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Cancer is a leading contributor to deaths worldwide. Surgery is the primary treatment for
resectable cancers. Nonetheless, it also results in inflammatory response, angiogenesis,
and stimulated metastasis. Local anesthetic lidocaine can directly and indirectly effect
different cancers. The direct mechanisms are inhibiting proliferation and inducing apoptosis
via regulating PI3K/AKT/mTOR and caspase-dependent Bax/Bcl2 signaling pathways or
repressing cytoskeleton formation. Repression invasion, migration, and angiogenesis
through influencing the activation of TNFa-dependent, Src-induced AKT/NO/ICAM and
VEGF/PI3K/AKT signaling pathways. Moreover, the indirect influences are immune
regulation, anti-inflammation, and postoperative pain relief. This review summarizes the
latest evidence that revealed potential clinical benefits of lidocaine in cancer treatment to
explore the probable molecular mechanisms and the appropriate dose.
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INTRODUCTION

Cancer remains a major cause of human death worldwide, with increasing mortality and incidence
as the population ages, greatly endangering human health (1, 2). In 2017, tracheal, bronchus, lung
cancer, colorectal cancer, breast cancer, and prostate cancer were the four primary reasons for
cancer-related deaths in humans, which also were the main causes of cancer disability-adjusted life-
years (3). Moreover, the number of deaths caused by cancer was 14 million in 2012, was estimated to
reach about 9.6 million in 2018, the incidence of new cancer cases was calculated to 18.1 million in
2018 and expected to reach 24 million and 34 million by 2035 and 2050 overall global (4–6). Thus,
cancer is universally considered as a great challenge and threat to global human health, with a wider
social and economic burden worldwide (7). Thus, improvements in investigations and treatments
are urgently needed.

Surgery is essential for global cancer therapy, especially solid organ cancers, which has a long and
distinguished history. It plays a vital role in cancer prevention, diagnosis, treatment, and
reconstruction (8, 9). Previous evidence indicated that more than 80% of patients with cancer
may require surgery for the removal in 2015. The number of surgical procedures is expected to reach
about 45 million annually worldwide by 2030 (10, 11). However, long-term cancer outcomes after
surgery have not significantly improved as expectantly, conversely, tumor recurrence and metastasis
may be enhanced and accelerated by surgical removal thereby causing higher mortality in
comparison with the primary tumor (12, 13). Recurrence and metastatic diseases following
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surgical resection are reported in numerous studies, involving
many molecules and elements. Demicheli and his colleagues first
revealed that tumor growth may be promoted by postoperative
trauma and inflammation, involving in many growth factors
such as Vascular endothelial growth factor (VEGF), epidermal
growth factor-like growth factors (EGFR), and endostatin (14,
15). The activation of VEGF and EGFR are crucial in
postoperative wound healing via promoting the new
angiogenesis and growth of epidermal cell, but resulting in
cancer metastasis by unintentionally providing more
opportunities for cancer cells to enter into vessels and
enhancing their proliferation. The surgery could also open a
window for the tumor cells entering into circulation known as
circulating tumor cells (CTCs) by causing inflammatory
response thereby finishing remote metastasis in prostate cancer
(16). Tohme and colleagues demonstrated that the growth of new
metastatic cancer in hepatoma was significantly enhanced for the
stress after surgery via influencing the formation of neutrophil
extracellular traps (NET) (17). The other mechanisms of tumor
metastasis and recurrence after surgery are immunosuppression,
gene mutations, and inflammation. These alterations in the
tumor microenvironment were attributed to the harmful effects
of surgery and were critical to tumor progression. Hence, the
intervention of these changes may be an appropriate and
significant approach to improve cancer outcomes (18, 19).

Lidocaine is commonly used in anesthesia management as
one of a local anesthetics. Evidence from clinical and laboratory
studies have suggested that lidocaine is beneficial to cancer
patients by reducing cancer progression and recurrence and
improving the survival ratio (20–22). The primary aim of this
review is to document the conducive effects of using lidocaine
during cancer surgery and outline the mechanisms of lidocaine
inhibiting cancer invasion and metastasis.
LIDOCAINE

Lidocaine is an amide local anesthetic. The analgesic efficacy of
lidocaine after operation was first investigated in 1951 in
intravenous administration (23). Local administration or
intravenous lidocaine (IVL) leads to better airway management
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in the context of general anesthesia by reducing the incidence of
irritating cough and sore throat (24, 25). Recently, IVL plays an
increasing critical role in “day surgery” and Enhanced Recovery
After Surgery programs (26, 27). Furthermore, lidocaine is one of
the leading and common researched and used local anesthetics. It is
routinely administered regionally for topical or surface anesthesia,
injection into sub-arachnoid space and epidural space for blocking
the local motor and sensory nerves (28, 29). All of these are the
reasons why we choose to investigate lidocaine, and our main
purpose is to review the beneficial effects of lidocaine on cancer.
LIDOCAINE AND CANCER

Thus far, several retrospective studies have found that lidocaine
has indirect effects and direct effects on tumor progression. These
effects are shown in Figure 1.

