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Background: The angiogenesis of liver cancer is a key condition for its growth, invasion,
and metastasis. This study aims to investigate vascular network connectivity of
hepatocellular carcinoma (HCC) using graph-based approach.

Methods: Orthotopic HCC xenograft models (n=10) and the healthy controls (n=10) were
established. After 21 days of modeling, hepatic vascular casting and Micro-CT scanning were
performed for angiography, followed by blood vessels automatic segmentation and vascular
network modeling. The topologic parameters of vascular network, including clustering
coefficient (CC), network structure entropy (NSE), and average path length (APL) were
quantified. Topologic parameters of the tumor region, as well as the background liver were
compared between HCC group and normal control group.

Results: Compared with normal control group, the tumor region of HCC group showed
significantly decreased CC [(0.046 + 0.005) vs. (0.052 + 0.006), P=0.026], and NSE
[(0.9894 + 0.0015) vs. (0.9927 + 0.0010), P<0.001], and increased APL [(0.433 + 0.138)
vs. (0.188 + 0.049), P<0.001]. Compared with normal control group, the background liver
of HCC group showed significantly decreased CC [(0.047 + 0.004) vs. (0.052 + 0.006),
P=0.041] and increased NSE [0.9938 (0.9936~0.9940) vs. (0.9927 + 0.0010), P=0.035].
No significant difference was identified for APL between the two groups.

Conclusion: Graph-based approach allows quantification of vascular connectivity of
HCC. Disrupted vascular topological connectivity exists in the tumor region, as well as the
background liver of HCC.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is a hypervascular tumor
characterized by neoangiogenesis, which contributes to the
high rate of metastasis and dismal prognosis (1). On
microscopic observation, HCC displays marked geometric and
structural vascular abnormalities, arteriogenesis, and
capillarization (2). Accurate quantification of microvessel
characteristics may help clarify biological characteristics and
effectiveness of anti-angiogenic therapy (3).

So far, immunochemistrical microvessel density (MVD) is still
the most accepted and applied index for the measurement of HCC
vascularization, in which high tumor neovascularization often
represents high invasiveness. However, MVD measurement is
limited by its invasive nature, determination of hotspot, counting
methods, and the inability to fully capture the vascular trajectory
and tissue complexity in the entire tumor (4, 5). Vascular pattern
heterogeneity also plays a role in tumor progression. For example,
vessels that encapsulate tumor clusters (VETC) have continuous
branches and an apparent lumen, which was linked to HCC
metastatic dissemination, early recurrence, shorter disease-free
survival, and overall survival (6). Additionally, current indicators
for identification of MVD are arterial endothelial cell markers of the
artery, but venous alteration is not well-reflected. HCC is mainly
supplied by hepatic arteries, while in the normal liver parenchyma,
regenerative and dysplastic nodules are mainly supplied by the
portal vein. The main drainage vessels of hepatocellular nodules
change from hepatic veins to hepatic sinusoids, and then to portal
veins during hepatocarcinogenesis (7). To date, few studies have
focused on comprehensive functional vessel network properties.
Therefore, the understanding of vascular connectivity needs to be
further elucidated.

The increasing availability of high-resolution micro-
computed tomography (Micro-CT) allows to precisely identify
and describe the pathological processes of hepatic vessels (8-10).
Micro-CT enabled cirrhogenic features to be extracted at
multiple scales, portraying the impact of cirrhosis on the
hepatic vasculature (11).

Graph analysis approach is a valuable tool for analyzing
topological properties of complex network connections, and it has
been widely used in neuroimaging to explore brain function (12—
14). In terms of liver imaging, a recent study successfully assessed
vascular connectivity in cirrhosis using graph analysis of vascular
images obtained with hepatic dynamic contrast-enhanced (DCE)
ultrasonography (US). The results demonstrated that graph
modeling of vascular connectivity and subsequent graph analysis
may enable reflection of the degree of organization of hepatic
microvascular network correlated to the severity of portal
hypertension (15). In addition, the combination of graph analysis
and Micro-CT could exhibit the vascular alterations during
cirrhogenesis in the rat (11), and it has also been used in the
vascular analysis of glioblastoma xenografts (16). Therefore, we
hypothesize that graph analysis may also be feasible for assessment
of HCC vascular connectivity.

