the number
of polyps in the intestine, indicating a key role of COX-2 in
tumorigenesis (241). Can et al. showed that aspirin intake
correlates with a low risk of colorectal cancer in patients with
higher expression levels of COX-2 compared to those who had
lower levels or absent expression (242). Activated platelets,
immune cells and also the tumor microenvironment can
release different growth factors, cytokines that also stimulate
gene expression of COX-2 in cancer cells. In addition, activated
platelets enhance COX-2 expression in stromal cells via the
release of IL-1b, platelet-derived growth factor (PDGF) and
TGF-b, which lead to tumor progression (243). Moreover,
PDGF released from platelets together with GPVI-galectin-3
interactions also triggers COX-2 production, thereby
enhancing EMT in HT29 colon cancer cells (197). Altogether,
these results suggest that platelets may influence tumorigenesis
and cancer progression also through direct effects on COX-2,
and aspirin treatment can inhibit COX-2-driven functions in a
platelet-dependent manner.

COX-independent mechanisms of aspirin have also been
observed. In mouse models of colorectal cancer, aspirin can
induce apoptosis via degradation of IkBa, leading to the nuclear
translocation of NF-kb (244). Inhibition of Wnt/b-catenin and
extracellular signal-regulated kinase (ERK)-signaling in aspirin-
treated cells was also described in different cancer cell types
(245–247). However, these effects were often occured at
supratherapeutic doses and concentrations of aspirin.

In summary, the majority of studies suggest a positive effect of
a low dose of aspirin on cancer incidence, metastases, and
cancer-associated mortality. However, long-term aspirin
treatment can cause gastrointestinal bleeding complications
(248), therefore alternative treatments such as TP receptor
blocker or gastrointestinal-safe phosphatidylcholine (PC)-
associated aspirin (249) have been proposed. The benefit and
bleeding risks of aspirin-based therapy can vary depending on
many factors, including age, gender, and medical history of
patients [reviewed in Dovizio et al. (250)].

Additional studies are needed to confirm whether aspirin-
inhibiting effects are directly associated with platelets or tumor
cell or tumor microenvironment. It will be important to further
study the effect of aspirin as anti-platelet medication in cancer
patients with thrombotic complications. Although aspirin
treatment improved adoptive T cell therapy using preclinical
models of melanoma cancer (108) and prevented hepatitis B-
associated hepatocellular carcinoma (251), it would be important
to address whether aspirin can be used as a universal adjuvant
therapy in patients with cancer.
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PURINERGIC RECEPTOR P2Y12

The P2Y12 receptor is a purinergic Gi-coupled ADP receptor
expressed on the platelet surface and known to regulate
thrombus stability in vivo (252). Currently used inhibitors of
P2Y12 are either indirectly block the receptor, such as the
members of the thienopyridine family (ticlopidine, clopidogrel
and prasugrel) or direct inhibitors, such as ticagrelor and
cangrelor. The bioactive form of thienopyridine-derived
metabolic irreversibly inhibits the binding of ADP to the
receptor, leading to decreased platelet activation and
aggregation responses, and reducing inside-out activation of
platelet aIIbb3 integrins (253). Clopidogrel is widely used in
patients with coronary artery, cerebrovascular and peripheral
vascular diseases (254). Ticagrelor and cangrelor are reversible
antagonists, with similar inhibitory properties (172).

Several cancer studies in mouse models indicated the
beneficial effects of these inhibitors. In orthotopic models of
pancreatic cancer, clopidogrel inhibited tumor development,
metastasis and the extent of cancer-associated thrombosis at a
dose of 8 mg/kg, which is 4-8 fold the chronic dose in patients.
This treatment probably induces complete inhibition of ADP-
induced platelet aggregation (255). More recently it has been
shown that in an orthotopic 4T1 breast cancer model, ticagrelor
(10 mg/kg), but not clopidogrel (10 mg/kg) treatment inhibited
lung metastasis and improved the survival rate in mice (256).
Ticagrelor treatment was associated with reduced tumor cell-
platelet aggregates in the lungs (256, 257), thereby decreasing the
number of tumor metastases. In ovarian cancer models,
deficiency of P2Y12 receptor in platelets or apyrase treatment
inhibited ADP-dependent platelet-tumor cell interaction and
consequent primary tumor growth (258). In platelet-mediated
tumor metastasis, ADP-induced signaling enhanced the platelet
AKT kinase pathway, maintained by apoptosis signal-regulating
kinase 1-c-jun N-terminal kinase (ASK1-JNK)/p38-mediated
phosphorylation of P2Y12 receptor, thereby linking ADP-
induced signaling to platelet mitogen-activated protein kinase
(MAPK) signaling pathways (259).