Indirect Effect
Lidocaine can influence the tumor microenvironment by regulating
the immune and inflammatory response, alleviating the pain of
surgery, and modulating the response of the neuroendocrine
system. The in vitro study of Ramirez and colleagues showed that
the function of natural killer (NK) cells can be enhanced by clinical
concentrations of lidocaine via regulating the release of lytic
granules. NK cells are one of the crucial elements of the anti-
tumor immune response (30). Furthermore, in different phases of
tumor development, immune and inflammatory responses play
pivotal roles, including initiation, progression, malignant
transformation, invasion, and metastasis (31). More importantly,
Piegeler and colleagues demonstrated that lidocaine blocked
metalloproteinase-9 (MMP-9) release by suppressing Src-
dependent inflammatory signaling pathway at concentrations of
10 µM in vitro (32, 33). A review summarized that the inflammatory
response in tumorigenesis included three parts (34):

i. Immune cells: (e.g. NK cells and neutrophils).

ii. Inflammatory entities: [e.g. cytokines, growth factors, and
interleukin-6 (IL-6)].

iii. Inflammatory tumor microenvironment (e.g. fibroblasts,
myeloid cells, and endothelium of new blood vessels).
FIGURE 1 | Lidocaine has direct and indirect effects on cancer and the influences of the surgery. Lidocaine also can inhibit the negative attack of surgery.
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Altogether, if lidocaine does have antitumor effects, its anti-
inflammatory properties may have a greater effect on this process
via influencing inflammatory cells, entities, and microenvironment.
Although the underlying mechanisms require further investigation,
previous studies have shown that these inflammation-driven
changes and immune responses resemble alterations after the
surgery of tumor removal that significantly contribute to tumor
growth and progression (34, 35), which are suppressed by different
concentrations of lidocaine. Moreover, lidocaine can also relieve
pain, reduce surgical strikes, and alleviate the stress response in
different cancers.

Direct Effect
Lidocaine suppresses tumor cell proliferation by acting negatively
impacts on cancer cell signaling and modification of genes. A
number of retrospective studies found that lidocaine inhibits the
process of proliferation, the ability of invasion, migration, and induce
Frontiers in Oncology | www.frontiersin.org 3
apoptosis in several cancers (22, 36, 37). A schematic diagram of
the possible mechanisms is shown in Figure 2. The study of Sun
showed that the proliferation of lung cancer cells could be inhibited
via regulation of miR-539/EGFR axis and decrease the activation of
ERK and PI3K/AKT pathways (41). Moreover, lidocaine may
induce apoptosis by promoting caspase-3 production via up-
regulating the Bax and decreasing Bcl-2 associated with the
signaling pathways of ERK1/2 and p38 (22). Lidocaine blocks
tumor necrosis factor a (TNF-a)–dependent activity of tyrosine
protein kinase (Src) via repressing function of TNF receptor 1
(TNF-R1), thereby preventing Akt and focal adhesion kinase
(FAK) from activating, caveolin-1 from phosphorylating (33).