In the present study, we aimed to investigate vascular
topological connectomes of HCC in orthotopic xenograft
model using graph analysis based on Micro-CT image.

MATERIALS AND METHODS
Orthotopic HCC Xenograft Model

This study was reviewed and approved by the ethics committee
of the Jinsan Hospital of Fudan University. Twenty Balb/c male
nude mice (Weitong Lihua Experimental Animal Technology
Company, Beijing, China) at 4 to 6 weeks of age and weighing 18
to 20 g each were included in this study. They were randomly
divided into the HCC group (n=10) and the normal control
group (n=10). For the HCC group, MHCC97H cells (2x10°/0.2
ml/site) were inoculated subcutaneously into the left axilla.
When the tumor grew up to 1 cm in diameter, it was removed
and cut into tumor blocks with a volume of 1 mm?, which
implanted into the left lobe of the liver (17). The animals were
continued to feed for 21 days.

Vascular Casting

The animals were anesthetized with an intraperitoneal injection
of 1% sodium pentobarbital (0.01 ml/g) followed by 3 ml sodium
heparin solution (1250 u/ml). After ligament of bilateral superior
vena cava and inferior vena cava near the heart, a drainage
channel was established using a 26G indwelling needle from the
left ventricle to the aorta, and inferior vena cava. Then, 20 ml of
heparinized saline (50 u/ml) was injected followed by perfusing
5 ml of 10% formalin to fixed blood vessels using a laboratory
syringe pump at a rate of 2 ml/min. Therewith, 5.6 ml of Microfil
(Flow-Tech) was perfused at a rate of 0.5 ml/min. The livers were
excised and fixed in 10% formalin for 24 hours to prepare for
Micro-CT scanning (18, 19).

Micro-CT Scanning

Micro-CT scanning was performed using a high-resolution
cone-beam Micro-CT scanner (Quamtum GX). The scan
parameters are as follows: source voltage of 90 KV, source
current of 88 mA, voxel size of 4.5 x 4.5 x 4.5 um’, field of
view of 36x25 mm?, reconstruction matrix of 512x512, scanned
360 degrees. The average scan duration was 14 min. CT images
were performed with flat-field and dark-field correction, and the
image smoothing method was utilized to suppress noise.

Vascular Segmentation

The algorithm from the input micro-CT data to the output of the
final liver vascular segmentation results was roughly divided into
three steps: 1) data preprocessing, including extracting liver
region, gray map transformation, and vascular enhancement
filtering (20); 2) initial vessel segmentation using the threshold
method and post-processed with region growing algorithm;
and 3) vessel centerlines extraction using previous vascular
skeletonization algorithm (21), to generate a specialized vascular
network while preserving topological and geometrical conditions
(Figures 1 and 2).

Graphy Analysis

The centerline voxels of vessels were used to generate the
specialized network according to the number of centerline
voxels in their 26 neighbors. Every single bifurcation point
(more than two neighbors) or terminal point (only one
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FIGURE 1 | Schematic illustration of experimental procedures, including tumor cell injections, tissue perfusion and clearing, and Micro-CT scan. Extraction of
vascular network based on the 3D structure reconstructed from tomographic images. Using the vascular skeleton, the network topology is studied.
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Control group

FIGURE 2 | Macroscopic 3D reconstructions and centerlines of the control group, the tumor region of HCC group, and background liver of HCC group.

HCC and background
liver of HCC groups

neighbor) represented a node in the network; the edge connected
two nodes when they were connected by voxels with only two
neighbors. Noting that multiple voxels might have more than
two neighbors at a bifurcation, we performed the connected
components analysis on these voxels to ensure that one
bifurcation corresponded to one node. The constructed
network can be further encoded into an adjacency matrix and

the characteristics of clustering coefficient (CC), network
structure entropy (NSE), and average path length (APL) can be
measured (20).

We computed the clustering coefficient (CC) as a measure of
network cohesiveness and organization, in which highly organized
networks possess higher CC values, whereas random networks
have CC values near to zero. The definition of CC is as follows:
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B i N 231'
= N2 kD) W

here, ¢; is the number of edges linking the neighbors and node i, k;
is the number of neighbors, and N is the number of nodes within
the network. By the definition, 0 < CC < 1.