Genetic deficiency of P2Y12 has also been shown to inhibit
lung colonization by Lewis lung carcinoma and B16F10 cells in
mice. Interestingly, this effect was associated with inhibition of
VEGFR1+ bone marrow-derived cell clusters, and fibronectin
deposition in the lung (160). This result further supported a new
anti-cancer strategy. A tumor-homing pentapeptide that targets
fibrin-fibronectin complexes in the tumor stroma and the
vascular wall is called CREKA, coupled to Ticagrelor (260).
This CREKA-Ticagrelor complex effectively inhibited platelet-
induced migration of tumor cells, and also prevented tumor-
platelet interaction thereby suppressing lung metastasis (260).

In pancreatic adenocarcinoma, platelets can drive gemcitabine
resistance. Platelet-released nucleotides (ADP and ATP) were
found to be the main causative factor that drives gemcitabine
resistance, which is completely blocked by Ticagrelor (261).
Isorhapontigenin is a polyphenolic compound found in Chinese
herbs and grapes with anti-cancer and anti-inflammatory
properties. It can selectively inhibit ADP-induced platelet
aggregation and inside-out and outside-in activation of aIIbb3
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integrins, and also d-granule secretion. Isorhapontigenin
increased adenosine 3’,5’-cyclic monophosphate (cAMP) levels
and phosphorylation of vasodilator-stimulated phosphoprotein
(VASP). On the other hand, decreased Akt phosphorylation
was found, suggesting a potential effect of this drug on cAMP
and phosphoinositide 3-kinases (PI3K) signaling pathways that
are downstream effectors of P2Y12 receptor (262). Although
clopidogrel enhanced anti-tumor and/or anti-metastatic
activity of chemotherapeutic agents such as 5-fluorouracil,
cyclophosphamide and mitoxantrone, on the other hand, it
reduces the anti-cancer activity of doxorubicin, cisplatin and
tamoxifen (263). The molecular mechanisms of such divergent
activities have not yet been established, possibly based on the
modulation of the tumor vasculature through platelet-released
factors. It is also important to note that P2Y12 receptor is
expressed in cells other than platelets (264), such as osteoclasts
(265). Indeed, bone loss (osteolysis) associated with tumor growth
in mice was effectively treated with clopidogrel (265).

