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Acute Myeloid Leukaemia (AML) is a phenotypically and genetically heterogenous blood
cancer characterised by very poor prognosis, with disease relapse being the primary
cause of treatment failure. AML heterogeneity arise from different genetic and non-genetic
sources, including its proposed hierarchical structure, with leukemic stem cells (LSCs) and
progenitors giving origin to a variety of more mature leukemic subsets. Recent advances in
single-cell molecular and phenotypic profiling have highlighted the intra and inter-patient
heterogeneous nature of AML, which has so far limited the success of cell-based
immunotherapy approaches against single targets. Machine Learning (ML) can be
uniquely used to find non-trivial patterns from high-dimensional datasets and identify
rare sub-populations. Here we review some recent ML tools that applied to single-cell
data could help disentangle cell heterogeneity in AML by identifying distinct core molecular
signatures of leukemic cell subsets. We discuss the advantages and limitations of
unsupervised and supervised ML approaches to cluster and classify cell populations in
AML, for the identification of biomarkers and the design of personalised therapies.

Keywords: AML, machine learning, classification, clustering, leukaemia
INTRODUCTION

AML is an aggressive and fast-progressing leukaemia characterised by the accumulation of myeloid
progenitors (1). Although most patients achieve remission after first line chemotherapy and
haematopoietic stem cell transplantation, about 40% later relapse (2). Long-term survival
following relapse is below 20% with a median survival of 4-6 months, an outcome that has not
improved over the last two decades with conventional approaches (2–4) and novel therapies are
therefore urgently needed (4).

AML is a molecularly heterogeneous group of diseases with a complex mutational landscape,
characterised by intra- and inter-patient variation (Figure 1A). Advances in next-generation
sequencing and single-cell technologies have revealed that AML cells display genetic and
epigenetic heterogeneity in different patients and even within the same patient multiple sub-
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clones co-exist, each carrying its own hierarchical structure and
possessing distinct immunophenotypes (5).

A non-genetic source of heterogeneity in AML is its proposed
hierarchical structure, mimicking the cellular hierarchy in
normal hematopoietic development (Figure 1B). In healthy
individuals, this involves a stepwise differentiation process,
with hematopoietic stem cells (HSCs) giving rise to
progressively more mature blood cells (6–8). LSCs lie at the
top of AML cellular hierarchies, and carry an unlimited ability to
self-renew as well as giving origin to a variety of more mature
leukemic subsets (1), each expressing characteristic patterns of
cell surface markers. LSCs can persist in a dormant state, making
them selectively unresponsive to conventional chemotherapies
and allowing them to eventually fuel disease relapse. For these
reasons, the effective targeting of LSCs underpins any successful
treatment for AML.
Frontiers in Oncology | www.frontiersin.org 2
A promising approach is to target LSCs using immunotherapy
with autologous T cells genetically redirected to express Chimeric
Antigen Receptors (CARs). In fact, CAR-T cells can effectively
target tumour cells irrespectively of their quiescent status.
However, the lack of surface markers preferentially expressed
on LSCs as opposed to healthy HSCs has hindered the
development of cell-based immunotherapy strategies for AML,
given the high risk of on-target off-tumour toxicity (9, 10). In
addition, some of the targets tested so far (e.g. CD33 or CD123)
have heterogenous expression in the LSC compartment, with the
risk of relapse due to their incomplete targeting (11). Upon
relapse, genetic and immunophenotypic heterogeneity in AML
LSCs further increases, complicating the discovery of ‘one fits all’
drug target (12).

As a result of AML’s heterogenous nature, CAR-T cell
approaches against a single target are unlikely to be effective,
A B