The average path length of the network is the mean value of
the shortest distance between each pair of nodes. We calculated
the average path length (APL) as a measure of network efficiency,
as longer APL means the lower working efficiency of the
organization network (22). Considering all the couples, it can
be calculated as:

N(N -1)

1<i<j<N

here, d;; is the minimum number of edges linking nodes 4, j , and
N is the number of nodes within the network.

Entropy is a physical aspect of complex system structure, and
quantifying network structure entropy (NSE) enables us to better
understand the structural complexity and randomness of a
network, which can be defined as:

E=-3N1-In 3)
D.

I = ! 4

=D (4)

here, I; is the importance of node i and D; is the degree of the
node i, E,,, = ﬁ and E,,;, = 0 (16, 17). To eliminate the impact of
nodes numbers within the network, the normalized network
structure entropy NSE € [0,1] is carried out:

E-E

NSE = —— —min
E - E

Statistical Analysis

Statistical analyses were performed with the commercially
available SPSS Version 16.0] package (SPSS Inc, Chicago, IL,
USA) and Graphpad Prism 6.0 (GraphPad Software Inc, La Jolla,
CA, USA). Kolmogorov-Smirnov analysis was used to test for
normality. Continuous variables (CC, NSE and APL of the

control group and the tumor region of HCC group; CC and
APL of the background liver of HCC group) showing normal
distribution were expressed as the mean value with standard
deviation, and data showing non-normal distribution (NSE of
the background liver of HCC group) were expressed as the
median with 25th and 75th percentiles of the interquartile
range (IQR). Statistical comparisons were performed using the
Student’s t-test or the Mann-Whitney U test. P values less than
0.05 were considered to indicate a significant difference.

RESULTS

One animal failed to perfuse and was excluded in the control
group; a total of 19 animals were finally included in the study.
From the 3D reconstructed images, it could be observed that the
normal liver vessels were evenly distributed, with a natural
course, and without distortion. The tumor region of HCC
group showed irregular vascular morphology, with some
abnormal expansion and distortion, and unevenly distributed,
with sparse vessels inside the tumor, which may be related to the
necrosis inside the tumor. In addition, it could be directly
visualized that the vessels in the background liver of HCC
group were significantly sparser than those in the control
group (Figure 2).

Scale of the Vascular Network

The mean node count of vascular network in control group,
background liver, and HCC group were 9839, 5220, and 1654,
and the mean edge count were 10336, 5478, and 1846
(Figure 3A). No significant difference between the node and
edge count was observed. Despite existing differences in the scale
of individual networks, a linear relationship between node count
and segmented vascular volume was detected (Figure 3B). We
therefore consider differences in network scale to be individual
differences, which have been averaged over the network when
calculating the network features.

Vascular Connectivity of Tumor Region

of HCC and Control Group

Table 1 summarized vascular network connectivity properties of
the normal control group and the tumor region of HCC group.

15000
mm Control group

B Backgroud liver of HCC group
10000 Bl HCC group

Counts

5000

Nodes Edges

e
S
S

e Control group

R%0.64, p<0.001

® Backgroud liver of HCC group
® HCC group

w
=3
3

200

Vascular volume/ mm®
S
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T T T 1
0 5000 10000 15000 20000
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FIGURE 3 | Scale of vascular network. (A) Nodes and edges counts; (B) relationship between nodes counts and segmented vascular volume.
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Compared with the normal control group, the tumor region of
HCC group showed lower CC and NSE and increased APL
(P<0.05). These indicated disrupted organization, decreased
complexity, and lower efficiency of the HCC vascular network
(Figures 4A-C).

Vascular Connectivity of Background Liver
of HCC Group and Control Group

Table 2 summarized vascular network connectivity properties of
the normal control group and the background liver of HCC
group. Compared with the normal control group, the
background liver of HCC group showed lower CC and slightly
increased NSE (P<0.05). These indicated disrupted organization
and increased complexity. No significant difference was
identified for APL between the two groups, indicating
maintained normal work efficiency (Figures 5A-C).

DISCUSSION

Our study demonstrates the feasibility to investigate vascular
topological connectivity of HCC using graph analysis based on
micro-CT, we tends to show abnormal vascular connectivity
compared to normal liver. This may provide new insights into
the HCC angiogenesis study.