Although inhibition of P2Y12 has beneficial effects in mouse
models of cancer, the results from randomized trials are
conflicting. TRITON-TIMI 38 trial of prasugrel in comparison
to clopidogrel on top of aspirin during 6-15 months indicated on
accelerated tumor growth and a higher risk of cancer death in the
prasugrel group, in patients with breast, colorectal and prostate
cancers (266). Interestingly, this effect was not observed in patients
with non-melanoma type of skin cancers and brain tumors (266).
In contrast, in another trial (TRILOGY), no difference has been
observed in the occurrence of cancer between the clopidogrel and
prasugrel group (267). In DAPT and PEGASUS-TIMI 54 trials,
long-term treatment with clopidogrel and ticagrelor also showed a
significant increase in cancer-related deaths (268, 269). In a
retrospective study on acute coronary syndrome patients with a
median follow-up of 46 months, ticagrelor treatment had lower
cancer risk than clopidogrel without any difference between
clopidogrel and prasugrel (270). Although these studies have
been conducted in large cohorts, it is difficult to conclude any
evidence of the association between the effects of P2Y12 inhibitors
and cancer risk and related mortality. Earlier, it was hypothesized
in some cases, that platelet-tumor cell trapping in the
microvasculature has anti-metastatic effects, and inhibition of
platelet function using these drugs may impair the barrier
function of platelets (271).
Thrombin and Thrombin Receptors
Thrombin receptors belong to a PAR family of four
transmembrane GPCRs that are activated by thrombin, and
trypsin-like protease-mediated cleavage of their N terminal
exodomain (272, 273). PARs are expressed in platelets,
neutrophils, monocytes/macrophages, endothelial cells and
fibroblasts. The human platelets are mainly activated by
thrombin through PAR1 and PAR4 isoforms, while mouse
platelets do not express PAR1, they are activated by PAR3 and
PAR4. Thrombin receptors are an attractive target for the
treatment of platelet-related diseases (274). Targeting platelet
PAR1 function could effectively inhibit thrombin-induced
aggregation. PAR1 blocker Vorapaxar can reduce thrombotic
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events in patients with myocardial infarction and stroke, but
moderate or severe bleeding complications were observed (275).
Parmodulin targets the cytosolic part of PAR1 in reversible
mode, thereby inhibiting signalings through Gaq, but not
Ga12/13. Parmodulin ML-161 had anti-thrombotic and anti-
inflammatory effects in mice with a lower bleeding tendency
(276). Pepducin is a cell-penetrating lipidated fragment of the
cytosolic part of GPCR to modulate the action of this receptor in
targeted cell-signaling pathways, including different PARs. PAR1
specific Pepducin PZ-128 was proposed as an effective anti-
metastatic and anti-angiogenic inhibitor in mouse models of
breast, lung and ovarian cancers (277). PZ-128 has been already
tested in patients with coronary diseases and resulted in
decreased bleeding tendency compared to Vorapaxar (278).
Interestingly, PAR1 was detected in different cancer cells, and
it was cleaved by MMP1 and 13 (279). Therefore, it was proposed
that targeting PAR1 function during cancer progression and
metastasis would simultaneously inhibit both platelet and tumor
cell functions. The clinical applicability of Parmodulin and
Pepducin in cancer therapy would be important to further
study in different in vivo experimental models of cancer.

Heparin prevents the formation of thrombin and inhibits its
activity. Heparin, unfractionated heparin (UFH), low-molecular-
weight heparin (LMWH) and heparin derivatives are used in the
treatment of VTE and can suppress cancer cell survival (280).
Heparin inhibits angiogenesis, tumor cell proliferation, adhesion,
migration and invasion through the inhibition of heparanase, P
and L-selectin. Furthermore, heparin treatment inhibits tumor
cell-induced endothelial tube formation and CXCL12/CXCR4
signaling pathways (280). Tinzaparin is an LMWH, generated by
the enzymatic degradation of porcine unfractionated heparin
(UFH). Sulfated non-anti-coagulant heparin (S-NACH) is also
an LMWH (281). Both LMWH effectively inhibits P-selectin-
mediated cell adhesion and cancer metastasis. Modified heparin
with low anti-coagulant activity decreases A375 melanoma cell
adhesion to platelets through inhibition of inside-out activation
of aIIbb3 integrins (282). Heparin can also disrupt the
interaction of monocyte and tumor cell-derived a4b1 with
endothelial vascular cell adhesion molecule 1 (VCAM1) (283).
Although the anti-cancer effects of heparin and its derivatives
have been highlighted in the literature, more preclinical and
clinical studies are necessary to evaluate the potential off-target
effects in heparin-based platelet-cancer therapies to avoid
bleeding complications.
P SELECTIN

P-selectin mediates interactions of platelets with tumor cells and
vasculature during tumor growth and metastasis, indicating that
blockade of P-selectin exposure on the platelet surface would be a
potential target for anti-cancer therapy. Rivipansel inhibits many
selectins in the body, including P, L and E-selectins, and also
decreases the recruitment of plasma cells to the bone marrow of
multiple myeloma (284). Rivipansel treatment was tested in
patients with vaso-occlusive sickle cell anemia and this
treatment did not reach the necessary efficacy points (285).
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Recently, Crizanlizumab, a selective blocking antibody of P-
selectin was tested in the same disease context with a lower
incidence of adverse effects (286). Therefore, it would be
important to test Crizanlizumab in different cancer mouse
models in the future.