DC

FIGURE 1 | The high cell-to-cell heterogeneity in AML tumours can be dissected using machine learning methods. (A) The schematic representing clonal diversity in
two putative AML patients highlights the complex intra and inter-patient variation of cell diversity (schematics adapted from Petti et al., 2019). Importantly, each clone
carries its own hierarchical structure (here shown for one clone as an example). (B) Leukemic populations share the hierarchical organization of normal hematopoietic
development, where hematopoietic stem cells (HSCs) differentiate into multiple cell lineages, giving rise to all mature blood cells (blue lineages). Genetic mutations
induce malignant transformation and give rise to leukemic stem cells (LSCs) that share some characteristics of their normal counterparts such as unlimited ability to
self-renew and the potential to give origin to a variety of more mature leukemic subsets (red lineages). (C) Ideal targets for immunotherapy with engineered T cells are
those present in both leukemic blast and LSC cells and absent in healthy cell types. Targets that are ubiquitously expressed will fail to target specific leukemic
populations and will be toxic for normal cells (on target off, tumour toxicity). Targets that are absent from LSC will render the treatment prone to relapse. Due to the
high cell heterogeneity in AML more than one molecule is likely to fulfil these requirements. (D) Machine learning methods to identify cell populations can be
unsupervised and supervised. The former uses the intrinsic structure of the data to cluster cells in an automatic fashion. The second uses a predefined set of groups
to classify unknown cells, leveraging previous knowledge. Figure created with BioRender.com.
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thus the design of combinations of CAR-T cells against multiple
targets requires a systematic characterization of the expression
levels of surface antigens in AML cell populations at single-cell
resolution (Figure 1C) (9).

The unprecedented resolution achieved with single-cell
technologies has enabled the dissection of cell populations,
including tumour and rare cell types that could not be
identified using conventional bulk sequencing (13, 14). In
AML, the quantitative phenotyping of leukemic cell profiles
has allowed the identification of leukemic subsets without prior
knowledge of phenotypic markers for their prospective isolation,
opening up new analytical challenges for their clinical
interpretation (5, 15–19).

Despite Machine Learning (ML) techniques having shown
prognostic utility in classifying patients at high risk of relapse
and having been applied to risk-adapted treatments [review by
(20)], they have only been recently applied to resolve heterogeneity
in single-cell datasets from AML patients (15, 18). Fortunately,
there has been an explosion of new algorithms based on ML for
the characterization of cell populations in single-cell datasets
(Table 1) that could be applied to identify molecular markers
specific to AML subpopulations.

Here, we review some recent state-of-the-art ML methods
with the potential to shed light into cell heterogeneity in AML
and identify biomarkers for specific cell populations in single-cell
datasets. Benchmarking of some recent methods has been done
by (37) and (38). Rather than an extensive discussion of
algorithms, we provide a general overview of tools available to
identify cell populations in single-cell studies, highlighting ones
that have the potential to reveal new and rare cell types in AML
and aid the design of personalised treatments.
MACHINE LEARNING FOR CELL TYPE
IDENTIFICATION IN SINGLE-CELL
DATASETS AND BIOMARKER DISCOVERY
FOR PERSONALISED IMMUNOTHERAPY

Single-cell high-throughput techniques, such as scRNA-seq,
quantitatively characterise cell types within a tissue (39).
Typical workflows in single-cell transcriptional profiling
include dimensionality reduction and clustering of cells based
on their gene expression patterns followed by manual annotation
of cell clusters from known cell typemarkers (40). In the context
of AML and other cancers, transcriptionally similar malignant
cells are expected to group together, and can be unambiguously
identified by the expression of certain feature genes that can be
used as biomarkers for designing personalised treatments.

The identification of cell types using typical workflows has
several drawbacks: first, rare cell types are easily missed and
grouped together with some more prevalent ones; second, cell
identity is often not discrete but lies in a continuum (for instance,
cells with mixed identities or in transition); and third, the
clustering can reflect other sources of variability unrelated to
cell types (41). To address these issues, ML tools have recently
been developed allowing quantitative identification and
Frontiers in Oncology | www.frontiersin.org 3
probabilistic assignment of cell types, thus aiding the
identification of rare and heterogeneous cell populations.

In general, ML approaches are either unsupervised or
supervised (Figure 1D). The main difference being the use of
prior knowledge. Supervised methods are trained on an
annotated reference with known classes of cell types, whereas
unsupervised models identify patterns in the data without prior
knowledge. A summary of recent methods is shown in Table 1.

Recent ML Unsupervised Methods
A common task for unsupervised methods is to use the intrinsic
structure of the data to find clusters of cells. The advantage of
these approaches is that cells can be grouped in an automatic and
unbiased manner and thus, have the potential to discover
unknown cell populations.

The popular single-cell processing packages Seurat (42) and
Scanpy (43) use a graph-based clustering approach combined
with modularity optimization to group transcriptionally-similar
cells together. Markers differentially expressed in each cluster can
be found using different methods, including logistic regression.
The cell identity of each cluster is assigned manually according to
previous knowledge of cell-type specific markers. The main
disadvantage of this approach is that the number of clusters
depends on a resolution parameter assigned by the user (higher
values will lead to a greater number of clusters) and thus, they
may not faithfully reflect cell types.

