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In the cancer literature tumors are inconsistently labeled as ‘immunogenic’, and
experimental results are occasionally dismissed since they are only tested in known
‘responsive’ tumor models. The definition of immunogenicity has moved from its classical
definition based on the rejection of secondary tumors to a more nebulous definition based
on immune infiltrates and response to immunotherapy interventions. This review
discusses the basis behind tumor immunogenicity and the variation between tumor
models, then moves to discuss how these principles apply to the response to radiation
therapy. In this way we can identify radioimmunogenic tumor models that are particularly
responsive to immunotherapy only when combined with radiation, and identify the
interventions that can convert unresponsive tumors so that they can also respond to
these treatments.
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INTRODUCTION—IS MY TUMOR IMMUNOGENIC?

Betteridge’s law of headlines states that if the title poses a question, the answer is “no”. So, this
review starts with the proposition that if you have a tumor, it is not immunogenic. It is reasonable to
think that years of immunoediting and cancer evolution (1) in the presence of a functional immune
system will result in a tumor that is at baseline resistant to immune mechanisms. To help classify
tumors and identify appropriate treatments, it is worthwhile to answer two questions: 1. What
makes a tumor develop an immune response in the first place?; 2. What determines cancer cell
resistance to immune control? Cancer cell resistance to immune control is a highly reviewed topic
that focuses on critical immunoregulatory mechanisms such as relative proportions of suppressive T
regulatory cells and macrophages, or cancer intrinsic features such as PDL1 expression and antigen
processing and presentation. This review will focus on the first question and consider elements of
the cancer cells and the tumor environment that determine why some tumors are immunogenic at
presentation, which has enormous impact on the choice of treatments and whether they are likely to
work. This is much more than a semantic issue of whether an investigator or paper reviewer gets to
describe a cell line as immunogenic – there must be some shared absolute measure of
immunogenicity that allows us to compare tumor models, identify effective treatments, and
extrapolate these data to patients.

To suggest that tumors that present in patients are not immunogenic is a strong statement that
goes against the data from patients treated with currently approved immunotherapies. For example,
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PDL1/PD1 blocking agents can cure some patients of
their tumors purely by blocking a single molecular
interaction restraining T cell function. Surely these patients’
tumors are immunogenic. This raises the issue of how we
assess immunogenicity. The classic method comes from
murine models, where mice are given a first tumor exposure,
whether vaccinated with irradiated cancer cells, given a sublethal
dose, or given a lethal dose followed by surgical resection, and
then the mice are evaluated for their ability to reject a subsequent
challenge with a normally lethal dose of the same tumor (2–5). If
the tumor does not grow on the second tumor challenge, then it
is immunogenic (Figure 1). If the first exposure does not cause
rejection of the second challenge, it is not immunogenic.
Obviously, this measure of immunogenicity cannot be assessed
in patients. As we will discuss, this classic model of
immunogenicity does not break down the mechanisms of
immune rejection, which may result from a failure to
sufficiently vaccinate, being resistant to effector destruction, or
some combination of both.
ANTIGENICITY AND IMMUNOGENICITY

In murine models it has long been known that there is a
difference between induced and spontaneous tumors. In mice,
tumors formed by highly mutagenic agents such as MCA,
or oncogenic viruses that leave viral oncoproteins, are
immunogenic as measured by their ability to protect against
secondary tumor challenge (3, 4). Tumors that occurred
spontaneously in mice (sporadic tumors that lead to classic cell
lines such as B16 and 4T1) were not immunogenic – as in
they did not protect against rechallenge (2, 3). This
mutagenized origin of immunogenic tumors points to
antigenicity as a requirement for classic immunogenicity. In
agreement with this concept, classic studies showed that
treatment of spontaneously derived cancer cells with a
mutagen ex vivo generated variants that were able to protect
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against rechallenge (6–9). Importantly, this could include
protection against challenge by the parental un-mutagenized
strain (6–9). This suggests that in these cases the lack of
rejection of the original strain by the immune system was not
due to an inability for the cancer cells to be killed, since these
tumors can readily be rejected with appropriate vaccination.
Rather, these cells fail to elicit sufficiently effective T cell
responses on vaccination without the additional supporting
antigens (Figure 2A). These studies led to multiple
investigative approaches testing modifications to the cancer
cells that can render a poorly immunogenic tumor
immunogenic, purely acting on the priming side of immune
responses. For example, the B16 cell line and its multiple variant
subclones are poorly protective against rechallenge, but strategies
that make them a better vaccine, such as fusion or loading to DCs
(10, 11), transfection with cytokines (12, 13), the addition of
adjuvants (14), or similar approaches, allows them to protect
against rechallenge with the parental clone. Thus, where T cells
can be generated, B16 tumors can readily be controlled.
Similarly, B16 can be controlled with as few as 104 infused
tumor-specific CD8 T cells (15), and where B16 tumor
implantation does not generate sufficient T cells to control
tumor growth, expansion of these cells ex vivo followed by
adoptive transfer is protective (16). Since by this definition an
untreated, growing B16 tumor does not have sufficient T cells to
result in its control, it should not be susceptible to treatments
that require these T cells. For example, checkpoint inhibitors
such as anti-PD1 require existing suppressed T cells to cure the
tumor that can be derepressed with PD1-PDL1 blockade. In
support of these data, B16 tumors are resistant to checkpoint
blockade, but become susceptible following tumor-specific
vaccination of tumor-bearing mice (17, 18). In this way, the
B16 model nicely shows the difference between generating an
initial anti-tumor immune response, and being susceptible to
immune control.

These data suggest that non-immunogenic tumors are
deficient in T cells needed for tumor cure. In support of this,
FIGURE 1 | Classic immunogenicity. Classical models of immunogenicity involve a priming step with either injection of a bolus of cancer cells followed by complete
surgical resection, injection of irradiated cancer cells, or a suboptimal number of cancer cells that fails to induce tumor formation (left), leaving a tumor-free animal. A
challenge step follows, whereby an optimal dose of cancer cells, which would otherwise result in 100% tumor formation in naïve animals, is injected into the animal
(center). The animal is followed and if the tumor is rejected, the tumor cells are immunogenic (right, top). If a tumor forms, the cells are poorly immunogenic (right, bottom).
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Lechner et al. demonstrated that three immunogenic tumors
exhibited more T cells in the tumor than three poorly
immunogenic tumors (19). However, since the tumor is still
growing in mice, these data imply that immunogenic tumors are
able to grow despite extensive T cell infiltrates, and thus must
have additional resistance mechanisms (Figure 2B). In some
cases, this is simply the presence of immune checkpoint
molecules inhibiting local immunity. In agreement with this,
these studies showed that the T cell rich tumors could be
controlled by treatment with checkpoint inhibitors, while the
poorly immunogenic tumors that lacked T cells at baseline could
not be controlled by the same treatment (19). Alternatively,
poorly immunogenic tumors may make inappropriate T cell
responses that are incapable of controlling the tumor. For
example, tumor antigen-specific T cells found in the draining
lymph node of growing B16 tumors develop amongst Th2-type
cytokine responses, and are incapable of effective anti-tumor
immunity (20). Such Th2 cells may drive further immune
suppression on exposure to antigen in the tumor environment
via effects on myeloid cells (21), contributing to tumor
progression (22). Thus, in some models, the quality of
response when antitumor immunity is initiated can be highly
Frontiers in Oncology | www.frontiersin.org 3
impactful to whether the tumor is considered immunogenic or
poorly immunogenic.

