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Glioblastoma (GBM) is among the most aggressive of brain tumors and confers a dismal
prognosis despite advances in surgical technique, radiation delivery methods,
chemotherapy, and tumor-treating fields. While immunotherapy (IT) has improved the
care of several adult cancers with previously dismal prognoses, monotherapy with IT in
GBM has shown minimal response in first recurrence. Recent discoveries in lymphatics
and evaluation of blood brain barrier offer insight to improve the use of ITs and determine
the best combinations of therapies, including radiation. We highlight important features of
the tumor immune microenvironment in GBM and potential for combining radiation and
immunotherapy to improve prognosis in this devastating disease.
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INTRODUCTION

Glioblastoma (GBM), a high-grade glial tumor, is the most frequent malignant primary brain tumor
in adults (1). GBM prognosis remains dismal with a low 5-year survival rate of only 5.6% (1) and a
median overall survival (OS) of approximately 18 months (2).

Immunotherapies (ITs) have long been overlooked for the treatment of central nervous system
(CNS) malignancies presumably due to the long-held view of the brain as an immune-privileged
compartment. However, the discovery of a dural lymphatic system (3, 4), the ability of some CNS-
tissue resident cells to present antigen (5–9) and the functional characterization of the dural sinuses
as an immune interface of the CNS (10) have introduced a paradigm shift whereby the brain
possesses an immune-distinct tumor microenvironment (TME) that is still accessible for ITs (11–
13). Since then, efforts have spurred in clinic to evaluate the efficacy of ITs in GBM (13), but the
paucity of pre-existing T cells at diagnosis prevented the reactivation of anti-tumor immune
responses (14–16). Notably, monotherapy with ITs have shown poor response rate in first GBM
recurrence (17). In evaluation of responders to anti-PD1 monotherapy at first recurrence, patients
are more likely to be Phosphatase and TENsin homolog (PTEN) wild type and have increased
immune infiltration post anti-PD1 monotherapy compared to non-responders who are PTEN
mutant and have low immune infiltrate both before and after IT (18). Consequently, it is critical to
develop IT-based combinatorial approaches that both recruit and activate tumor-infiltrating
lymphocytes (TILs).
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Radiation therapy (RT) increases antigenicity and
adjuvanticity of malignant cells (19), thus suggesting that RT
could be used to coax T cells into GBM. Supporting this notion,
several groups have reported synergism between RT and IT in
preclinical models of GBM which have motivated the assessment
of RT-based combinatorial approaches in Clinic (Table 1).

Here will we discuss the unique immune system of the central
nervous system (CNS), the immunosuppressive TME of GBM
and how RT can restore the sensitivity of GBM to modern IT by
modulating systemic and local anti-tumor immunity.
THE UNIQUE IMMUNE SYSTEM OF THE
CENTRAL NERVOUS SYSTEM

The traditional dogma of the brain as an immune-privileged
organ was initiated by pioneer work from Murphy in the 1920s,
demonstrating successful growth of mouse sarcoma after their
implantation into the brain while rejection of these tumors was
observed when transplanted in the periphery (20). Later on, these
findings were confirmed with seminal work from Medawar, in
the 1940s, which similarly demonstrate a high propensity of
tumor engraftment in the brain parenchyma as opposed to
tumor transplant in peripheral organs (21). Of notice, when
first transplanted in peripheral organs before their implantation
into the brain, these tumors were successfully rejected, thus
suggesting that the activation of the immune system in the
periphery can generate tumor rejection into the brain (21).
Consequently, the fact that brains were unable to elicit anti-
tumor immune responses by itself led to the concept of the
immune privilege of the CNS.

Since then, studies have revealed that the immune privilege
status of the CNS is overstated. Notably, the description of the
afferent mechanism for CNS engagement in regional lymphatic
(22–24) together with the discovery of the glymphatic (glial-
lymphatic) system that links the parenchyma and the
interstitium to the cerebrospinal fluid (CSF) spaces, started to
challenge the concept of the brain as immunologically silenced.