The recently developed Single-Cell Clustering Assessment
Framework (SCCAF) (24) generates an optimal number of
clusters automatically. After the data has been clustered,
SCCAF builds an ML classifier (logistic regression) using part
of the data (training). By applying this model to the rest of the
dataset (test), it iteratively merges clusters that appear
indistinguishable to the ML classifier to produce the final
optimum clustering. The output of the model is a weighted list
of feature genes characteristic of every cluster that often include
knownmarkers for a given cell type and could potentially be used
to detect common biomarkers of leukemic cell subsets from
AML patients.

Another unsupervised method, single-cell consensus
clustering (SC3) uses the first 4-7% * N (number of cells)
eigenvectors to build multiple k-means clustering solutions
(21). After hierarchical grouping, the final clustering is driven
by the combination of multiple clustering solutions. The output
is a list of marker genes that define each consensus cluster. While
SC3 may not be the most sensitive method to find rare
populations (such as LSCs), SC3 was successful in identifying
clusters of prevalent genetic subclones with different mutations
in myeloproliferative neoplasms (21). A disadvantage of this
method is that it does not scale well for datasets with more than
5,000 cells (44).

A recent unsupervised method, weighted-nearest neighbour
(WNN), was used to cluster cells using multiple data modalities
(e.g. surface proteins and transcriptomes) measured in the same
cell (25). This method uses k-nearest neighbours (kNN) to learn
cell-specific modality “weights”. When applied to a multiomics
dataset generated from human bone marrow samples (45), it
showed that the combination of surface proteins and gene
April 2021 | Volume 11 | Article 666829
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TABLE 1 | Summary of recent ML-based methods to identify cell types.

Algorithm
name

Classification
type

Method Input data Important contribution Reference

SC3 Unsupervised Consensus clustering
and hierarchical
clustering

Normalised expression matrix Transcriptome-based identification of genetic subclones
in myeloproliferative neoplasms

(21)

cNMF Unsupervised Non-negative matrix
factorization

Expression matrix and several
parameters

Identification of previously misclassified
immature skeletal muscle cells in a published dataset
from brain organoids

(22)

scCOGAPS Unsupervised Non-negative matrix
factorization

Normalised and log-scaled
expression matrix

Identification of gene expression signatures characteristic
of discrete cell types in the developing retina

(23)

SCCAF Unsupervised Logistic Regression
and self-projection

Expression matrix and several
parameters

Identification of cell states associated with different stages
of erythroid maturation in mouse

(24)

WNN Unsupervised K-nearest neighbours
and Jaccard distance

Expression matrix and protein matrix
(or any other single-cell
measurement)

Single-cell multimodal analysis
improves resolution of cell states in the immune system
and identify previously unreported subpopulations

(25)

CellAssign Supervised Expectation-
Maximization
hierarchical model

List of cell markers, subset of
expression matrix containing the
marker genes and some parameters

Resolution of malignant and non-malignant cells and their
molecular dynamics during disease progression in
follicular lymphoma

(26)

Garnett Supervised Multinomial elastic-net
regression

Hierarchical list of cell markers
(positive and negative) and
expression matrix

The model trained on a mouse lung dataset is
successfully applied to detect both healthy cell types and
tumor cells in a human lung cancer dataset

(27)

scmap Supervised k-means (scmap-
cluster) and k-nearest-
neighbour (scmap-cell)

Annotated reference dataset
and query expression matrix

Cell types in a test datasets are annotated with high
accuracy irrespectively of batch effect

(28)

CHETAH Supervised Hierarchical Spearman
correlation

Annotated reference dataset and
query expression matrix (both
normalised and log –scaled)

The cell type identification algorithm correctly identifies
cancer cells absent in the reference dataset as
“unassigned” or “intermediate”

(29)

scClassify Supervised Hierarchical ordered
partitioning,
ensemble learning and
weighted k-nearest-
neighbour

Annotated reference dataset and
query expression matrix (both log –

transformed)

Identification of cell types from the Tabula Muris single
cell dataset that were unidentified in the original
publication, including very rare populations

(30)

SingleR Supervised Correlation to training
set

Annotated reference dataset and
query expression matrix (both
normalised and log-transformed)

Identification of a subgroup of macrophages whose
molecular markers are upregulated in samples from
patients with idiopathic pulmonary fibrosis.