According to the criteria discussed above, we can start fitting
cancer cells into their categories. For example, B16 is poorly
immunogenic because it fails to generate an effective T cell
response, though it remains responsive to T cells. MC38
immunogenic since it generates a T cell response, but those T
cells cannot kill the tumor without additional intervention so it is
relatively unresponsive. However, as you follow the spectrum of
immunogenicity to its logical conclusion, there are the tumors
that do not grow at all, or are rapidly rejected in immune
competent mice. An example of this are tumors generated by
MCA mutagenesis in immunodeficient mice (23). These tumors
did not evolve under immune pressure and so are spontaneously
rejected on injection into immune competent animals (23). Of
course, on the other end of the spectrum, it should possible for a
tumor to both fail to generate T cells and be resistant to T cells
should they be provided. Together, these criteria generate 4
immunogenicity classes of tumors in mice (Figure 2C).

In this model, the difference between an immunogenic tumor
and a poorly immunogenic tumor is that the immunogenic
tumor generates T cells on implantation, but still grows.
A B

C

FIGURE 2 | T cell priming versus responsiveness. (A) Immunogenic tumors with sufficient antigens and priming elicit good T cell responses in the tumor draining
lymph node, while poorly immunogenic tumors fail to generate T cell responses. The ability of tumors to respond to T cell control is not necessarily linked to their
ability to prime T cell responses. (B) In instances where priming occurs, tumors can either respond to tumor control or fail to respond. Conversely, tumors can either
be responsive or unresponsive to T cell control, despite a lack of T cell priming. (C) This dichotomy leads to strategies for therapeutic interventions based of whether
T cell priming occurs and whether tumors are responsive to immune control. In the case where priming fails yet tumors are prone to immune control, effective
strategies may include vaccines or radiation to boost priming or instead ex vivo expansion and adoptive transfer of tumor-specific T cells. Alternatively, in tumors
where T cells are primed but fail to exert immune control, therapeutic options may include checkpoint inhibitors, costimulation, or therapies that may improve
immune recognition. Instances where both priming and responsiveness are low, tumors may require multiple therapeutic modalities to improve outcomes.
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However, it should be noted that the immunogenicity of tumor
injection into mice compared to the growth rate of that tumor is
a tunable phenomenon. For example, one of the most important
things to know when working with a new tumor cell line is
the minimal dose needed for 100% tumor growth. This varies
significantly between cell lines, and even a poorly immunogenic
tumor can fail to grow if you give too few cancer cells, and a
highly immunogenic tumor can grow even in immune
competent mice if you give sufficient numbers of cancer cells.
The rejection of the primary tumor has long been known to
impact immune control secondary challenge with the same
tumor line (24), since at the time of secondary challenge the
animal will have a larger pool of tumor-specific T cells that may
tip the balance towards rejection. This can explain why a prior
exposure to immunogenic tumors such as MC38 can help cure a
rechallenge with the same tumor, but the primary tumor still
grew. At rechallenge, the small number of injected cancer cells
can be readily rejected, while a large established tumor can have
many log fold larger numbers of cancer cells and also an
established, suppressive tumor environment.

For those tumors that fail to make strong T cell responses, we
have no information with which we can classify their
responsiveness to T cell control. A tumor could be classified as
poorly immunogenic based on its inability to protect against
rechallenge, but might remain resistant even if tumor-specific T
cells were provided by vaccination or adoptive transfer. This
means that it would be incorrect to predict that poorly
immunogenic tumors merely need a large dose of T cells. Since
it would be difficult to distinguish between a poorly immunogenic
tumor and an unresponsive tumor until you attempt treatment,
this model may need some refinement to be useful to classify
tumors. However, it does fit well with more common practical
assessments of tumor immunogenicity. Today’s tumor
immunologist is less likely to discuss protection against
rechallenge, and instead discuss the extent of T cell infiltration
or general responsiveness to immunotherapies. These provide a
measurable and translationally relevant assessment of the tumor –
either tumors are responsive to treatments, or they are not. As
each lab works with their favorite tumor models over years of
research, investigators come to understand their own models;
however, since there isn’t a consistent standard and not everyone
attempts the same treatments, this can lead to discrepancies
between labs. So, one lab may classify a B16 tumor as
immunogenic because it responds to T cell adoptive transfer,
but another lab may classify it as poorly immunogenic because it
fails to respond to checkpoint blockade. This makes classifying
tumors as immunogenic based on a functional response difficult
for inter-lab comparisons.

Assessing immunogenicity based on the functional response
of a tumor to immunotherapy also generally makes a direct link
between the baseline tumor environment and the tumor’s
responsiveness to immunotherapy. This fits existing data, since
the degree of T cell infiltration is correlative with outcome
following checkpoint inhibition in preclinical models (19) and
in patients (25, 26). However, the cutoff is ambiguous, as some
patients with poorly infiltrated tumors can respond to treatment,
Frontiers in Oncology | www.frontiersin.org 4
and some with highly infiltrated tumors can be unresponsive. For
this reason, studies are ongoing by many labs to determine
whether there are features of the tumor that predict their
sensitivity or lack of sensitivity to specific immunotherapies,
and the results of these analyses have clear clinical impact for the
use of these therapies. One such effort employs patient-derived
organoids, which are emerging as a tool to assess whether
patients will respond to checkpoint inhibitors (27). Because
they retain both myeloid and lymphoid populations, they can
serve as a readout of whether antigen specific T cells
are preexisting within a tumor and whether they can be
derepressed by immunotherapy (28, 29). Importantly, there is
evidence that mechanistic insights gleaned from patient-derived
organoids similarly occurs in subsets of patients treated with
anti-PD-1 therapy (29). While these models may also be used to
identify resistance mechanism and possible combinatorial
strategies, caution must be used in interpreting results given
the lack of recirculation and the inability to evaluate the ability to
prime new responses in such systems.
MUTATIONAL LOAD, ANTIGENICITY, AND
RESPONSE TO TREATMENT

As discussed above, tumors generated by application of mutagens
were shown to bemore immunogenic than tumors of spontaneous
origin, and that treatment of spontaneously-derived cancer cells
with a mutagen ex vivo generated variants that were able to protect
against rechallenge (6–9). These data suggest that the mutational
load in the cancer cells is a critical feature of immunogenicity. In
the past decade the ability to identify antigens has changed rapidly
with the advances in whole genome sequencing and large-scale
bioinformatic identification of neoantigens (30). By modeling the
MHC binding properties of predicted mutated neoantigens there
is evidence of fewer than expected mutations that are MHC-
binding (31), suggesting that there is ongoing immunoediting
during tumor formation. Analyses of the overall mutational
burden in patients has revealed that a higher mutational burden
is associated with an improved outcome in patients treated with
PD1 or CTLA4 blockade (32). However, these patients may
respond better to any intervention. Hugo et al. demonstrated
that while a high mutational burden does not predict outcome to
immunotherapies in their analyses, it is associated with increased
overall survival regardless of treatment (33). However, there is not
a direct link between the mutational burden of tumors and their
infiltration with immune cells (34), one of the key features of
immunogenicity. Rather than a single factor, mutational burden is
best considered along with a range of other tumor-associated
features including epithelial-mesenchymal transition phenotypic
shifts and other patterns of cancer gene expression that impact the
tumor environment (33). In addition, rather than an absolute
number of mutations, it has recently become appreciated that a
‘mutator phenotype’ associated with loss of mismatch repair
pathways is a stronger predictor of outcome than quantity of
mutations (32, 35). Ex vivo damage of the mismatch repair
pathways can generate tumors that acquire increased mutational
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Medler et al. Immunogenicity and Radioimmunogenicity
burdens (36), and importantly this generates tumors with an
impaired ability to grow in immune competent mice but
unchanged growth in immune deficient mice (36). Thus,
tumors with a high mutator phenotype are classically
highly immunogenic.