Another breakthrough in the field of brain immunology was
the identification of a functional meningeal lymphatic network
that enables the drainage of immune cells, macromolecules and
fluids from the CNS to the deep cervical lymph nodes (dcLN) (4,
25). This dural lymphatic system provides a physical connection
for CSF-derived antigens to gain access to dcLN for priming and
activation of T cells. Consequently, meningeal lymphatic vessels
are critical regulators of drainage and immune surveillance, a
notion that has been demonstrated in the context of GBM (26,
27). More recently, the dural sinuses were identified as a neuro-
immune hub where circulating T cells can assess the brain and
CSF-derived antigens to enable immune surveillance (10).

Given the complex lymphatic circuitry and the unique sites of
neuro-interface of the CNS, the brain can no longer be perceived
as an immune-privileged organ, but rather as an immune-
distinct and highly immunosuppressive environment.

This concept is reinforced by the ongoing challenge of the
efferent arm of CNS immunity. Indeed, the blood brain barrier
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(BBB), a structure composed of capillary tight junctions and
astrocyte cell projections (aka astrocytic feet or “glia limitans”)
(28, 29), is thought to serve as a filter of the transit of molecules
and immune cells between the brain and the systemic circulation.
Some strategies to overcome the BBB have been explored,
including the usage of nanoparticles, convection enhanced
delivery, and non-invasive focused ultrasound and have
achieved promising results in preclinical models (30–34).
However, the recent demonstration of T cells infiltration and
immune surveillance of the brain challenge the long-held view of
BBB as an hermetic barrier to immune cell trafficking and
suggest that the CNS is accessible to immune cells (35–37).

Aside distinct afferent and efferent circuits of CNS immunity,
tissue-resident myeloid cells are another unique feature of brain
immunity (38). This population is mainly composed of microglia
(or tissue-resident macrophages) that originate from the yolk sac
and migrate into the brain during embryonic development (39).
The function of microglia is to assess the brain parenchyma and
to maintain immunological homeostasis by responding to signals
consistent with tissue damage, inflammation, or the presence of
pathogens (40, 41). Such activation of the microglia leads to an
increase capacity of antigen presenting functions as well as its
phagocytic properties, suggesting that microglia serves as the
resident antigen-presenting cells of the CNS (5, 9).

Thus, the unique features of the brain from its drainage to its
tissue resident microglial cells (Figure 1) suggest that immune
responses in the CNS are possible. However, the immune
singularity of the brain calls for a better understanding of CNS
immunity to optimally generate anti-tumor immunity against
brain malignancies.
THE IMMUNE SUPPRESSIVE
MICROENVIRONMENT OF
GLIOBLASTOMA

A major obstacle to anti-tumor immune responses against GBM
is its highly immunosuppressive TME (Figure 1).

Among key contributors to GBM immunosuppression, tumor-
associated macrophages cells (TAMs) account for 30% to 50% of
the tumor mass (42, 43). TAMs are usually pro-tumorigenic, and
their accumulation correlate with tumor grade and poor prognosis
(44–46). The recruitment and function of TAMs is modulated by
GBM-secreted factors, such as the chemo-attractants stromal cell-
derived factor 1 (SDF1) (47, 48), C–C motif chemokine ligand 2
(CCL2) (49, 50) and the colony-stimulation factor 1 (CSF1) (51).
TAMs promote immunosuppression by the production of
arginase, transforming growth factor-beta (TGFb), interleukin
(IL)-10 and IL-6, among others which collectively inhibit both
the innate and adaptive immune systems with suppression of NK
activity and T cell activation and proliferation (52–55).

Another mechanism responsible for immunosuppression and
ultimately the lack of response of IT strategies in GBM patient is
the low representation of T cells in the tumor. Studies have
demonstrated that T cells influx in GBM is offset as a result of (1)
reduced T cells production subsequent to thymic involution (56),
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TABLE 1 | Combination of immunotherapy with radiation therapy in clinical development for glioblastoma.