Liquid Biopsies
Blood-based liquid biopsies are non-invasive biomarkers, which
are becoming powerful diagnostic and prognostic tools to screen
cancer patients (287). To evaluate tumor landscape, circulating
tumor cells (CTCs) are the most commonly used liquid biopsies
(287). During their transit in the bloodstream, CTCs interact
with platelets and immune cells. Platelets can ingest and
sequester CTC-specific proteins, mRNA and also tumor-
derived pro-tumorigenic and angiogenic factors, leading to the
tumor-specific modifications of platelet proteome and
transcriptome. In line with this, platelets isolated from patients
with glioma and prostate cancer were enriched in cancer-
associated RNA biomarkers EGFRvIII and PCA (288). Best et
al, detected more than 5000 differentially expressed or mutated
mRNAs between healthy donors and cancer patients, including
expression of MET, HER2 and mutations in KRAS, EGFR and
PIK3CA (289). These datasets were effective to distinguish
patients with metastatic tumors. During tumor progression,
platelet transcriptome seems to dynamically change in a time-
dependent manner. Therefore, it was proposed that the platelet
mRNA profile allowed to accurately distinguish and predict
tumor progression (290). Analyzing platelets as a reservoir of
liquid biopsies would provide valuable tools for cancer
diagnostics. On another hand recent studies by Dunbar et al.,
reported that regardless of cancer type, the mutations in genes,
such as STK11, KRAS, CTNNB1, KEAP, CDKN2B and MET can
predict the high incidence of cancer-associated thrombosis for
one year before diagnosis (291, 292). Interestingly other genes,
such as SETD2, IDH1 are not predictive and displayed a negative
association (291, 292).

Soluble P-selectin and coagulation factors circulate at high
levels in patients with solid cancers, predicting the cancer status
and VTE complications (24, 293, 294). High plasma levels of
vWF, fibrinogen and D-dimers were associated with poor
prognosis of breast, colon, gastric, rectal, non-small cell lung
cancer, ovarian and pancreatic cancers (295–298). Other studies
observed elevated levels of TF-positive microparticles in plasma
samples of patients with pancreatic, colon, breast, ovarian and
non-small cell lung cancer (299). Although systematic testing of
cancer patients for these pro-coagulant factors may help to
identify patients at increased risk for VTE, genomic profiling
of oncogenic mutations can be also useful to predict
thromboembolic risks in patients with different solid cancer
types. It would be important to further evaluate whether
increased VTE observed in cancer patients is due to the
oncogenic mutations which dysregulate the hemostatic genes
in cancer cells, leading to enhanced TCIPA, thrombosis and
blood clotting.

Plasma levels of soluble GPVI (sGPVI) reflect platelet activation
in thrombo-inflammatory diseases, such as stroke, disseminated
intravascular coagulopathy, arthritis and sepsis (300–302). GPVI
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can support thrombus stabilization through the interaction with
fibrin and fibrinogen (200, 201, 303). Elevated levels of sGPVI in
patients with sepsis were due to the GPVI shedding, which was
induced by fibrin activation of this receptor (304). Recently, we
found increased levels of sGPVI in plasma samples of patients
with breast or colorectal cancer (142). In small cohorts of
patients with colorectal cancer, sGPVI levels were positively
correlated with cancer stage (142). To establish the role of
sGPVI as a diagnostic/prognostic marker, future studies are
needed to validate these results in a larger cohort involving
other solid tumor types. Although the pro-thrombotic
environment of many cancers is rich in fibrin (305), future
studies are required to evaluate whether levels of sGPVI can be
also a diagnostic tool to predict thrombosis and correlated to the
cancer stage. GPVI would also represent a prognostic marker in
pancreatic adenocarcinoma since elevated levels of GPVI were
detected in microparticles isolated from patient blood (306).
Further studies are required to define whether some of the above-
indicated platelet-derived molecules can be universal diagnostic/
prognostic markers for cancers or only specific of a particular
cancer type.
OTHER ALTERNATIVE
TARGETING STRATEGIES