The different impact of mutations versus a mutator
phenotype are important, since not all mutations are
equivalent. A recent study demonstrated adding non-clonal
mutations can limit immune control of primary tumor growth
(37). In these studies, despite adding more neoantigens through
UV radiation, the more heterogenous the tumor the more likely
it was that the tumor would escape immune control. This didn’t
result from outgrowth of resistant variants (37). Rather, failure of
control related more to an inefficiency of tumor-specific T cells in
controlling tumors where not all cells shared the same antigens.
Such non-clonal mutations have also been observed in patients
and is termed intratumor heterogeneity (38). Detecting
non-clonal mutations represents a problem for standard
bioinformatic pipelines, since the majority of the cancer cells
along with normal cells will be showing an unmutated base,
meaning that the minority of sequenced transcripts will read a
mutation, so that the mutation is difficult to distinguish from
sequencing artifacts (39). By considering the intratumoral
heterozygosity as well as the neoantigen burden there is an
improved ability to identify patients with longer overall
survival (40), and also patients with improved response to PD1
blockade (40). These data suggest that immune responses that
can control tumors are most effective when the antigens are
shared between all targets, which in turn suggests a role for
immunodominant antigens in effective anti-tumor immunity.

Immunodominance is most clearly described in antibody
responses, where despite multiple antigenic targets in a foreign
antigen, the combination of competitive clonal expansion and
ongoing affinity maturation results in a dominance of antibody
responses to a small proportion of the range of potential epitopes
(41). Affinity maturation does not occur in T cells, but it is
common for T cell responses to dominantly focus on specific
epitopes in a heterogenous mix despite a range of potential MHC
and peptide combinations (42). This is due in part to the finding
that only about 1% of potential peptides binds a class I MHC
with sufficient affinity to elicit endoplasmic reticulum export and
presentation (43). This is particularly evident in influenza, where
humans with HLA-B27 generate a T cell response to influenza
that is dominated by T cells specific for the influenza
nucleoprotein NP383–391, and providing this HLA to mice
results in immunodominance to the same peptide (44). In
antiviral immunity, immunodominance can present a problem
for control of viruses that can alter their target antigens through a
high degree of variability (41). Similarly, it is reasonable to think
that an immunodominant response to a T cell neoantigen target
could present problems if that antigen is not widely shared.

The existence of immunodominance suggests that the initial
immune responses to an implanted tumor in preclinical models
may result in similar patterns of T cell responses in different mice
and even across tumor types. This has been observed to occur in
a number of cancers, including MC38 colon adenocarcinoma,
Frontiers in Oncology | www.frontiersin.org 5
B16 melanoma, and MCA-205 fibrosarcoma, where an
immunodominant epitope has been identified targeting the
endogenous C57BL murine leukemia virus (45). Expression of
viral proteins is repressed in normal tissues but has been
derepressed in these and other cancer cell lines (45–47). The
envelope p15E region is efficiently presented on H2Kb and
recognized by CD8 T cells. Expansion and adoptive transfer of
these antigen specific cells conferred protection against tumor
growth and reduced metastasis across multiple tumor types (45).
While a major caveat in these experiments is that the mice are
genetically identical and share MHC, importantly an alternative
viral envelope acts as an immunodominant antigen in tumors
such as CT26 (47) and 4T1 (48) in BALB/c mice that have a
different MHC haplotype, via the AH1 epitope. It is reasonable to
think that even in humans, immunodominance towards select
targets may still occur despite the diverse neoantigen peptide-
HLA combinations. There is practical evidence for this in
patients, where investigators have only successfully expanded a
small diversity of T cells in each patient – typically T cells specific
for 1-3 neoantigens – out of tens to hundreds of identified
neoantigen targets in patient tumors (49, 50). One of the
reasons why limited numbers of T cell specificities are
identified in tumors is technical, relating to the isolation
procedure that relies on their ability to grow out of tumor
fragments cultured with IL-2. More T cell specificities can be
identified by isolating T cells based on expression of activation
markers prior to culture (51), which removes competing non-
specific or less specific T cells. However, prior to treatment only a
small proportion of the potential T cells specific for neoantigen
targets can be detected in tumors (52), and in some cases 11 TCR
sequences accounted for 90-99% of the tumor specificity (53).
The limited diversity of T cell specificities for antigenic tumors
presents a problem for therapy. The reliance on individual
specificities can result in a huge selective pressure for antigen
loss or antigen-presentation loss variants – as has been seen
following monoclonal T cell therapy for cancer using highly
selected adoptive transfer approaches (49).

The fact that tumors with a mutator phenotype exhibit
improved overall survival and response to immunotherapy, yet
intratumoral heterozygosity results in the opposite consequence,
presents a conundrum. If each cancer cell is capable of
accumulating additional mutations via its mutator phenotype,
each cell should accumulate unique mutations as the tumor
progresses – there is no reason for these to be shared. So, it would
be expected that a tumor with a mutator phenotype would
become increasingly heterologous over time – and so less
responsive to immunotherapy. Since this doesn’t match with
the data, this means much of the mechanism remains to be
determined. Importantly, there are indirect mechanisms that
may play a role. For example, tumors with the mutator
phenotype exhibit increased expression of a range of
biomarkers of response to immunotherapy, including increased
PDL1 expression (32, 54), and broadly the increased T cell
infiltrate in these tumors is counterbalanced by evidence of
multiple negative regulatory pathways in the tumor (55).
Together these data suggest that immune responses have been
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generated to antigens in the tumors, but these responses are not
curing the tumors. This would be an immunogenic, but
unresponsive tumor and it makes sense that the tumor would
be responsive to checkpoint inhibition to improve responses.
However, this doesn’t explain why the mutator phenotype is
correlated with increased mutations and increased infiltration
(32, 54, 55), while a high mutation burden in general does not
correlate with T cell infiltration (34). The presence of a mutator
phenotype can shorten the timeline of tumorigenesis (56),
potentially resulting in rapid emergence of tumors without
significant immunoediting to eliminate highly immune reactive
cancer cell clones. However, early mutator phenotype tumors are
highly inflamed before exhibiting a high mutational burden (57),
suggesting it is some additional feature of the tumor that drives
the immune response (58).

The mutational pathway that leads to carcinogenesis can
dramatically impact the immune interactions with the resulting
tumor. This can result from cancer cell intrinsic regulation of their
immune environment, due to oncogene-driven effects. For
example, LBK1 mutant lung cancers have poor immune
involvement and respond poorly to immunotherapy (59). The
mechanism appears to be via LBK1 loss resulting in loss of STING
expression in cancer cells (60). The resulting cells are unable to
sense aberrant cytosolic DNA forms in the cell that would
ordinarily activate the cGAS-STING pathway, and the cells
therefore do not activate type I IFN pathways, are less visible to
immune cells, and are poorly infiltrated (60). STING expression is
inconsistent within a tumor type due to this epigenetic regulation
(61), and can vary significantly between different tumor types (62).
Other dysregulated programs in cancer cells can activate the
STING pathway. Recently, chromosome unstable cancers were
shown to accumulate micronuclei at a high rate, and these
micronuclei activate cGAS-STING DNA sensing pathways (63).
Interestingly, in these experiments activation of the STING
pathway accelerated the rate of metastases formation, via cancer
cell intrinsic NFkB signaling. However, the experiments were
performed in immune deficient settings (63), so it is likely that
the cancer cell intrinsic effects will be offset by immune regulation
of the more visible cancer cells that have an activated STING
pathway. Nevertheless, this positive selective pressure for STING
expression may explain why STING loss is not an oncogenic event
in cancers. In addition, since cGAS-mediated formation of STING
ligands can impact neighboring cells via intercellular transmission
of cGAMP (64, 65), or microvesicle transfer of nucleic acids (66),
STING loss in the cancer cell may not eliminate STING sensing in
the tumor (62).