Target Agent New or
Recurrent

Phase Clinical Trial
ID

Radiation
regimen

Status Notes

PD-1 Nivolumab Newly
diagnosed

III NCT02617589 Standard
fractionation

Active, not
recruiting

Unmethylated MGMT; comparison anti-PD-1
versus TMZ each in combination with RT

PD-1 Nivolumab Newly
diagnosed

III NCT02667587 Standard
fractionation

Active, not
recruiting

Methylated MGMT; TMZ plus RT combined with
anti-PD-1

PD-1 Nivolumab Newly
diagnosed

I NCT03576612 Standard
fractionation

Recruiting Neoadjuvant onclolytic adenovirus (GMCI) + TMZ

PD-1 Nivolumab Recurrent II NCT03743662 Hypofractionated Recruiting Re-irradiation (6Gy x 5) +/- anti-PD-1 +/-
Bevacizumab

PD-1 Nivolumab Newly
diagnosed

II NCT04195139 Standard
fractionation

Recruiting Elderly patients; comparison RT+anti-PD-1 +
TMZ versus standard treatment (RT+TMZ)

PD-1 Pembrolizumab Newly
diagnosed

II NCT03018288 Standard
fractionation

Recruiting TMZ +/- heat shock protein (HSPPC-96)

PD-1 Pembrolizumab Newly
diagnosed

II NCT03197506 Standard
fractionation

Recruiting Standard therapy (RT+TMZ) +/- anti-PD-1

PD-1 Pembrolizumab Recurrent I NCT02313272 Standard
fractionation

Active, not
recruiting

Bevacizumab and RT (6Gy x 5) +/- anti-PD-1

PD-1 Pembrolizumab Newly
diagnosed

II NCT03899857 Standard
fractionation

Recruiting standard treatment (RT+TMZ) + anti-PD-1

PD-1 Pembrolizumab Newly
diagnosed

I NCT02287428 Standard
fractionation

Recruiting Unmethylated MGMT; RT+anti-PD-1+NeoAntigen
Vaccine

PD-1 Pembrolizumab Newly
diagnosed

I NCT03426891 Standard
fractionation

Recruiting Standard therapy (RT+TMZ) +/- HDAC inhibitor
(Vorinostat) +/- anti-PD-1

PD-1 Pembrolizumab Recurrent II NCT03661723 Hypofractionated Recruiting Re-irradiation (7Gy x 5) per week for 2 weeks +/-
Bevacizumab

PD-1 and CTLA-4 Nivolumab and
Ipilimumab

Newly
diagnosed

II NCT03367715 Hypofractionated Recruiting Unmethylated MGMT; RT (6Gy x 5) + anti-PD-1 +
anti-CTLA4

PD-1 and CTLA-4 Nivolumab and
Ipilimumab

Newly
diagnosed

II/III NCT04396860 Standard
fractionation

Recruiting Unmethylated MGMT; comparison standard
treatment (RT+TMZ) versus RT+anti-PD-1+anti-

CTLA-4
PD-1 and IDO Nivolumab and

BMS-986205
Newly

diagnosed
I NCT04047706 Standard

fractionation
Recruiting Standard treatment (RT+TMZ) +/- anti-PD-1 +/-

IDO inhibitor
PD-L1 Durvalumab Newly

diagnosed and
recurrent

II NCT02336165 Standard
fractionation

Active, not
recruiting

Bevacizumab

PD-L1 Durvalumab Recurrent I/II NCT02866747 Hypofractionated Recruiting RT (8Gy x 3)
PD-L1 Atezolizumab Newly

diagnosed
I/II NCT03174197 Standard

fractionation
Active, not
recruiting

Standard treatment (RT+TMZ) +/− anti-PD-L1

PD-L1 Avelumab Newly
diagnosed

II NCT02968940 Hypofractionated Completed IDH mutant; RT (6Gy x 5)

PD-L1 Avelumab Newly
diagnosed

II NCT03047473 Standard
fractionation

Active, not
recruiting

Standard treatment (RT+TMZ) +/− anti-PD-L1

PD-L1 Avelumab Recurrent II NCT03291314 Standard
fractionation

Completed Standard treatment (RT+TMZ) + anti-PD-L1 +
tyrosine kinase inhibitor (axitinib)

GM-CSF Sargranostim Newly
diagnosed

II NCT02663440 Hypofractionated Unknown RT (regimen not specified) + TMZ + GM-CSF