These signaling pathways play a critical role in cancer
metastasis (Figure 2). Additionally, cancer cells can migrate to
remote sites via breaking up the cytoskeletal structure [e.g.
microtubules] and decreasing release of matrix-metalloproteinases
(MMP) (39). The other effects are related to molecules such as
FIGURE 2 | Schematic representation of the proposed mechanisms that lidocaine suppresses proliferation, migration, and induces apoptosis in cancer progression.
As shown in the picture, lidocaine blocks tumor necrosis factor a (TNF-a)–dependent activity of Src tyrosine protein kinase (Src) via repressing function of TNF
receptor 1 (TNF-R1), thereby preventing Akt kinase (Akt) and focal adhesion kinase (FAK) from activating caveolin-1 from phosphorylating (33). Moreover, lidocaine
inhibited the Src-dependent intercellular adhesion molecule-1 (ICAM-1) phosphorylation to block the cancer cells adhesion and invasion (38). These signaling subways
play a critical role in cancer metastasis. Cancer cells can migrate to remote sites via breaking up the cytoskeletal structure [e.g. microtubules] and releasing of matrix-
metalloproteinases (MMP) (39). Lidocaine impairs cancer cells proliferation and cytoskeletal reorganization by acting on DNA methylation and repressing the (vascular
endothelial growth factor) VEGF/AKT/mTOR signaling pathways (40–42). Endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) generation was also inhibited
by lidocaine thereby reducing vascular dilatation and directly decreasing the cells migration (38). Lidocaine depressed tumor angiogenesis via suppressing the VEGF/
AKT/mTOR/ICAM-1 signaling pathway (43, 44). Consequently, AKT related signaling pathways were essential in cancer metastasis. Additionally, lidocaine may induce
apoptosis by promoting caspase-3 production by up-regulating the Bax and decreasing of Bcl-2 associating with the signaling pathways of ERK1/2 and p38 (22).
In particular, lidocaine may aggravate the apoptosis through directly inhibited PI3K/AKT/mTOR or influenced AKT/Bcl2/Bax signaling pathway (42, 45, 46). The other
effects are related to molecules such as natural killer cells (NK) (22).
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vascular endothelial growth factor (VEGF), interleukin 6, 8 (IL6,
IL8), and Golgi transport 1A (GOLT1A). The proliferation of lung
cancer cells can be repressed by lidocaine via decreasing GOLT1A
generation (37). In another study, Lirk and his colleagues examined
that the methylation of cancer cell deoxyribonucleic acid (DNA)
was inhibited by lidocaine (40). This alteration results in the re-
expression of the previously hypermethylated silenced genes (e.g.
tumor suppressor genes) and repression of cancer formation.
Piegeler and colleagues reported that lidocaine reduced tumor cell
ability of invasion by repressing MMP-9 formation and release (33).
The extracellular matrix and the basal lamina can be degrade and
broken up by MMP-9, thereby the cancer cells will finish invasion
and remote metastasis (47, 48). In a word, lidocaine inhibits the
process of proliferation, suppresses the capabilities of invasion and
migration, and induces apoptosis in several cancers.
MECHANISMS OF CANCER METASTASIS

The metastatic spread of cancer cells to distant anatomical
locations is a more common cause of cancer-related death
compared with primary tumor in malignant tumor (49). In
addition, invasion and metastasis are the marked characteristics
of a malignant tumor and also the major reasons for poor
prognosis in clinical therapy (12). The three primary pathways
for tumor metastasis are hematogenous, lymphatic, and implant
metastasis. The potential mechanisms and relative components of
tumor metastasis and recurrence are the following (50–52):

(e.g., hematogenous metastasis)

i. The adhesion between cancer cells is weakened (cell adhesion
molecules, integrin family, selectin family).

ii. The cancer cells attach to the basement membrane (integrin
families, b1, b2).

iii. Basement membrane degradation (fibrinolytic enzyme
activators, cathepsin D, MMP, AKT).

iv. Cancer cells intravasate into blood vessels (autocrine
migration factor, FAK, growth factor).

The process of cancer invasion and metastasis includes a series
of steps, for example, tumor growth in situ, invasion of
surrounding tissues, contact with small-vessel walls, tumor cells
entering blood circulation, and growing in distant organs, in which
the tumor cells entering into blood circulation and extracellular
matrix (ECM) degradation are of great clinical significance (53,
54). Currently, numerous studies have revealed that Akt-
dependent signaling plays a crucial role in tumor invasion and
functions as a potent pro-metastatic mechanism. The study of
Tian and colleagues showed that AKT-induced lncRNA VAL
promotes EMT-independent metastasis via reducing Trim16-
dependent Vimentin degradation (55). Moreover, PI3K/Akt
pathway was demonstrated as a therapeutic target in breast
cancer associated with tumor suppressor miRNA-204-5p (56).
AKT excessive activation participates in many signaling pathways
via regulation the expression oncogenes and tumor suppressors,
such as EGFR, Ras, PI3K, BRAF, AKT itself, and natural AKT
inhibitor PTEN, and is of great importance during tumor
Frontiers in Oncology | www.frontiersin.org 4
metastases and progression (57, 58). As for ECM degradation,
lysosomes have been considered a pivotal element in tumor
invasion and metastasis as well. It could facilitate tumor cell
migration and invasion via secreting acid hydrolase thereby
increasing matrix remodeling (59). Lysosomes also promote cell
adhesion and influence integrin secretion through attaching to
ECM and regulating the dynamics of focal adhesions, activating
AKT inducing cancer and metastasis (60–62). Taken together, the
process is tanglesome, but has great therapeutic potential, such
repression by the lidocaine, intervention by the stress of surgery.