These data suggest that features of cancer cells resulting from
their mutational pathway to tumorigenesis can impact both their
biology and that of the developing tumor. This of course makes
sense, as we know that implanting two different cancer cell lines
into genetically identical mice can result in two very different
tumor environments. Clearly the cancer cells dictate the immune
environment. Having some ability to predict the response of the
tumor to therapy according to its genomics is one of the major
goals in targeted therapy, but we currently have few clear
pred ic tors for immunotherapy and few approved
Frontiers in Oncology | www.frontiersin.org 6
immunotherapies. Nevertheless, in some circumstances
genomic features of the tumor are used to guide the clinical
use of checkpoint inhibitors (67). To better understand how the
tumor directs the immune environment of the tumor, it is critical
to understand how these immune responses first develop.
HOW DOES A GROWING TUMOR
GENERATE ENDOGENOUS ANTI-TUMOR
IMMUNE RESPONSES?

To understand how a tumor may generate T cells in the first
instance, we must explore the mechanisms that control the
priming of tumor specific CD8 T cells in immunogenic versus
poorly immunogenic tumors. Chen andMellman propose that as
part of the cancer-immunity cycle, T cell priming against tumor
antigens requires: 1) tumor antigens to be released;
2) professional antigen presenting cells (APCs) to take up these
antigens; and, 3) adjuvants to be released to activate APCs (68).
Defects in any of these steps would result in a failure to prime a
productive anti-tumor CD8 T cell response.

Naïve T cells require the extensive costimulatory support of a
professional APC to generate fully functional memory and
effector populations. Moreover, CD8 T cell responses are most
efficiently generated via coordinated CD4 T cell help (69–71), so
MHC-II expressing APCs are critical for a comprehensive T cell
response to tumor-associated antigens. Thus, for initial tumor
reactive T cell priming to occur, tumor antigens must first be
released and become available to professional APCs. Commonly,
antigen release is discussed as a part of cancer therapies, such as
following chemotherapy or radiation therapy that result in
cancer cell death (72); however, this does not explain how
immune responses first develop in untreated tumors. The
preclinical data on immunogenicity is skewed by the artifact of
tumor implantation into mice. The majority of preclinical tumor
experiments involve syngeneic murine cancer cell lines
implanted in immune competent mice. This event has long
been described as an immunological vaccine-like event,
resulting in immune responses to the cancer cells in immune
competent mice (73–77). The adaptive immune response
generated following tumor implantation can be followed over
time to map initial populations of tumor-specific CD8 T cells
that can engender anti-tumor immunity, and later development
of T regulatory cells that suppress anti-tumor immune control by
the CD8 T cells (73–77). This pattern of immune response,
suppression, and resistance to subsequent tumor challenge can
be impacted by the dose of cancer cells implanted into the
animal, which can result in immunological tolerance within
critical dose ranges (78, 79). The progressive development of
the tumor environment can in part be followed in a progressively
growing tumor, such that smaller tumors can exhibit a more
permissive immune environment with increased infiltrates of
CD8 T cells, but larger tumors proportionally decrease CD8 T
cell infiltrates and increase infiltrates of suppressive Treg and
myeloid cells (80). As discussed above, that tumors still form in
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these mice despite the adaptive immunity generated on
implantation may be dependent on a dominance of
suppression over immunity. However, this suppression is
generally a local event, since it is very common that a growing
primary tumor can engender sufficient systemic anti-tumor
immunity that the mice can reject a second tumor challenge
even while the primary continues to grow. This rejection of a
second tumor by a mouse with an identical growing primary
tumor, first described by Ehrlich, is termed concomitant tumor
immunity (81, 82). A range of mechanisms have been considered
to explain concomitant immunity (83), but the dominant
mechanism is now known to be immunological rejection of the
second tumor due to responses initiated following injection of
the first tumor. The mechanisms resulting in immunity to
injected tumors involves dendritic cells (DCs) functioning as
professional antigen presenting cells, since tumors that are
ordinarily rejected are able to grow when injected into Batf3-/-

mice that lack cross-presenting DCs (84). Thus, cancer cell
injection into immune competent mice generates an initial
CD8 T cell response via cross-presenting DCs, which is
therefore a critical feature of immunogenicity in murine models.

In patients, or in mouse models of progressive tumorigenesis
that occur without cancer cell injection, this effect may be more
difficult to observe. Without the initial bolus of cancer cells to
provide debris that may serve as a vaccine event, other mechanisms
are required to generate immunity. For example, experiments that
use surgical implantation of tumor fragments do not result in anti-
tumor immune responses that are observed with implantation of
tumor cell suspensions (85, 86). In such cases, to generate T cell
responses, cancer cells must transfer antigenic material to APCs in
another manner. Soluble cancer-associated antigens can be released
from tumor cells – for example PSA is secreted from prostate cancer
cells and can be a T cell target for immunotherapy, and mesothelin
can be released from pancreatic cancer cells and also serves as a T
cell target (87, 88). However, the majority of cellular proteins are not
secreted, and therefore will require transfer of cellular material for
uptake by APCs. Cancer cells have been shown to release exosomes,
which can deliver tumor-associated antigens directly to APCs (89–
92). Engineering a tumor to express a model tumor antigen in
exosomes resulted in increased tumor immunogenicity, with
significantly slower tumor growth than matched tumors
engineered to secrete the same antigen, and this growth delay was
dependent on an intact immune system (91). Tumors with antigens
directed to exosomes were also more immunogenic than those with
antigens directed to non-secretory components (93), indicating that
the subcellular localization of antigens may be a critical feature of
immunogenicity or immunodominance of an individual
neoantigen. Importantly, redirection of potential antigens to
autophagosomes can increase the immunogenicity of the tumor
by generating vesiculated particles that are efficiently cross-
presented (94, 95), which may provide an option to increase the
immunogenicity of tumors where the potential antigens are not
generally directed to exosomes.

Normal programmed tumor cell death is an alternative
mechanism for antigens to be released and taken up by APCs.
Despite generally increased resistance to cell death in cancer cells
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(96), DNA damage and metabolic stressors can result in cancer
cell death and is particularly pronounced as their growth
outstrips the supply nutrients in their environment (96, 97).
Multiple types of cell death have been described, however, the
two most extensively studied forms are apoptosis and necrosis
(98). Apoptotic cell death is typically thought of as being
immunologically silent (99, 100) as compared to necrotic cell
death, which results in the release of inflammatory signals (101,
102). However, recent work has suggested these pathways are
more nuanced and depending on the circumstances, both
pathways can lead to the release inflammatory signals (103–
106). Thus, some tumors might be classified as poorly
immunogenic because they are more resistant to natural tumor
cell death, resulting in a failure to release adequate tumor
antigens for T cell priming. Alternatively, a cancer cell that is
proportionally more resistant to apoptosis may still die if the
environment is sufficiently toxic, but through non-apoptotic
mechanisms (107). A high rate of cell death in a region of the
tumor can overwhelm local phagocytic capacity and result in
necrosis. Necrotic material includes a range of endogenous
adjuvants with varying ability to stimulate immune responses
to associated proteins (102). However, in patients, the presence
of pathological necrosis in their tumor is generally associated
with poor outcomes across a range of malignancies (108–111).
There are likely a wide range of conflicting mechanisms at work
in a tumor with extensive pathological necrosis, since a high level
of cancer cell death is often correlated with a high rate of cancer
cell proliferation (112), and necrotic regions are enriched for
macrophages (113) that drive biological pathways to repair
necrotic damage (114). As has widely been discussed, these
macrophages can be associated with a poor prognosis in
patients. These data suggest that the most efficient means of
antigen transfer to antigen presenting cells is not necessarily
related to high rates of cancer cell death, but may depend on the
specific mode of cell death and the means of transfer to antigen
presenting cells.