GM-CSF and poly I:C Sargranostim
and Hiltonol

Recurrent I NCT03392545 Not specified Recruiting RT + GM-CSF and poly I:C

GM-CSF and
tetanus-diphtheria
toxoid (Td)

GM-CSF and
Td

Newly
diagnosed

II NCT03927222 Standard
fractionation

Recruiting Unmethylated MGMT; Standard treatment
(RT+TMZ) + Td + GM-CSF

TGF-b Galunisertib Newly
diagnosed

I/II NCT01220271 Standard
fractionation

Completed Standard treatment (RT+TMZ) +/− anti-TGF-b

IDO Indoximod Newly
diagnosed

I/II NCT02052648 Hypofractionated Completed TMZ +/− bevacizumab +/− IDO inhibitor +/− RT
(5.5 × 5 Gy)

CXCR4 Plexirafor Newly
diagnosed

I/II NCT01977677 Standard
fractionation

Completed Standard treatment (RT+TMZ) +/− CXCR4
inhibitor

CSF1R Pexidartinib Newly
diagnosed

I/II NCT01790503 Standard
fractionation

Completed Standard treatment (RT+TMZ) +/− CSF1R
inhibitor

IGF-1R IGV-001 Newly
diagnosed

Iib NCT04485949 Standard
fractionation

Not yet
recruiting

Standard treatment (RT+TMZ) +/− IGV-001 cell
immunotherapy

PD-L1 Atezolizumab Recurrent II NCT04729959 Hypofractionated Not yet
recruiting

IDH1 wild type; PD-L1 inhibitor; tocilizumab; RT
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(2) increased expression of the programmed death ligand-1 (PD-
L1) (57), (3) loss of surface spingosine-1-phosphate receptor 1
(S1P1) in brain tumors to sequester T cells in the bone marrow
(58) and (4) CD68+ microglia lose MHC-II (i.e. heterogeneity
human leukocyte antigen (HLA)-DR isotype; HLA-DR)
expression in a PTEN dependent fashion (18).

Despite these major obstacles, some T cells can successfully
infiltrate intracranial tumors and have been shown post IT in
patients who respond (18). However, infiltrating T cells are more
likely to be dysfunctional and express markers of exhaustion like
programmed cell death (PD-1), lymphocyte-activation gene 3
(LAG3) and T-cell immunoglobulin and mucin-domain
containing-3 (TIM-3) (59–61). Importantly, a large proportion of
T cells infiltrating GBM are regulatory T cells (Tregs) that co-
expressed checkpoint inhibitors including cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4) and PD-1 (62). Treg is a subset of
Frontiers in Oncology | www.frontiersin.org 4
CD4 T cells that express the transcription factor forkhead box
protein3 (Foxp3) (63, 64). These cells suppress CD8 T cells
activation by the secretion of immunosuppressive cytokines,
namely TGFb and IL-10 (65, 66). GBM attract Tregs from the
periphery to the local TME by soluble factors, such as GBM-derived
CCL22, CCL2, and TGFb, to promote immunosuppression
(66–69).

Overall, these findings underscore that not only do intracranial
tumors display high infiltration of immunosuppressive cells but
they also secrete factors that limit T cell responses against GBM.