LIDOCAINE AND SURGERY

Surgery is the foremost treatment strategy for the majority of
patients with solid tumors. Also, it is a severe attack on human,
resulting in immunosuppression, angiogenesis, inflammatory
response, and stimulating pain. Moreover, the more significant of
the surgery the greater the surgical stress response. It is considered
that surgical stress contributes to cell mediated immune system
(CMI) suppression and promotes tumor progression (63). Radical
treatment of cancers may inadvertently provide malignant cancer
cells with chances to break down the host barriers and to form
remote metastatic tumors that may denote poor prognosis (64).
Surgerymodulates and induces tumormetastasis, but lidocaine can
inhibit activity and chemotaxis of leukocyte to the sites of surgical
incision both in animal and clinical studies, which is also associated
with damping of the surgery-induced generation of inflammatory
cytokines (34, 65, 66). Therefore, the perioperative use of lidocaine
may improve the outcomesof cancerpatients bydecreasing surgical
strike as showed in Figure 1. At the same time, studies have shown
that lidocaine can inhibit inflammation, analgesia, and
angiogenesis, which can be associated with indirect effects on
cancer and the negative changes after cancer surgery.
LIDOCAINE INDIRECT INFLUENCE

Repression of Immune and
Inflammatory Response
Numerous researches have demonstrated the capabilities of
lidocaine that could repress the inflammatory response by
obstructing the secretion of inflammatory mediator and down-
regulating the activation of immune cells, such as macrophages,
NK cells, and neutrophils (67, 68). Studies that may predict the
anti-inflammatory effects of lidocaine are shown in Table 1.
They can be divided into laboratory studies and clinical studies.

Laboratory Studies
Lidocaine inhibits immune cell activation and adhesion in both
in vitro and in vivo models to the site of injury. The invasion
ability of cancer cells could be intercepted by lidocaine, which
was related to the decrease of TNF-a. Piegeler and his colleagues
showed that clinically relevant concentrations of lidocaine
significantly restricted the TNFa-dependent inflammatory
response by reducing activating of Src and phosphorylation of
MAPK in lung cancer cells (69). Moreover, lidocaine decreased
tumor cells metastasis and MMP-9 formation and release by
June 2021 | Volume 11 | Article 669746
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down-regulating Src-induced immune and inflammatory
signaling pathway (33). Ramirez and his colleagues showed
that NK cells activation in vitro was promoted by lidocaine at
clinical concentration in changing the secretions of lytic granules
(30). Although investigated completely in laboratory, these
research results state meaningful insights into the mechanism
associated with immune and inflammatory response by which
local anesthetics, such as lidocaine, might diminish metastasis.

A study using an animal model also showed that lidocaine
treatment preoperative could reduce microglias initiation and
genes modification of pro-inflammatory factors, and lidocaine
systemic administration decreased the dead and dying neurons in
the hippocampus area (70). Another study indicated that
inflammatory cytokines secretions were inhibited by lidocaine in
a dose-dependent manner, thereby providing protection of anti-
inflammatory for mice (71). In a murine model, Johnson and
colleagues (73) found that compared with general anesthesia
alone, the combination of lidocaine and sevoflurane anesthesia
could effectively reduce postoperative metastasis of lung cancer by
inhibiting inflammatory response, angiogenesis, and surgical
stress. Hence, lidocaine, whether used alone or in combination
with sevoflurane, may certainly have beneficial effects on reducing
cancer metastasis. The anesthesia method of combining lidocaine
local administration and sevoflurane anesthesia inhalation is also
commonly used in clinical practice. Furthermore, these animal
studies may provide significant insights for clinical studies. All
these previous evidence suggest that lidocaine, which is capable of
attenuating the activation of immune cells, e.g., microglia and the
production of inflammatory factor, e.g. IL-1b, TNF-a, thereby
decreasing tumor growth.

Clinical Studies
The study of Galos and colleagues revealed that the perioperative
use of lidocaine reduced the surgically stimulated activation of
NETosis and secretion of MMP3 (72). The consequence explains
the underlying mechanisms that IVL might decrease the invasion
and metastasis after surgery. NETosis may enhance cancer cell
growth and invasion, resulting in breast cancer recurrences, poor
prognosis, and thrombosis (74). In conclusion, lidocaine can
depress immune and inflammatory response by influencing
immune cells (e.g., NK cells and macrophages), reducing the
release of inflammatory entities (e.g., CA3 and IL-6), inhibiting
signaling pathways (e.g., Src-dependent inflammatory signaling),
and damaging the inflammatory tumor microenvironment,
thereby reducing and inhibiting cancer metastasis. As the
number of relevant studies, as well as clinical studies on the
underlying mechanisms, is limited, further research is needed.