Released tumor antigens will ultimately fail to trigger an
immune response unless professional APCs are present to take
up these antigens. Dendritic cells excel as professional APCs and
multiple dendritic cell subsets exist, each with their own
specialized function in immunity (115). Thus, in addition to
considering the availability of suitable antigens and maturation
signals in tumors, the appropriate type of dendritic cell still needs
to be localized in the vicinity of these signals to initiate T cell
priming. Conventional type I dendritic cells (cDC1s) are
particularly potent at priming cytotoxic CD8 T cell responses
(116). Importantly, cDC1s are thought to be the primary cell type
capable of cross-presenting tumor-associated antigens to CD8 T
cells (117–121). As mentioned above, mice entirely lacking cross-
presenting DCs via deletion of the cDC1-specific transcription
factor Batf3-/- fail to develop anti-tumor T cell responses and
even highly immunogenic tumors that are ordinarily rejected can
grow in these mice (84). Increased cDC1 signatures in patient
tumors correlates with improved survival (119, 122, 123).
Moreover, in tumors with very few cDC1s at baseline,
administration of drugs that expand cDC1 numbers in the
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tumor results in improved responses to therapy in murine
models (124, 125).

While cDC1s have been shown to have some limited
proliferative capacity in peripheral sites, they are typically
short-lived and need to be continuously replaced in the tissues
by cDC precursors from the blood (126–128). In mice, the
chemokine receptors CCR1, CCR5 and CCR6 have been
implicated in the recruitment of cDC precursors from blood
into tissues, though these requirements likely change during
tissue inflammation (129–131). Spranger et al. reported that in
their melanoma model, tumor intrinsic b-catenin signaling leads
to decreased CCL4 production by tumor cells and impaired
recruitment of CCR5-expressing cDC1s into the tumor,
ultimately resulting in a failure to prime anti-tumor CD8 T cell
responses (132). Alternatively, NK cell-derived XCL1 has also
been shown to promote the mobilization of XCR1-expressing
cDC1s into tumors and this recruitment is inhibited in tumors
that secrete PGE2 (122). Tumors implanted into mice that
cannot synthesize PGE2 are spontaneously rejected, indicating
that PGE2 is a critical suppressor of immunogenicity in mice
(122). These data suggest that different tumors may actively
secrete factors that either promote or suppress the recruitment of
cDCs to the tumor, and this regulation is highly impactful to
classical immunogenicity.

To take up antigens, cDC1s must express receptors that enable
them to phagocytose dead or dying cells. These include some of the
key markers of the dendritic cell lineage, such as DC-SIGN,
CLEC9A, DEC-205 and DCIR (133–137). CLEC9A for example
binds to actin filaments that are exposed on dying cells and diverts
these antigens be processed in the cross-presentation pathway (135,
138). AXL is another receptor expressed by dendritic cells that is
capable of indirectly recognizing apoptotic cells through Gas6 which
is bound to phosphatidylserine on the outside of dying cells (139).
Moreover, tumor cells themselves have been known to express
signals that might prevent them from being recognized and
phagocytosed by dendritic cells in the first place, including the
“don’t eat me” signal CD47 (140). Elimination of CD47 on tumor
cells enhances the development of anti-tumor immune responses in
preclinical models via dendritic cell-dependent mechanisms (141).
Taken together, these data suggest that there are multiple signals
that can promote or suppress the uptake of dying cells by dendritic
cells and crosstalk between these pathways has important
implications for whether or not tumor antigens are taken up by
dendritic cells to prime tumor reactive T cell responses.

While many types of material released from dying cells are
likely capable of being phagocytosed by APCs, the additional
signals released from these cells are critical to determining
whether successful priming occurs. Dendritic cells are
professional APCs uniquely capable of sensing and integrating
signals in their environment to determine whether to initiate an
adaptive immune response. In tissues, immature dendritic cells
are constantly sampling antigens, but in the absence of
maturation signals, productive T cell priming will fail to occur.
When dendritic cells receive maturation signals, this leads to a
shift from antigen uptake to antigen presentation with increased
expression of migratory receptors, cytokines, and T cell co-
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stimulatory molecules. Naïve T cells lack the receptors for
recirculation through tissues, and so must meet dendritic cells
presenting tumor-associated antigens in tumor-draining lymph
nodes. Dendritic cells also provide T cells with additional co-
stimulation and cytokine signals that further support T cell
development. During viral or bacterial infection, innate danger
signals trigger dendritic cell maturation through pattern
recognition receptors such as toll-like receptors (TLRs), C-type
lectin receptors or cytosolic nucleic acid sensors. Signaling
through these pathways results in the release of type I
interferons (IFN) that can further signal back on dendritic cells
to promote their maturation. In the absence of infection, dying
cells must trigger dendritic cell maturation by releasing
endogenous activators of these innate signaling pathways
(142). In support of this concept, dendritic cells have been
shown to produce type I IFN following tumor implantation in
murine models (143). Additional work has demonstrated that
when type I IFN is blocked with neutralizing antibodies (144), or
instead when dendritic cells lack type I IFN receptors, mice
ultimately fail to reject highly immunogenic tumors (145). These
data suggest that innate signaling pathways are required for the
development of spontaneous tumor reactive T cells.

To understand the nature of the upstream pathways that
result in type I IFN release in the absence of infection or therapy
it is necessary to study the mechanisms by which nucleic acid
sensors are triggered in the tumor environment. Recent work has
suggested that following injection of cancer cells into mice,
dendritic cells can detect tumor cell derived DNA through
stimulator of interferon genes (STING) (146). Woo et al.
demonstrated that signaling through the STING pathway
resulted in increased expression type I IFN and blocking
components this pathway led to diminished tumor specific T
cell priming and a failure to reject highly immunogenic tumors
(146). It’s also plausible that nucleic acid sensors such as MDA5,
RIG-I, or TLR3 function to detect various forms of RNA released
by dying tumor cells to trigger interferon pathways. Endogenous
retroviral elements are embedded throughout the genome and
though their expression is typically silenced, some tumors might
be better than others at suppressing the expression of these
potentially immunostimulatory RNAs (147, 148). Other
potential signals include high mobility group box 1 (HMGB1),
a danger signal that has been shown to be released from dying
tumor cells that is capable of inducing dendritic cell maturation
and tumor regression (149). These data suggest tumors lacking
signals that promote dendritic cell maturation may be poorly
immunogenic, despite effectively transferring antigen to
dendritic cells.