The Cancer Genome Atlas (TCGA) has identified four
subtypes of GBM (i.e. proneural, neural, classical, and
mesenchymal), based on mutations that drive proliferation and
survival of GBM (70). Consequently, the genetic heterogeneity of
GBM predicts for a great mutational load, one of the favorable
biomarkers for successful IT. However, GBM are characterized
FIGURE 1 | The unique immune response in GBM and its modulation by RT. For many years, the central nervous system (CNS) was thought to be excluded from
immune surveillance. However, it is now known that the CNS is not isolated from activated T cells and that CNS antigens can be presented locally or peripherally in
the draining cervical lymph nodes or the dural sinuses. Diverse types of antigen presenting cells (APCs) exist within glioblastoma (GBM), including microglia,
macrophages, astrocytes and classic APCs such as dendritic cells (DCs). APCs that have captured tumor antigens can present to naïve T cells, leading to their
activation and expansion. Activated T cells migrate into the brain through a disrupted blood brain barrier (BBB), but once in the tumor microenvironment (TME) they
differentiate into exhausted T cells. Within the TME, there are immunosuppressive regulatory T cells (Tregs), myeloid derived suppressor cells (MDSC), reactive
astrocytes and pro-tumoral macrophages and microglia. Radiotherapy (RT), the standard of care for GBM, induces the exposure of tumor neoantigens and increases
the T cell receptor (TCR) repertoire. Moreover, tumor irradiation promotes the release of danger associated molecular patterns (DAMPs) and type I interferon (IFN-I), which
stimulate APCs cross-priming of T cells. All of these suggest that RT can be used to overcome GBM immunosuppression to optimally prime anti-tumor immunity.
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by a relatively low mutational burden (71, 72), suggesting that
GBM display limited somatic mutations for the T cells to target
and ultimately lead to a restricted efficacy of IT when used
as monotherapy.

Defects in the antigen presentation machinery, such as
downregulation or loss of HLA class I, have also been reported
in GBM patients (73). More specifically, microglia antigen-
presenting cells (9, 74) present a downregulation of the major
histocompatibility class I (MHC-I) due to immunosuppressive
cytokines (e.g. TGFb and IL-10) that emanate from the TME (75).

Therefore, low presence of antigens combined with defective
presentation, represent an additional challenge to mount
effective T cell responses against GBM.

Metabolic alterations of GBM is an emerging immune
resistance mechanism (76). Notably, a recent study comparing
the metabolic reprogramming of GBM patient samples with low-
grade astrocytoma identified that variations in tryptophan,
arginine, prostaglandin, and adenosine pathways might be
responsible for the accumulation of Tregs and pro-tumorigenic
TAMs in GBM (77). Moreover, activation of the mammalian
target of rapamycin (mTOR) pathway in microglia promoted
tumor growth and immune evasion in murine GBM (78).
Therefore, targeting metabolic liabilities of intracranial tumors
represents a promising strategy to overcome immunosuppression.
RADIOTHERAPY TO RESTORE THE
SENSITIVITY OF GLIOBLASTOMA TO
IMMUNOTHERAPY

The complexity of brain immunity combined with the
immunosuppression exerted by the TME in brain tumors call
for innovative approaches to break immune tolerance of
brain malignancy.

One appealing strategy is to exploit the immuno-stimulatory
properties of RT to generate an in situ tumor vaccine and the
subsequent recruitment of effector T cells into GBM; a vital
component for the efficacy of modern IT (Figure 1).

RT has been acknowledged as a potent immune adjuvant over
the past two decades with major preclinical data demonstrating
that RT promotes tumor specific T cell responses (79, 80).
However, the concept of RT as an immune response modifier
(IRM) was initiated forty years ago by Stone who demonstrated
that responses to RT were impaired in the absence of T cells (81).
While these findings were ignored for a long time, the
breakthrough of ITs restimulated interest in exploiting the
immunogenic properties of RT to expand the fraction of
cancer patients that can benefit from IT. Since then, studies
from experimental models have provided mechanistic insight
pertaining to the ability of RT to stimulate the immune system.
Notably, two main processes were found essential (but not
mutually exclusive) to convey immunogenicity of an irradiated
tumor: (1) the engagement of an immunogenic cell death (ICD)
(82–85) and (2) the induction of type I interferon (IFN-I) (86–
88). ICD is identified by the spatial and temporal occurrence of
Frontiers in Oncology | www.frontiersin.org 5
three damage-associated molecular pattern (DAMPs) molecules,
namely the pre-apoptotic exposure of calreticulin (CRT) on the
cell surface (89), the active secretion of ATP (82, 83, 89–92) and
the release of the non-histone nuclear protein High Mobolity
Group Box 1 (HMGB1) (82).