Alleviating the Pain of Surgery and Cancer
Clinical studies and a few laboratory studies have investigated the
analgesic effects of lidocaine that are shown in Table 2. Systemic
use of lidocaine has been observed to exhibit analgesic effects by
promoting postoperation pain relief (84) and regulating the
function of the central nervous system (77). Kawamata and
colleagues showed that the incision-induced hyperalgesia in
human skin can be reduced by treatment with lidocaine via
suppressing the formation of superabundant pain inputs and the
T
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function of peripheral and central nerves (89). One of the most
significant effects of lidocaine was analgesic effect during tumor
removal and the management of cancer pain, including acute
stimulations and dull pain, for the intervention of hyperpathia
and the production of pain inputs. Recently, clinical studies have
shown that the administration method of injecting lidocaine into
epidural spaces or subcutaneous tissues was safe in controlling
pain of cancer and could be effectively applied to clinical practice
(82). Moreover, treatment with lidocaine, including local
administration or intravenous injection, is beneficial and
effective for dull pain (76), neuropathic pain (78), and acute
pain (90). Nonetheless, the specific mechanism of perioperative
use of lidocaine for intervention the generation and propagation
of pain impulses remains unclear.

Several retrospective and randomized control trials have
indicated that the intravenous or local use of lidocaine can lead to
opioid saving and chronic postsurgical pain reduction for certain
types of surgery, a reduced incidence of pain, and enhanced
analgesic effects in cancer patients (83, 84). An in vitro study (90)
demonstrated that the activities of voltage-gated sodium channels,
calcium, potassium channels, and N-methyl-D-aspartic acid
receptors may be inhibited by lidocaine at a low concentration,
and be blocked by high concentration lidocaine. Therefore,
lidocaine at different concentrations can affect transmission of
pain-related electrical signals by inhibiting the activation of the
relative ion channels and the function of their receptors.

Pain is common in cancer patients and considerably impairs
their quality of life (91). About 30–90% of cancer patients suffer
from pain, including neuropathic pain (92). Lidocaine is routinely
administered regionally for topical or surface anesthesia, injection
into sub-arachnoid space and epidural space to block the local
motor and sensory nerves. The two ways were also applied to
clinical treatment for intention of pain relief (77, 93). The intra-
arterial administration of lidocaine is safely and effectively used for
prevention and reduction of pain in perioperative period and
results from transarterial chemoembolization of hepatocellular
carcinoma (94–96). Khan and colleagues (84) showed that
lidocaine persistently reduced the generation and enlargement of
NP (43.1 vs 63.3%; relative risk = .68; 95% confidence interval =
.47–1.0) in patients with breast cancer needing surgical treatment.

Overall, lidocaine exhibits analgesic, anti-inflammatory, and
anti-hyperalgesic properties in cancer pain management. The
pain-relieving and anti-inflammatory properties of lidocaine have
been proven. Several studies also have shown that lidocaine could
attenuate the inflammatory response for postoperative pain of
surgery and long time NP of cancer, decrease the risk of cancer
metastasis, andmodulate the neuroendocrine stress response.All of
these are indirect effects of lidocaine on cancers.
DIRECT INFLUENCE OF LIDOCAINE

Suppressing Cancer Cell Proliferation
and Inducing Apoptosis
Laboratory Studies In Vitro
Table 3 shows that lidocaine suppresses tumor cell proliferation
though the effects on cell signaling and influences the cell cycle
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TABLE 3 | The direct effects of lidocaine, suppressing the tumor cell proliferation, invasion and inducing apoptosis.

Results
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sion level.
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bility and migration of cancer cells.
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Study in vitro Year Materials Studied concentrations Mechanism

Lirk and colleagues (36) 2012 Breast cancer cell lines 1, 0.01, 0.01 mM DNA Lidocaine time- and dose
Lucchinetti and colleagues
(97)

2012 Mesenchymal stem cells 10, 100, 500 µM Lysosome Lidocaine reduced MSC
the G0/1-S phase transit

Chang and colleagues (98) 2014 Thyroid cancer cells 0, 2, 4, 8, 10,
12, 14, 16 mM

MAPK/ERK, caspase
3, Bax/Bcl-2

Lidocaine reduced cance
necrosis in high concentr

Li, K. and colleagues (99) 2014 Human breast cancer
lines

0.01, 0.1, 1 mM RARbeta2, RASSF1A Treatment with lidocaine
expression RARbeta2 or

Jiang and Colleagues (100) 2016 Human breast, prostatic
Cancer cells

0, 10, and 100 µM, 1, 2, 5,
and 10 mM

TRPV6 Lidocaine inhibits the inv
down-regulation

Zhang and colleagues (37) 2017 Human lung
adenocarcinoma cells

0, 0.5, 2, 8 mmol/L GOLT1A Lidocaine inhibits the pro
expression.