(31)

SingleCellNet Supervised Random Forest Annotated reference dataset and
expression matrix (both raw)

Cells from pancreatic tissue that were “unclassified” in
the original study are identified as Schwann cells and
gamma cells

(32)

SuperCT Supervised Artificial Neural
Network

Pre-trained ANN model and a query
expression matrix

The model predicts cell types with high accuracy in
multiple single cell test datasets including cord blood
mononuclear cells and mouse pancreatic cancer.

(33)

ACTINN Supervised Artificial Neural
Network

Annotated reference dataset and
query expression matrix

Model trained on a T cell subtype reference accurately
predicts T cell subtypes from an independent peripheral
blood mononuclear cells dataset

(34)

(Continued)
Frontiers in On
cology | www.fro
ntiersin.org
 4
 April 2021 | Volume 11 | Art
icle 666829

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Sánchez-Corrales et al. ML for Taming AML Heterogeneity
expression was superior for identifying cell populations than
using one data modality alone. Multiomic single-cell
technologies quantifying both surface proteins and
transcriptomes of individual cells (e.g. CITE-seq), could be
ideally applied to the identification of surface targets for the
design of cell based immunotherapies (46).

Other unsupervised methods rely on Non-negative matrix
factorization (NMF) methods (22, 23). These methods allow for
the identification of cell types and, simultaneously, cell states.
Given the great transcriptional heterogeneity seen in AML even
within clonal populations carrying the same mutational patterns
(16), it may be helpful to consider cell identities and activities
separately when clustering leukemic populations. Moreover,
NMF is potentially useful to identify LSC populations in AML,
where the classical surface proteins defining primitive cell types
are present in highly similar patterns to healthy HSCs, but a
‘malignant stem-like’ profile can still be identified (47).

Recent ML Supervised Methods
Supervised methods to classify cell types exploit previously
identified cell types and use either known marker genes or
annotated reference datasets as an input to probabilistically
assign new cells to a given category.

Some methods take a list of markers for each cell type as input
(48). For example, CellAssign (26) uses predefined cell types
input as a marker gene list to build a hierarchical model that
produces a statistical classification of cells. This approach was
used to del ineate the composi t ion of the tumour
microenvironment in serial samples (treatment and relapse)
from follicular lymphoma. Garnett (27) also takes as input a
list of markers. The format of the input list permits accounting
for cellular hierarchy (i.e, cell subtypes) and can include positive
and negative markers to define cell types (27).

Other supervised methods use an annotated reference dataset
to classify cell types but differ in the features and the MLmethods
used to train models (see Table 1). For instance, SingleCellNet
(32) uses the most discriminative gene pairs (top pair
transformation) to build a random forest classifier while
methods such as scPred (36) and Moana (35) use principal
components as features to fit a support vector machine (SVM).
Some methods rely on one or several similarity metrics (such as
SingleR (31)) and k-nearest neighbours (kNN) to map query
datasets into a known reference [e.g. scmap (28) and scClassify
(30)]. Other methods use the training dataset to build an
Artificial Neural Network (ANN) model such as SuperCT
Frontiers in Oncology | www.frontiersin.org 5
(33) and ACTINN (34) with an input layer containing as
many nodes as the number of genes in the training set and an
output layer with nodes equal to the number of cell types.
Interestingly, both ANN methods provide pre-trained models
that could be used to classify new AML datasets.

An advantage of supervised ML approaches is that cell types
are assigned probabilistically and some approaches allow for the
possibility of an “unassigned” category (26–28, 32, 34). The
unassigned label for cells that are absent or are very different
in the reference dataset is key to limit misclassification and to
allow the discovery of new cell types.

Algorithms such as CHETAH (29) and scClassify (30) allow
for intermediate categories that can highlight populations with a
mixture of identities as previously reported in AML (49). These
methods are based on hierarchal correlation trees to classify test
datasets (29, 30).

As more annotated single-cell datasets become available, the
primary advantage of supervised methods is leveraging previous
knowledge. Reference datasets of human bone marrow cells from
healthy individuals are available from resources such as the
Human Cell Atlas (50). Distinct cell populations or patient-
specific tumour clones could be identified as unknown (because
they are very different or absent in the reference data sets). As
AML single-cell datasets become more abundant, they can be
integrated with healthy single or multimodal references using
ML methods (25).