As mentioned earlier, certain tumor-derived metabolites can
function to inhibit dendritic cell maturation. Tumors that
successfully release antigens and maturation signals, but also
secrete factors that inhibit dendritic cell maturation will ultimately
result in a failure for these dendritic cells to prime tumor-specific T
cell responses. This is illustrated by work from Villablanca et al.,
which showed that tumors can produce and secrete oxidized
cholesterol ligands that bind to the liver X receptor (LXR) and
signaling through this pathway in dendritic cells suppresses the
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expression of CCR7 on maturing dendritic cells (150). As a result,
signaling through LXR impaired dendritic cell migration to the LN
to prime CD8+ T cells, and knockout of LXR in dendritic cells
reversed these effects. Other metabolites and signaling pathways that
have been shown to suppress dendritic cell function in the tumor,
including PGE2 as described above and adenosine (122, 151–153).
These data suggest that dendritic cell are capable of sensing both
activating and inhibitory signals within tumors and the integration
of these signals in critical to determining whether a productive anti-
tumor immune response is generated. The combination of these
mechanisms can determine whether an untreated, growing tumor
will have a pre-existing anti-tumor immune response that can be
targeted with immunotherapies, or will require additional
treatments to initiate anti-tumor immunity.
CHARACTERISTICS OF A HIGH
SURVEILLANCE TUMOR

As discussed above, alongside the mutational burden the degree
of immune infiltrate helps predict whether a patient is responsive
to immunotherapy, but these are not necessarily linked (34).
There is commonly a coregulated pattern of cell infiltration into
tumors, where tumors with a high infiltration of dendritic cells
are likely to also have a high infiltrate of T cells and be capable of
generating T cell anti-tumor immune responses (132, 154). Since
these are potentially overlapping or interrelated mechanisms, it is
important to understand what dictates T cell infiltration. One
framework outlining the different tumor immune phenotypes is
described by Hegde et al. (155) and expanded upon by Chen and
Mellman (156). On one end of the spectrum is the immune
desert phenotype, largely devoid of T cells in the tumor stroma,
with or without infiltrating myeloid cells, that is largely
refractory to immune checkpoint blockade. These tumors may
have never successfully primed T cells, have deleted the T cells
with tumor specificity, or do not recruit T cells into the tumor
(155, 157). The second phenotype is an immune excluded tumor,
which contains T cells in the tumor periphery or invasive margin,
but T cells are absent within other subregions of the tumor, in
particular the tumor core. Since tumor-specific T cells are
thought to exist in this setting but are restricted to the
periphery, the distribution of immune cells in this group of
tumors must relate to some difference in recruitment between
the different tumor regions. These differences are largely
attributed to tumor/stroma interactions, such as a dense
fibrotic stroma or vascular features that prevent immune
infiltration into the tumor core (155). The third phenotype is
the broadly inflamed tumor that has abundant T cell infiltration
throughout the tumor, and importantly extends into the tumor
parenchyma. Tumors with an inflamed phenotype tend to
exhibit type I and type II IFN signatures and respond better to
checkpoint inhibitors than those with immune excluded or
immune desert phenotypes (158, 159).

Type I and type II signatures characteristic of highly inflamed
tumor indicate that efficient cross-presentation by cDC1s has
occurred, and retain an ongoing T cell-mediated immune
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response mechanistically described above. IFNg signatures are
tightly associated with activated lymphocytes, which are the
primary source of IFNg within tumors. CD8+ T cells, Th1-type
CD4+ T cells, gd T cells, and NK cells are potential sources of
IFNg and are indicative of an immune response against the
tumor [reviewed in (160)]. The pleiotropic effects of IFNg are
regulated by cell type-specific expression of IFNg receptors and
their downstream effectors (e.g. JAK2, STAT1, SOCS proteins,
IRF proteins, and others) that regulate expression of hundreds of
IFNg responsive genes and cellular behavior. In CD8+ T cells,
exposure to IFNg promotes cytotoxic effector functions, motility,
and survival (160). In CD4+ T cells, paracrine IFNg signaling
reinforces Th1-type responses and actively represses Th2- and
Th17-type differentiation (160). Additionally, IFNg regulates
several processes involved in tumor-immune cell interactions,
including direct antigen processing and presentation via
regulation of MHCI, B2M, TAP, and immunoproteasome
components (161–164), as well as feedback inhibition of T cell
responses via the expression of the IFN-regulated molecules PD-
L1 and PD-L2 in both tumor and immune cells (165, 166). IFNg
also regulates T cell recruitment via regulation of key
chemokines (159, 167). Upon exposure to IFNg, chemokines
CXCL9, CXCL10, and CXCL11 are produced by immune cells
within the tumor, including macrophages and CD103+ DCs
(159, 167). This results in chemotaxis into the tumor of
activated CD8+ T cells that have upregulated CXCR3, the
canonical receptor for these ligands (168). CXCR3 is highly
expressed on effector CD8+ T cells (169) and Th1-
differentiated CD4 T cells (170, 171), and their trafficking into
tumors is dependent on expression of CXCR3 (168). The
importance of CXCR3 and its ligands for CD8+ T cell
infiltration is underscored by studies revealing CXCR3 and its
ligands are prognostic indicators of improved outcome (172–
174). Additionally, reduced T cell numbers and worsened
outcomes were observed in a subset of ovarian cancer patients
in whom CXCL9 and CXCL10 were epigenetically repressed
(175). CXCR3 expression on CD8+ T cells was recently shown to
be repressed by TGFb, a protein associated with worsened
outcomes in patients in colorectal cancer (176). As part of its
feedback inhibitory functions, IFNg also regulates PD-L1 and
PD-L2 expression, which negatively regulate CD8+ T cell
function (165, 166), and at least partially explains anti-PD-1
efficacy in patients bearing an IFNg signature (177, 178).
Together, these data indicate that patients bearing IFNg
signatures, yet still have a growing tumor, have mounted an
immune response against their tumor that was subsequently
repressed. Logically, de-repression is an appropriate therapy for
these patients, and they would therefore be expected to be more
responsive to checkpoint therapies.
RADIOIMMUNOGENICITY

The effects of radiation therapy on the tumor immune
environment have been extensively reviewed. Much of the
excitement about the immune component of radiation therapy
March 2021 | Volume 11 | Article 667075

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Medler et al. Immunogenicity and Radioimmunogenicity
has been because immune responses provide a large portion of
tumor control following radiation therapy in many preclinical
tumor models. These data often suggest that the direct effects of
cancer cell death initiated by radiation is a minor but essential
component of treatment efficacy. While conventional radiation
treatment regimens are carefully optimized to ensure cancer cell
death while sparing normal cells in the field, it is widely discussed
that these regimens could be revisited to optimize their
contribution to immune responses (72, 179, 180). In this
discussion, as with the discussion of immunogenicity, there is
the question of whether radiation is serving as a vaccine event –
serving to initiate new immune responses against the tumor or
boosting existing immune responses to improve their function –
or whether it is assisting effector phase responses to clear residual
cancer cells. Certainly, radiation can directly upregulate antigen
processing and presentation function in cancer cells, serving to
increase their ability to be targeted for effector destruction (181,
182). However, this cannot easily explain the out-of-field effects
that have been described in preclinical models and in patients
treated with combination therapies (183, 184).

Much of the effort in exploring radiation therapy as a
potential endogenous vaccine event have appropriately focused
on critical issues in dose, timing, and sequencing of treatments,
as well as optimal immunotherapy combinations (180, 185, 186).
As the field has developed, it has become clear that as with all
other therapies, there are tumor models that are particularly
responsive to radiation therapy and radiation therapy
combinations. However, studying radiation therapy as a de
novo endogenous vaccine has been complicated by the in vitro
model phenomenon of the initial vaccine effect of implanting
cancer cells into immune competent mice, as discussed earlier.
The initial immune response of implantation means that it is
difficult to distinguish a de novo effect of radiation from a vaccine
boost event (187). Notably, in our studies when we blocked the
initial vaccine effect of tumor implantation, radiation therapy
was no longer able to combine with immunotherapies for tumor
cures (187), even in ordinarily immunogenic tumor models. This
is consistent with radiation serving to boost pre-existing T cell
responses, but being poorly capable of initiating new immune
responses. Importantly, the extent of radiation’s function as an
endogenous vaccine is highly model-dependent (188). The
importance of radiation therapy as a vaccine event is
questioned by studies showing that radiation therapy cannot
simply be replaced with strong vaccines (181) – the radiation
therapy evidently provides signals that are not present in a
vaccine. Similarly, many of the distant tumor therapy models
are affected by issues of implantation artifacts. The most
common approach used to test distant tumor responses uses
implantation of a primary tumor on one flank, and a secondary
tumor on the distant flank. Notably, the second tumor is
implanted 2-3 days following the primary. This timing avoids
the full effect of concomitant immunity that would ordinarily
result in rejection and allows the second tumor to grow in the
mice. However, the second tumor can develop with a more
pronounced immune infiltrate than the primary, different
trajectory of immune infiltrates between the tumors (80), and
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different responses to immunotherapies. This can result in
distinct outcomes in the two tumors. For example, in an
implanted murine lung carcinoma model, the delayed
administration second tumor can respond to systemic anti-
OX40 monotherapy with slowed growth, while the primary
tumor is not affected (189). Similarly, for highly immunogenic
tumors such as MC38, delayed injection of a second tumor can in
some cases result in cure of the primary tumor and/or secondary
tumor without any additional treatment (190). This cure of the
primary wouldn’t happen if a single tumor was injected, so it is
possible that since the second injection acts as a vaccine boost
event, it increases the overall immunogenicity in the system.
While the delayed second tumor injection is a useful tool to
readily detect distant tumor effects of primary tumor therapies, it
exploits the immune artifact of tumor implantation. It is unclear
whether this is relevant to the treatment of metastases, since it is
unlikely that in patients metastatic tumors have a more
permissive immune environment than the parental tumor.