Intratumoral microvessel heterogeneity of HCC has been well
validated. The main hallmarks of tumor angiogenesis are considered
to be an elevated vessel density, dilated vessel radii, higher tortuosity,
and decreased branching lengths (23), lacking a description of the
topological properties of vascular network. Afferent and efferent
vessels of HCC come to differ during hepatocarcinogenesis, and
whole vascular network characteristics significantly determine
efficient blood perfusion, oxygen, and nutrients transportation (24).
Normal liver vasculature typically follows a hierarchical arterio-
venous branching scheme, with blood flowing through thick
arteries and portal veins, successively branching into sinusoids and
draining the tissue in a similarly organized hepatic venous system.
Forming efficient transport networks, normal vessel constructs are
inherent to tree-structured arterial and venous parts, interwoven by
dense, regular capillary beds (25-27).

In the present study, we established the orthotopic HCC
xenograft model that mimics human HCC well in morphology
and biological behavior. We characterized the entire perfused
vascular systems in normal mice liver and HCC xenografts using
basic geometric and network theoretical measures, and graph-based
quantification can also provide detailed vascular multi-scale
topological parameters. Our research observed that vascular
connectivity of HCC showed reduced CC and NSE and longer
APL, and we considered these changes indicated a disrupted
organization, decreased complexity, and lower efficiency network
for HCC. Impaired vascular connectivity may lead to hypoxia

TABLE 1 | Comparison of vascular network connectivity of tumor region of HCC group and normal control group.

CcC NSE APL
Control group 0.052 + 0.006 0.9927 + 0.0010 0.188 + 0.049
Tumor region of HCC group 0.046 + 0.005 0.9894 + 0.0015 0.433 +0.138
P value 0.026 <0.001 <0.001
TABLE 2 | Comparison of vascular connectivity of background liver of HCC group and normal control group.
CcC NSE APL
Control group 0.052 + 0.006 0.9927 + 0.0010 0.188 + 0.049
Background liver of HCC group 0.047 + 0.004 0.9938 (0.9936~0.9940) 0.205 + 0.023
P value 0.041 0.035 0.385
A B C
CC 0.087 NSE 1.0004 APL 0.8
* Fokk *kk mm Control Group
0.06 0.995- 0.6 = HCC Group
0.04+ 0.990 0.4
0.02+ 0.985 0.2
0.00- 0.980- 0.0-
FIGURE 4 | Comparison of vascular parameters (A) CC, (B) NSE and (C) APL of the control group and the tumor region of HCC group. *p < .05, ***p < .001.
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A B
CC 0.08 . NSE 0.998
[ —
0.06 0.996 *
[
0.04- 0.994 ===
o
0.02- 0.992
0.00- 0990 —F———

C
APL 0.25
mm Control Group
0.20 Em Background liver of HCC group
0.154

0.10—

0.05+

0.00-

FIGURE 5 | Comparison of vascular parameters (A) CC, (B) NSE and (C) APL of the control group and the background liver of HCC group. *p < .05.

microenvironment, which enhances proliferation, angiogenesis,
metastasis, chemoresistance, and radioresistance. Target vascular
topology may be a potential strategy for the evaluation of anti-
angiogenesis treatment efficacy.

Furthermore, our study also found abnormal vascular
topological connectivity in the background liver of HCC
xenografts. In the micro-CT images, vessel branching patterns
and dimensions of background liver differ from the normal liver.
Graph analysis showed lower CC and slightly increased NSE in
the background liver, indicating a tendency to additional random
alterations in the background liver vascular network of HCC,
which shows disrupted organization and increased complexity.
This may reflect the interaction between the tumor and
background liver during hepatocarcinogenesis.

Our study has considerable limitations. Firstly, when
distinguishing the tumor and liver parenchyma, we manually
delineate the tumor boundaries. Some vessels in tumors might
not connect to the center vessel trees that resulted in inadequate
filling during the perfusion process. Secondly, it should be noted
that vessels in the context of corrosion casts relate to a cast of the
vessel lumen space but not the actual vessel (which includes
additional layers of cells and proteins). Finally, the small sample
size is also one of the limitations of this study.

In conclusion, graph-based approach allows quantification of
vascular connectivity of HCC. Disrupted vascular topological
connectivity exists in the tumor region as well as the background
liver of HCC.
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