A disadvantage of supervised methods is that they rely on
known markers or accurate cell type annotations to build
classification models. Often, markers for rare cell populations,
such as LSCs, are unknown, not robust (51) or can be expressed
by more than one cell type (15). Further, in many cases,
annotation of single-cell datasets requires additional
standardisation (29).
DISCUSSION

ML techniques are able to find non-trivial patterns in high-
dimensional data (52). In fact, ML has already proven useful in
identifying markers in bulk studies in prospectively isolated
leukemic sub-populations (53, 54). However, ML has not
reached its full potential for the characterisation of AML cell
populations at single-cell resolution, partly due to the recent
development of large datasets (5, 15–18).
TABLE 1 | Continued

Algorithm
name

Classification
type

Method Input data Important contribution Reference

Moana Supervised Support Vector
Machine

Pre-trained model and raw query
expression matrix

Identification of common and cell type-specific gene
expression responses to IFN-b treatment in peripheral
blood cells

(35)

scPred Supervised Support Vector
Machine

Annotated reference dataset and
query expression matrix (both
normalised)

Prediction of pathological cell states in gastric and
colorectal cancer

(36)
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Here we have reviewed tools to aid biomarker discovery
using ML at single-cell level resolution. Many ML models
explicitly quantify the contribution of individual features
(genes) for a given classification. Importantly, genes identified
in microarray data as important for classifying samples into
“AML” or “no-AML” were not always differentially expressed
(55). This means that traditional differential expression analysis
could fail to identify biomarkers that are good predictors for
assigning a class to a given group of cells (36). Thus, ML
algorithms can find biomarkers that otherwise will be missed,
expediting the design of suitable target combinations
for immunotherapy.

Recently, it was shown that single-cell transcriptomics is
capable of dissecting genetic subclones in AML, such as
GATA2R361C, which cluster separately from normal
hematopoietic cell types (16). This observation suggests that
subclonal diversity in AML could be associated with distinct gene
expression profiles which ML techniques can leverage to identify
mutated populations. Some AML mutations create subtle
differences in expression profiles (15–17) and isolating these
populations represents an analytical challenge contemporary ML
methods could address.

Moreover, recent experimental innovations allowing for the
simultaneous quantitative assessment of cellular and molecular
information at single-cell resolution promise to better dissect
cell heterogeneity in AML. Particularly important is the ability
to detect mutations in single cells combined with their
transcriptional profiling, offering an unprecedent opportunity
to identify specific leukemic cell populations (13, 15–17, 56,
57). For instance, the combination of single-cell transcriptomics
and mutational profiles allowed the distinction of pre-
leukemic clones, LSC and healthy HSC (17). ML such as SVM
could be used next to identify molecules that maximise this
classification as done before for bulk RNA-seq and microarray
data (53).

In addition, the identification of mutant and non-mutant cells
allows for applying ML methods to both all and only mutated
cells to further characterise subpopulations (16), and can be used
to fine-tune ML classification algorithms. For instance, a two-
step ML classification strategy was applied to bone marrow
samples of AML patients (15). First, a fraction of mutant cells
was identified by genotyping and these were classified into one of
six normal haematopoietic cell types (monocyte-like, progenitor-
like, etc.). Subsequently, these malignant cell types were
incorporated as additional classes in a second classifier that
successfully identified mutant and normal cells from their
transcriptome profiles.

The simultaneous characterization of surface proteins at
single-cell resolution (46) is especially important for isolation
of heterogeneous cell populations. There are some analytical
challenges with the integration of multiple data modalities (58),
Frontiers in Oncology | www.frontiersin.org 6
but combining different data types from the same cell has already
shown to improve the identification of cell populations in AML
datasets (16, 18) and healthy bone marrow samples (25), thus we
anticipate that multimodal datasets will improve the
performance of ML models in isolating specific cell
populations and may facilitate the identification of relevant
surface targets for precision immunotherapy.

All the methods reviewed here will incur a certain degree
of underfitting and overfitting. Thus, it is wise to compare
algorithms in the initial cell composition assessment. Some,
such as hierarchical methods, are potentially more suitable
for AML samples, where there is an intrinsic hierarchy shared
with normal hematopoietic development (Figure 1B).
Also, methods that enable the recognition of intermediate
cell types, mixed identities or different cell states would
be more suitable for the identification of abnormally
differentiated leukemic cells, known to be characteristic of
AML (49).