It has been proposed that platelets can influence tumor growth
and progression by enhancing tumor cell proliferation (307).
However, the role of platelets on cancer cell proliferation remains
controversial. Experimental findings were strongly dependent on
the cancer cell types and in vitro cell culture systems. Initial
studies by Ibele et al. showed that platelets have an important
role in malignant tumors because leukocytes enhance the killing
capacity against cancer cells in the presence of platelets (308).
Another study showed that resting and thrombin-stimulated
platelets exert the cytotoxic effect on K562 chronic
myelogenous leukemia cells (309). Although this cytotoxic
effect was abolished by esterase inhibitors in resting but not in
thrombin-activated platelets (309). This phenomenon can be
explained that platelets can express many immune defense
factors, such as TNF, tumor necrosis factor-related apoptosis-
inducing ligand (TRAIL), CD154 and Fas-L, and exposed on the
platelet surface or released into the medium. The binding of Fas-
L to Fas receptor (Fas-R) activates the caspase-mediated
apoptotic pathway in cancer cells that express Fas-R (310).

Anoikis is a form of programmed cell death that occurs when
cancer cells detached from the surrounding ECM, thereby
modulating cell spreading and invasiveness (311). Interestingly,
platelets induce resistance of cancer cells to anoikis (312).
Platelets also enhance RhoA-MYPT1-PP1-mediated YAP1
dephosphorylation in cancer cells, thereby inducing a
prosurvival gene expression signature and inhibiting apoptosis
(312). Altogether, these studies suggest that platelets contain an
arsenal of bioactive factors, manipulating the apoptotic cross-
talks between platelets and tumor cells. In addition, platelets can
induce cell proliferation of hepatocellular carcinoma by
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activating MAPK signaling and decreasing apoptotic mediators
(313). Platelet releasate also enhances cell proliferation of human
and mouse ovarian cancer, and this process is maintained by the
interaction between platelet-released TGF-b and tumor-resident
TGF-b receptor (314). In orthotopic xenograft, syngeneic and
genetic models of ovarian and lung cancer, other platelet-derived
molecules, platelet focal adhesion kinase (FAK) and PF4
enhanced platelet infiltration and tumor growth (315, 316).

Genetically modified platelets expressing TRAIL on the cell
surface could eliminate cancer cells in vitro and significantly
reduce the number of metastases in a mouse model of prostate
cancer (317). Hu et al. used a platelet membrane-coated
nanovehicles (PM-NV) for sequential and site-specific delivery
of two anti-cancer therapeutics (TRAIL and doxorubicin) (318).
PM-NV can efficiently deliver TRAIL toward cancel cell
membrane to activate the extrinsic signaling pathway of
apoptosis (318). Papa et al. developed detergent-extracted
human-modified platelets (platelet decoys) that retained
platelet binding functions but were incapable of functional
activation and aggregation (319). Their results suggest that
platelet decoys could represent an effective strategy for
obtaining anti-metastatic and even anti-thrombotic effects
(319). In vivo rabbit model, pretreatment with platelet decoys
inhibited arterial injury-induced thromboembolism and also
interfered with platelet-mediated human breast cancer cell
aggregation, and decreased cancer cell arrest and extravasation
in a microfluidic human microvasculature on a chip (319). In a
mouse model of metastasis, simultaneous injection of the platelet
decoys with tumor cells inhibited metastatic tumor growth (319).