Despite this caveat, there are a range of tumor models such as
the BALB/c mammary tumor cell line 4T1 that are classically
poorly immunogenic and are not treatable with checkpoint
inhibitor monotherapy. However, following the combination of
radiation therapy with checkpoint inhibitors, both the irradiated
tumor and the unirradiated tumor can be controlled (191). This
tumor is not immunogenic, so is this tumor radioimmunogenic?
The term ‘radioimmunogenic’ is a useful tool to discriminate
those tumors that may be treatable by adding radiation therapy
to immunotherapy (Figure 3). In addition, by comparing such
tumors it may help us identify features of the tumor that dictate
responsiveness to radiation. For example, in our hands, the
Panc02 model of pancreatic adenocarcinoma is unresponsive
to any T cell targeted therapy combined with radiation therapy.
This includes therapeutic antibodies to targets such as CTLA4,
PD1, and OX40, which work very well in other models. However,
Panc02-SIY, which has been engineered to express the strong
model antigen SIY is responsive to these combinations (181,
187). Thus, while the parental Panc02 cell line was generated by
MCA carcinogenesis (192), it appears insufficiently antigenic to
be radioimmunogenic. As we have compared tumor models to
understand why some tumors respond to radiation and others do
not, we identified that the poorly responsive tumors failed to
mature DCs in the tumor environment following radiation
therapy (188). In radioimmunogenic models such MC38 and
MOC1, DCs in the tumor upregulated maturation markers
following radiation therapy, showed similar maturation in the
tumor draining lymph node, and the eventual tumor control was
dependent on trafficking of T cells through the blood and to the
tumor (188). In poorly immunogenic tumors such as Panc02 and
MOC2, this loop was broken, and T cells were not able to
contribute to tumor control following radiation. This could be
restored through application of DC-targeted adjuvant to the
tumor environment, restoring DC maturation and T cell control
of the tumor (188). In radio-immunogenic MC38 tumors, the
therapeutic efficacy of radiation has been shown to rely on
STING-dependent cytosolic DNA sensing pathways in DCs
(193) and reports have suggested that radiation is capable of
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driving the expression of enzymes in tumor cells that function to
degrade potential immunostimulatory DNA signals (194). This
suggests that the adjuvant balance in poorly radio-immunogenic
tumors following radiation therapy is suboptimal and these
result may explain why immunological adjuvants have long
been described as effective immunotherapies in combination
with radiation therapy (195, 196). Since myeloid cells in the
tumor are a critical target for immunological adjuvants (195, 197,
198), this suggests that myeloid cells may be a limiting factor in
poorly radioimmunogenic tumors. This fits our experience with
the parental Panc02 tumor model, since while it is unresponsive
to T cell targeted therapies as discussed above, it has proven
responsive to radiation therapy combined with therapies
targeting myeloid populations in the tumor environment,
including therapies targeting NFkB p50, Mertk, TGFb, and
STING (199–201).

Unbiased exploration of features of the tumor immune
environment clearly demonstrate that patterns of myeloid
infiltrate can correlate with patterns of T cell infiltrate and
impact patient outcome. For example as discussed earlier, DC
infiltration and CD8 T cell infiltration are commonly correlated
(167, 202). This can present a chicken and egg question as to
which population causes infiltration of the other, but as discussed
above, limiting DC infiltration into tumors also limits T cell
infiltration (132), and mice lacking DCs fail to generate tumor
infiltrating T cell populations (84). Together these data suggest
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that in poorly radioimmunogenic tumors the initial biology that
results in DC activation and subsequent generation of anti-tumor
T cell responses are deficient. However, improving DC responses
following radiation therapy using CD73 blockade also improves
responses to radiation and anti-CTLA4 in 4T1 tumors (203), so it
is likely that DC targeting has the potential to be widely applicable
to improve responses in radioimmunogenic tumors.

The effects of radiation therapy and immunotherapy in these
models can be seen as altering the threshold of immunogenicity. A
growing, established tumor given no further treatment is lethal
and so any immune responses are by definition below the
threshold to eliminate the tumor (Figure 3A). Some tumors
may be responsive to checkpoint inhibitor therapy, which means
that blocking suppressive mechanisms can permit a substandard
immune response to successfully eliminate the tumor (Figure 3B).
These responsive models do not need radiation therapy for tumor
control. A second group of tumors do not respond to checkpoint
inhibitors alone, but can be cured by radiation therapy combined
with checkpoint inhibitors (Figures 3C, D). In these
radioimmunogenic models, the addition of radiation therapy
alters the threshold of response. This can occur by priming or
boosting T cell responses, by improving effector function within
the field due to effects on inflammatory or antigen presentation
effects, or some combination of local and systemic effects. A final
group of tumors remain resistant, where combination therapies
remain unable to cure these tumors. If we consider 4T1 tumors,
A B

D

C

FIGURE 3 | Radiation alters the response threshold to immunotherapy. (A) Growing tumors are by definition below the immune control response threshold since a
lack of treatment will ultimately be lethal. (B) Checkpoint inhibition alone will result in cure for a portion of tumors that have an established T cell response and are
responsive to immune control. (C) Radiation therapy boosts T cell responses by priming or boosting T cell responses and improves response to immune control
within the treatment field due to increased antigen presentation or other inflammatory effects. (D) Immunotherapy changes the response threshold while radiation
further changes the response threshold in radioimmunogenic tumors. A portion of remaining tumors fail to respond well to checkpoint inhibition with or without
radiation therapy and will require additional therapeutic modalities that target additional resistance mechanisms.
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these are classically poorly immunogenic, aggressive tumors in mice.
However, they are clearly radioimmunogenic, since they respond
very well to radiation therapy plus anti-CTLA4, and provide an
excellent model of local and distant tumor control by
experimental immunotherapies.