Finally, we anticipate that single-cell resolution phenotyping
will be important for the design of cell-based immunotherapy
combinatorial strategies accounting for clonality and
differentiation states of AML populations, with ML likely
playing a pivotal role in the selection of optimal therapeutic
targets for the design of personalised workflows tailored to
each patient.
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GLOSSARY

Artificial Neural Network (ANN): A type of supervised learning
model where multiple simple functions (artificial neurons) are
connected in layers, which sequentially process information.
ANNs contain an input layer which passes the information to
several “hidden” layers, these are activated depending on the
input and feed this information to the output layer, which reflects
the assigned class. Deep ANNs are those with many
hidden layers.

Annotated Reference Dataset: A (single cell) expression
dataset, where the cell types of all cells are known, e.g. through
experimental validation. Reference datasets are useful to assign
likely labels (classify) to new cells (query) that are similar to cells
in the reference.

Cell state: The cellular activities a cell is carrying out at a
given moment. These can be general (e.g. hypoxia response) or
specialised (e.g. cycling).

Cell type: The kind of cell, e.g. a Red Blood Cell. Cell types are
commonly associated with specialised functions, markers and
histology. However, it is important to note that cell types are
often fluid or non-constant and distinguishing two similar cell
types can be difficult.

Classes and Clusters: Both describe grouping data points by
measurements made during experiments. The key difference is
that clusters refer to groupings obtained through unsupervised
learning, whereas classes refer to groups from supervised
learning. Importantly, classification is able to assign class-
names (based on the training dataset), whereas clusters
are “nameless”.

Eigenvector and Eigenvalue: Eigenvectors are the vectors
which do not change in direction if a matrix is linearly
transformed; the eigenvalue is the scalar denoting by how
much the eigenvector has changed in magnitude after
transformation. In this way eigenvectors and eigenvalues can
represent a matrix (eigen decomposition), encoding the
fundamental structure of the matrix. An example use of eigen
decomposition is Principal Component Analysis.

Gene pairs (top pair transformation): Transformation based
on comparing the expression of pairs of genes within each cell,
limited to genes that are preferentially expressed in each cell type
defined in the training data, as well as those genes that are
specifically under-expressed in each type.
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K-nearest neighbour algorithm: Training datapoints of
known classes are mapped into a (usually dimensionally
reduced) space. New datapoints are then mapped into the
same space and a class is assigned to each as the most frequent
class of their k (e.g. 7) nearest neighbours.

K-means clustering algorithm: Method that aims to
partition n observations into k clusters such that each
observation belongs to the cluster with the nearest mean.

Marker: A characteristic protein, often expressed on the
surface of a cell, or gene, e.g. a transcription factor, that can be
used to mark a specific cell type experimentally.

Overfitting: Occurs when a model fits a particular dataset too
closely, it will then fail to generalise to unseen data.

Random Forests and Decision Trees: Decision Trees learn a
“yes-no flow chart” to sequentially partition data until a
classification is reached; individual decision trees are prone to
overfitting. Random Forests are multiple independent decision
trees trained together. Classification output is the average output of
all trees, overcoming overfitting seen in an individual tree.

Single cell gene expression matrix: The processed data
obtained from single cell expression experiments is usually
represented by a gene expression matrix. This is a large table
where every row represents a gene, and every column the reads
measured in a single cell.

Supervised Learning: A collection of machine learning
approaches where characteristic labels (classifications) are
learned from data annotated with known classes.

Support Vector Machine (SVM): Is a supervised learning
algorithm that aims to find the hyperplane that best separates
two classes, i.e. goes ”right through the middle”. SVM can be
extended to non-linearly-separable data using a kernel function
that maps the data to a higher dimensional space in which it is
linearly separable.

Training Data and Test Data: When training a machine
learning algorithm datasets should be split into training and test
data. The model is learned using the training data. Test data are a
subsection of the original dataset, that the model has not
encountered in training, and can be used to approximate the
model’s expected performance on unseen data.

Underfitting: Occurs when a model does not adequately
learn the underlying structure of the data.

Unsupervised Learning: A collection of machine learning
approaches that learn a pattern in the unlabelled data.
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