In many studies, platelets have been proposed as a drug
carrier, since platelets can easily uptake and store bioactive
molecules in their secretory granules. Doxorubicin was loaded
in platelets for the treatment of lymphoma. Doxorubicin-treated
platelets facilitated intracellular drug accumulation through
TCIPA and also could release doxorubicin into the medium in
a pH-controlled manner (320). This study suggested that
doxorubicin-loaded platelets could reduce the adverse effects of
extracellular doxorubicin, and enhance the therapeutic efficacy in
the targeted organ (320). As we mentioned above, an antibody-
drug conjugate (ADC) with the combination of drug activation
and release resulted in tumor cytotoxicity in a mouse xenograft
model of triple-negative breast cancer (MDA-MB-231 cells)
without any discernible toxic effects on other cell types (181).
Loading platelets with ADC-conjugated drugs carrying to the
tumor microenvironment would be a novel therapeutic approach
for the treatment of a broad range of solid tumors (181).

Platelets and Chemotherapy Resistance
Tumor chemotherapy resistance occurs when a tumor that has
been responding to therapy suddenly begins to grow, and cancer
cells could escape from the toxic effects of chemotherapeutic
agents. This represents one of the major problems in patients
with chemotherapy resistance (311) because of the higher risk to
develop thromboembolic disorders than those without
chemotherapy (321, 322). Clinical studies showed the correlation
between platelet count and tumor chemotherapy resistance.
In vitro studies demonstrated the contribution of increased
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platelet count to tumor chemotherapy resistance, when paclitaxel
and 5-fluorouracil have been used for the killing of colon and
ovarian cancer cells (323). In mouse models of breast and
prostate carcinoma, low platelet count could increase the
sensitivity to doxorubicin and paclitaxel (91, 92). Inhibition of
GPVI function resulted in intratumoral hemorrhages, and this
could enhance the access of the chemotherapeutic agents into the
growing breast and prostate tumors (91). Platelets also
contribute to the relapse of orthotopic ovarian tumors in mice
after cessation of anti-angiogenic therapy with bevacizumab or
pazopanib (315). Platelet FAK function is important in this
process because FAK-deficient platelets completely prevented
the rebound in tumor growth (315). In line with this, combined
therapy with a FAK inhibitor and pazopanib/bevacizumab could
inhibit the negative effects following the withdrawal of anti-
angiogenic therapy (315). Altogether, it was proposed that FAK
may be a unique target when anti-angiogenic agents are
withdrawn, and dual inhibition of FAK and VEGF may have a
therapeutic implication for ovarian cancer management (315).

Several mechanisms have been proposed that platelet
releasate may also influence tumor chemotherapy resistance,
thereby antagonizing the cytotoxic effect of some drugs, such
as paclitaxel and 5-fluorouracil: (i) growth factors and cytokines
released from activated platelets counter the anti-proliferative
effects of chemotherapeutic agents by shifting the balance
between anti-apoptotic and pro-apoptotic genes, (ii) platelets
upregulate the regulators of cell progression thereby inducing the
blocking of cell cycle arrest caused by the anti-cancer agents,
(iii) platelets enhance the phosphorylation of DNA repair
proteins, Chk1, BRCA1 and Mre11. Interestingly, platelets
inhibited cytotoxic effects of chemotherapeutic agents sorafenib
and regorafenib in hepatocellular carcinoma by increasing
MAPK signaling (307). Proposed molecular mechanisms are
multiple, how they can be applicable at clinical levels, warrant
still many investigations.
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CONCLUSION

Platelets can build dynamic interactions with all other cell types
in the circulation and trigger many activatory signaling
pathways, thereby directly or indirectly influencing the
function of tumor cells and tumor stroma. Platelets display
predominantly pro-tumorigenic functions in different cancer
types. Experimental and preclinical studies using knock-out
animal models and a wide range of pharmacological tools
provided encouraging results to consider platelets as potential
targets in anti-cancer therapies. However, the clinical evidence of
the beneficial effects of anti-platelet therapies in cancer is still
missing. Design of optimal anti-cancer therapy in patients with
active tumor malignancy is a highly challenging task. Therefore,
future studies adding anti-platelet drugs into the conventional
anti-cancer therapies must carefully examine many factors,
including cancer type, degree of malignancy, sex, age, bleeding
profile, and other risk factors, before that these drugs are applied
to the patients. More experimental and preclinical studies are
required to address the therapeutic value of anti-platelet
strategies in solid cancers.
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