Xing and Colleagues (22) 2017 HepG2 cells 0.1, 0.5, 1, 2, 5, 10 mM Caspase-3, Bcl-2,
Bax, ERK1/2, P38

Lidocaine inhibited the g
increasing Bax protein an
ERK 1/2 and p38 pathw

Jurj and colleagues (101) 2017 Human hepatocarcinoma
cells.

0.5, 0.75, 1, 1.5, 1.75, 2, 2.5,
3 µM

P53 Lidocaine had antiprolifer
modifying the P53 expre

Yang and colleagues (102) 2018 Human bladder
cancer cells

1.25, 2.5, or 5 mg/ml Not stated Lidocaine (1.25 to 5 mg/
actions of antiproliferative

Qu and colleagues (103) 2018 Colorectal cancer cells 500 muM,1,000 muM MiR-520a-3p
EGFR

Lidocaine 500 and 1,000
CRC via targeting EGFR

Yang and colleagues (104) 2018 Gastric cancer cells 10, 100, and 1 mM ERK1/2 Lidocaine at (10 muM) in
Chamaraux-Tran and
colleagues (105)

2018 Human breast cancer cells 0.1, 0.5, 1, 5 and 10 mM Not stated Lidocaine reduced the vi

D’Agostino and colleagues
(39)

2018 Human breast cancer cells 10, 100 mM CXCR4, CXCL12 Lidocaine inhibited cance
chemokine CXCL12 and

Tat and colleagues (106) 2019 Colon cancer cell 2–4 microM Caspase-8, HSP-27/
60,
IGF-II

Lidocaine repressed sign
protein pathways.

Zhu and colleagues (107) 2019 Cervical cancer cells 50, 100, 500, 1,000 µM lncRNA-MEG3, miR-
421, BTG1

Lidocaine suppressed pr
modulating the genes ex

Sun and colleagues (41) 2019 Lung cancer cells 8 mM ERK, PI3K/AKT
pathways

Lidocaine decreased the
cancer cells by increasin
and PI3K/AKT pathways

Siekmann and colleagues
(108)

2019 Colon cancer cells
SW480, SW620

5–1,000 µM MMP-9 Cell proliferation was sign

Freeman and colleagues
(109)

2019 BALB/c mice(n = 72) 1.5–2.0 mg.kg−1 Not stated In a murine model of bre
metastasis.

Wall and colleagues (110) 2019 BALB/c mice (n = 95) 1.5, 2.0, 5.0 mg.kg−1 MMP-2/9, Src Lidocaine reduced lung m
through the Src pathway

Johnson and colleagues (73) 2018 BALB/c mice(n = 88) 1.5, 2.0 mg.kg−1 Not stated Lidocaine reduced lung m
angiogenic effects.

Freeman and colleagues (111) 2018 BALB/c mice (n = 45) 1.5, 2.0 mg.kg−1 Not stated The combination with lido
colony count compared

Yang and colleagues (104) 2018 BALB/c mice (n = 40) 1.5, 2.5, 5 mg.ml−1 Not stated The combination of 0.66
bearing mice survival and
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and the demethylation of DNA or other genes. Chang and
colleagues indicated that the cell viability and colony formation
in thyroid cancer cells were suppressed by lidocaine (98).
Moreover, lidocaine induced tumor cell apoptosis via dose-
dependent manners by destroying potential of mitochondrial
membrane and decreasing the release of cytochrome c. This
effect is closely associated with cell signaling of p38 mitogen-
activated protein kinase (MAPK) and extracellular signal-
regulated kinase 1/2 (ERK1/2), along with the production of
caspase-3 and -7, and reaction of a higher ratio of Bax/Bcl-2. The
signal pathway is shown in Figure 2. Ye and colleagues (112) also
showed that the activation of Bcl-2 was down-regulated and the
level of Bax was increased by lidocaine treatment, so Bax/Bcl-2
may be a potential mechanism of apoptosis. In addition,
lidocaine suppressed the growth of HepG2 cells, interrupted
cell proliferation cycle, resulted in programmed cell death with
the increase of Bax protein, and promoted caspase-3 and an
accompanying reduction with Bcl-2 protein in dose-dependent
and time-dependent manners (22). In particular, lidocaine may
aggravate the apoptosis through directly inhibited PI3K/AKT/
mTOR or indirectly influenced the AKT/Bcl2/Bax signaling
pathway (45, 46). By affecting these signaling pathways,
lidocaine can affect the growth, metabolism, and cytoskeleton
formation of cancer cells (39) thereby repressing cells’ ability of
proliferation and resulting in caspase-mediated cell death.