This ability to control distant tumors is obviously an
extraordinarily important opportunity to impact patients with
metastatic disease. In some tumors, radiation therapy is unable to
prime new T cell responses in the draining lymph node, so would
not be expected to impact a distant tumor outside of the treatment
field (Figures 4A, B). If radiation therapy successfully primes or
boosts T cell responses resulting in increased circulating tumor-
specific T cells, then there remain multiple options. If the out-of-
field tumor is responsive to T cells, then the distant tumor may be
controlled (Figure 4C). However, tumors that are resistant to
effector mechanisms could be unaffected by radiation (Figure 4D).
For example, some tumors already have a good T cell infiltrate, but
grow regardless. More T cells may not greatly alter the threshold
for these tumors since they already suppress local immunity via a
range of mechanisms that include PDL1-PD1 or CD80/86-CTLA4
interactions. This can result in differential responses in the in-field
versus out-of-field tumors. If radiation is optimal it may result in a
range of local effects such as increased inflammation and direct
antigen presentation due to nucleic acid sensing (195, 197), and
loco-regional effects that include tumor antigen cross presentation
in an inflamed draining lymph node (188).While this can result in
increased numbers of tumor specific T cells entering the
circulation, the effects of radiation therapy on antigen
presentation and inflammation will not be taking place out in
the out-of-field tumor. This means that while we can optimize the
dose and timing of radiation therapy to increase in-field
inflammation and T cell priming, these events will not affect a
distant, unresponsive tumor. Using these criteria we can start to
identify responsive versus unresponsive tumors. If our therapies
can impact the distant tumor, they must be responsive to immune
therapies that rely purely on increased tumor-specific T cell
numbers. A recent example of this can be seen in Ruckert et al.,
where using a dual flank tumor model, they demonstrated that
systemic vaccination against tumor specific antigens only
impacted the growth of the irradiated tumor (204). Although
the distant tumor was injected a few days following primary tumor
injection and therefore had an improved tumor environment, it
remained resistant to increased circulating tumor-specific T cells
(204). Systemic immunotherapies can impact these thresholds in
the distant tumor. As single agents, systemic administration
checkpoint therapies can cause an increase in baseline
inflammation in tumors by eliminating negative regulation of T
cells. This may alter the threshold in a distant unresponsive tumor
that allows it to be controlled by T cells, becoming responsive. This
agrees with the published data, since tumors that have higher
numbers of T cells and increased clonal expansions of T cells are
also the most responsive to checkpoint inhibitor therapy (205,
206). However, it is difficult to isolate the effects of these systemic
therapies. For example, anti-CTLA4 has been shown to improve T
cell responses to tumors associated antigens in the tumor-draining
lymph node, the treatment site, and in the distant tumor. This can
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result in control of both the irradiated and unirradiated tumor. In
this case, did anti-CTLA4 function primarily to increase priming,
to remove resistance, or is it always some combination of both?

The relative effects of immunotherapies on ‘in field’ versus
‘out of field’ tumors may be clearer where the therapy is focused
specifically on one mechanism. For example, in mammary
carcinoma models, CD73 blockade increases DC infiltration in
the irradiated tumor, but not the non-irradiated tumor (203).
While this improved local control, it did not improve control of
distant tumors that were established either as spontaneous
metastases or via dual flank injection. Therefore, the distant
tumor remained resistant to T cell responses that were generated
by treatment. In the above dual tumor model used by Ruckert
et al., the addition of anti-PD1 to radiation therapy improved
primary and distant tumor control, but distant tumor control
was still not impacted by tumor-specific vaccination (204).
Notably, the immunomodulatory effects of radiation including
upregulation regulatory molecules such as PDL1 were restricted
to the tumor in the radiation field, and did not impact the out of
field tumor (204). Therefore, the out of field tumor remained
resistant, despite in field success. As another example, in our
hands direct injection of STING ligands into Panc02 pancreatic
adenocarcinoma tumors in combination with radiation therapy
resulted in local tumor cure (199). Using Panc02 tumors
expressing the model antigen SIY allowed us to demonstrate
that the combination generated more tumor-specific T cells in
the circulation, but this had only a moderate effect on the distant
tumor and was not observed with either treatment alone (199).
However, in B16 tumors expressing SIY, STING ligand
administered to a tumor was able to result in systemic tumor-
specific T cell responses and caused distant tumor cure as a single
agent (207), implying that the distant B16 tumors are highly
responsive to T cells once they are generated. In a lung
metastases model where STING ligands were delivered to both
lungs via inhalation but only one region irradiated, the
combination with radiation was able to control tumors inside
and outside the field (208). Importantly, both the in-field and
out-of-field tumor control was dependent on CD8 T cells. Thus,
in-field therapies that generate T cells are not necessarily able to
control resistant out-of-field tumors, unless the out-of-field
tumor also receives treatment. When we deliver systemic
immunotherapies, such as PD1 or CTLA4 blocking antibodies,
it can be difficult to discriminate where these therapies produce
their effect.
CONCLUSION

According to the above discussion, an immunogenic tumor may
have a tumor-specific T cell response, but since it is a growing
tumor it will be resistant to these T cells without additional
intervention. These tumor-specific T cells will have been
generated via DC cross-presentation, despite any negative
pressures from tumor-infiltrating macrophages, T regulatory
cells, or metabolic effects of the tumor. For such tumors,
overcoming T cell suppression could be sufficient to result in
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FIGURE 4 | Local and distant responses to radiation therapy or combined radioimmunotherapy in immunogenic or poorly immunogenic tumors. (A) In dual
treatment models, immune responses initiated in one tumor must be able to affect distant tumors to result in their control. (B) In poorly immunogenic tumors that
have limited pre-existing immunity, if radiation is unable to prime new immune responses then distant tumors will be unaffected. (C) If radiation successfully primes
new responses or boosts existing responses, if the distant tumor is responsive to increased numbers of T cells then distant tumor control will be observed. (D) If
radiation successfully primes new responses or boosts existing responses but the distant tumor is unresponsive to these T cells, then distant tumor control will not
be observed. However, since radiation has additional in-field effects on inflammation and antigen presentation, the treated tumor may still be cured through immune
mechanisms. Gray lettering, low occurrence; solid black lettering, moderate occurrence; bold black lettering, high occurrence. TDLN, tumor draining lymph node.
Frontiers in Oncology | www.frontiersin.org March 2021 | Volume 11 | Article 66707513

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Medler et al. Immunogenicity and Radioimmunogenicity
tumor control, and these tumors also appear more responsive to a
range of conventional therapies (209). For poorly immunogenic
tumors, the result is less clear. It is possible that the tumor can be
manipulated to generate effective T cell responses through
treatment, adoptive transfer, or vaccination. However, we still
will not know whether the tumor will additionally be resistant to
control by the effector phase of immune responses, just like the
immunogenic tumor. Therefore, for tumors that present with
absent immune infiltrates it is likely that combination therapies
will be necessary.

In answer to the question posed at the start of this review “Is
my tumor immunogenic?”, one would hope that the answer is
“Yes”. In that case, many therapies will work optimally, not just
immune therapies. For the remaining patients, there will be some
who have tumors that are radioimmunogenic. In these patients,
radiation therapy in combination with immunotherapies have
the potential to control their tumor. For this to impact patients
with metastatic disease, then the out-of-field tumors will also
need to be responsive to immunotherapies, since these distant
tumors will not receive radiation. For this reason, clinical studies
designed to treat metastatic tumors with radiation therapy to a
distant site should incorporate approaches that increase the
responsiveness of the out-of-field tumor potentially through
administration of systemic agents that target the suppressive
tumor environment, and not just improve radiation’s ability to
act as a vaccine. By contrast, a therapy that aims to increase local
Frontiers in Oncology | www.frontiersin.org 14
control following radiation therapy may not require systemic
therapy and can focus on immune mechanisms that assist the
radiobiological response to radiation treatment within the field.
Therefore, it will be critical to match the trial design to the agent,
as well as the agent to the intended outcome (210). In either case,
an ability to discriminate immunogenic and radioimmunogenic
tumors will help us understand how our preclinical models
might apply to specific clinical scenarios. This will help ensure
we are developing appropriate therapies for patients, and not just
for our artificial preclinical settings. This will better address why
radiation plus immunotherapy is overwhelmingly successful in
preclinical models, but these do not necessarily result in
successes in randomized clinical trials.
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