With regard to the changes of genes, Lirk and colleagues
demonstrated that clinically relevant concentrations of lidocaine
may demethylate the DNA of breast cancer cell lines in vitro (36).
Lidocaine represses the activation of ERK and PI3K/AKT
pathways by elevating the expression of miR-539 (41). It also
strengthens the cytotoxicity of cisplatin by increasing the
expression of RARbeta2 and RASSF1A demethylation in vitro
study (99). Moreover, the expression of tumor suppressor gene
IncRNA-MEG3 and oncogenes miR-421 were intervened by
lidocaine thereby inhibiting cervical cancer cell proliferation
and induces cell apoptosis (107). In malignancy, decreased
methylation generally contributes to the up-regulation of
tumor suppressor genes, inhibition cancer development.
Therefore, these modifications caused by lidocaine mean
reduction in methylation that may increase the re-expression
of tumor suppressor genes and restrain cancer progression.

Laboratory Studies In Vivo
The increase of tumor in size and weight was inhibited by lidocaine
in vivo by repressing cancer cells proliferation, sensitizing the
cytotoxic chemotherapy drugs, and inducing programmed cell
death (22). Moreover, previous study demonstrated that injecting
clinical concentration of lidocaine into intraperitoneal is probably
able to improve the prognosis of mice with breast cancer models,
resulting in the increase of survival number (105). In animal
research of cancer surgery, the remote metastasis such as lung of
breast cancer couldbe reducedby lidocaine,whichmaybe related to
the reductionofMMP-2andMMP-9(109, 110).MMP-9 is a critical
molecule in cancer development. Recently, a study also found that
the combination administration of lidocaine and cisplatin can
markedly induce caspase-mediated cell death of MCF-7 cells
compared with the use of cisplatin alone.
T
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Finally, lidocaine inhibits tumor cell proliferation by affecting
the cancer cell signaling and influences the cell cycle and
demethylation of DNA or other genes in vivo. Moreover, it
enhances the cytotoxicity of drugs, such as cisplatin, and
decreases metastasis by reducing MMP-2 and MMP-9
activation in vivo; moreover, relevant discoveries and research
in clinical practice are still needed.

Inhibiting the Process of Invasion
The process of invasion is extremely complicated, which consists
of a series of steps, including basement membrane degradation
and invasion of surrounding tissues, contacting with small-vessel
walls, and entering of tumor cells into the circulatory system.
One of the most studied is basement membrane degradation.
Piegeler and colleagues (33) showed that lidocaine dramatically
inhibited the TNFa-dependent signaling pathway by avoiding
activating/phosphorylation of Akt, FAK, and caveolin-1 (Cav1),
thus attenuating MMP release and invasion in NCI-H838 cells.
FAK also plays a crucial role in the process of cancer cells remote
movement, involving in orienting appropriate sites, assembling/
reorganizing of actin cytoskeletal, and eventually migrating of
cancer cells. Cav1 is a fundamental element of construction of
caveolae, which is related to adhesion and invasion of cancer cells
(33, 113, 114).

The malignant cells may have analogous characteristics of
secreting MMPs to neutrophils, the invasion and migration of
cancer cells are enhanced and basal lamina as well as the
extracellular matrix are disintegrated by MMPs, which provides
tumor cells with an opportunity entering into circulatory system
and finish the distant metastasis (115). Wall and colleagues (110)
also demonstrated that lidocaine reduced MMP-9 and MMP-2
activities via an inhibitory effect on the Src pathway in an in vivo
model. Furthermore, the study of Zhang and colleagues (116)
reported that lidocaine inhibited the invasion and migration of
cancer cells via down-regulating the AKT/mTOR and b-catenin
pathway. The AKT/mTOR pathway was demonstrated closely
associated with the activation of lysosome, the release of hydrolase,
the degradation of the ECM (59, 117).

Overall, with the use of lidocaine, inhibiting the signaling
pathways is perhaps an effective way of repressing the invasion of
malignant cells. Furthermore, these findings can provide
significant insights for further clinical studies by which
lidocaine might decrease invasion and metastasis.

Depressing Tumor Angiogenesis
Angiogenesis plays a vital role in tumorigenesis and metastasis,
which provides sufficient nutrient substances as well as oxygen
for cancer cells, efficiently drains the metabolic waste, supplies
more opportunities for cancer cell attaining remote migration
(118). Moreover, the level of tumor vascularization is closely
connected to the development of hematogenous metastasis as
well as tumor grade (119). Previous studies have demonstrated
that the VEGF and its receptor were significantly critical in
angiogenesis through the AKT/PI3K signaling pathways to up-
regulation of ICAM-1 eventually (120). The up-regulation
ICAM-1 indicates more cancer cells and endothelial cells
adhesion and migration associated with activation of VEGF
Frontiers in Oncology | www.frontiersin.org 9
and AKT/PI3K signaling pathways (121). The tumor growth and
progression require angiogenesis, which inhibitions are a crucial
therapeutic strategy for cancer patients. Hence, Lan and colleagues
(122) (123) reported that the expression of endothelial ICAM-1was
reduced by lidocaine treatment, especially when concentrations
higher than on clinically effective blood concentrations.
Furthermore, the activation of VEGF-A and phosphorylation
VEGFR-2 were suppressed by lidocaine, thereby decreasing the
number and degree of angiogenesis on a clinically relevant
concentrations without causing cell death (124). Lidocaine also
inhibits endothelial cell capillary network for construction and
VEGF, decreases endothelial cells to migration and propagation
by interfering in the preliminary period of the formation of new
blood vessels in vitro (43).Additionally, lidocaine has been reported
to significantly suppress the activation of ERK and PI3K/AKT
pathways (41), which are essential in VEGF secretion, eNOS
phosphorylation, vasorelaxation, and angiogenesis (125). The
angiogenic ability of vascular endothelial cells could be
pathologically enhanced by VEGF. Moreover, VEGF as well as its
receptor (VEGFR) are of great significance in anti-angiogenesis
treatment (126). Thesefindings couldprovidemore evidenceon the
ability of lidocaine to inhibit cancer metastasis via repressing
angiogenesis. Moreover, the underlying mechanism is partly
associated with down-regulation of PI3K/AKT pathways, VEGF
and ICAM-1.
RELATIONSHIP BETWEEN DIRECT
AND INDIRECT EFFECTS

Cancer metastasis is closely related to the microenvironment and
involves the interaction of surrounding non-cancerous stromal
cells, immune system cells (127), extracellular matrix,
chemokines, cytokines, and other factors (18). This fragile
microenvironment is easily disrupted by surgical procedures;
anxiety of surgery creates a window for tumor cells metastasis,
leading to immunosuppression, angiogenesis, inflammatory
response, and stimulated pain (12). The previous studies also
indicated that the development of cancer could be promoted by
the inflammatory immune response postoperation for pain and
surgical attack (12). Therefore, to investigate the relationship
between lidocaine, cancer metastasis, and surgery, ideas for future
studies on cancer and anesthetic drugs, as well as for the selection of
clinical anesthesiamethods and the treatment of cancer are needed.

The cancer microenvironment is extremely complex, with
various mechanisms involved. Moreover, as the direct and
indirect effects of lidocaine are interactive, they cannot be
separated directly. Thus far, clinical studies on the ability of
lidocaine to suppress proliferation and induce apoptosis are few,
and most of these are relevant to the effects of enhancing pain
relief (Table 1) (128). So more studies are still required to
investigate the specific mechanisms. Data from recent animal
and cell studies, to some extent, have explained the proposed
mechanisms of lidocaine (Table 2), which may be closely
correlated to the effects on cancer cell signaling, decreasing
immune and inflammatory disruption, and gene modification
and instability. Nonetheless, the concentration of lidocaine used
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in laboratory studies is generally higher than that used in clinical
therapy, and lidocaine may be cytotoxic at high concentration
(22, 129). Consequently, it may be inappropriate to directly apply
the dosage of experimental study to clinical treatment, and it is
hard to obtain similar laboratory results in clinical trials. Hence,
clinical studies are still needed to determine the appropriate
concentration of lidocaine.
CONCLUSIONS

In conclusion, some relevant investigations have demonstrated
connections among perioperative events such as lidocaine
treatment, surgical stress, and cancer progression. This review
summarized and investigated the underlying mechanisms of
lidocaine effects on cancer metastasis and recurrence after
surgery, and explained the beneficial properties of lidocaine in
cancer prognosis which provided some ideas for the clinical
treatment and research of cancer. The specific mechanisms of
these effects are dependent on further studies.
Frontiers in Oncology | www.frontiersin.org 10
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