Activation of IFN-I response is essential for T cell priming and
is a consequence of the recognition of cytosolic double stranded
(ds) DNA by the nucleic acid sensor (NAS) CGAS (i.e. cyclic
GMP-AMP synthase) to engage stimulator of the interferon genes
(STING) pathway in irradiated cells as well as in dendritic cells
(DC) (87, 88, 93–98). The source of cytosolic DNA is currently
being debated with reports indicating that micronuclei formed by
mitotic defects (99–101) and/or the autophagy-dependent release
of mitochondrial dsDNA (86).

Nevertheless, RT-induced IFN-I response is not restricted to
cytoplasmic dsDNA sensing. Notably, recent studies have
demonstrated that cytoplasmic recognition of dsRNA by the
retinoic acid inducible gene I (RIG-I)-like receptors (RLRs) led to
IFN-I post RT (102, 103). Cytosolic dsRNA sensing involves
three RLR sensors, namely RIG-I, melanoma differentiation-
associated gene 5 (MDA5), and laboratory of physiology and
genetics 2 (LGP2 or DExH-box helicase 58; DHX58) (104, 105).
A recent preclinical study, reported that host LGP2 was essential
for optimal anti-tumor control of irradiated murine colorectal
tumors (103). Consequently, the activation of RT-induced IFN-I
is the result of DNA recognition by the CGAS-STING pathway
but is also subsequent to RNA sensing by the RLR family.
Whether these mechanisms are initiated in irradiated GBM
remains unknown, but current data suggests that activation
CGAS-STING in myeloid cells is important for anti-tumor
immunity against this tumor type (106, 107).

Other major immunogenic features of RT is to shape the T
cell receptor (TCR) repertoire of TILs (108–112) and to expose
immunogenic mutations to the immune system (113). A detailed
discussion describing the mechanisms responsible for the
increase of antigenicity in irradiated tumors can be found
elsewhere (114).

While the capacity of RT to generate similar mechanisms in
the brain remains to be investigated, evidence of MHC-I
upregulation and increase of antigen presentation from brain
irradiation was described (115). More importantly, it was
reported that personalized neoantigen vaccine generates
intratumoral T cell responses in GBM patients, suggesting that
RT-induced immunogenic mutation exposure is a promising
strategy to treat intracranial tumors (116).

The impact of the isocitrate dehydrogenase 1 (IDH1) mutation
together with the methylation status of O6-methylguanine-DNA
methyltransferase (MGMT) on RT-induced anti-tumor immunity
against GBM is unclear. However, the fact that neoantigen derived
from mutant IDH1 can promote anti-tumor CD4+ T-cells and
antibody responses in glioma together with the ability of RT to
expose neoantigens, suggest that IDH1 mutated GBM patients
might better respond to the RT-IT combinations as opposed to
patients with wild-type IDH1 tumors (117).

Altogether, mechanistic insights pertaining to the
immunogenic role and function of ionizing radiation elevated
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the use of RT as a partner to IT in multiple cancer including
GBM. Some RT-IT combination are already assessed in
preclinical models of GBM as well as in clinic (Table 1). For
instance, focal irradiation improved the survival of GBM-tumor
bearing mice treated with anti-PD-1 (118, 119), anti-CTLA-4 +
4-1BB activation (120), dual TIM-3 and PD-1 blockade (121)
and anti-GITR (glucocorticoid-induced TNFR family related
gene) (122). Underscoring the potential of RT to promote
GBM-targeted T cells responses, all of these studies reported
an increase in T cell infiltration and some even documented
long-lasting immune memory responses against GBM.

Importantly myeloid cells expressing the colony-stimulating
factor-1 receptor (CSF-1R) (or TAM-CSF-1R+ cells) were
recently found altered during the time-course of anti-GBM
therapy. Notably, RT was described to promote recurrence-
specific phenotypes in microglia and monocyte-derived
macrophages (123). GBM tumor bearing mice treated with the
combination of anti-CSF-1R with focal RT experienced increase
in survival, thus indicating that CSF-1R targeting is a promising
strategy for irradiated GBM (123).

Along similar lines, targeting PD-L1 expressing tumor
associated myeloid cells in combination with dinaciclib, a
cyclin-dependent kinase inhibitor, extended survival of mice
bearing irradiated GBM tumors (124).
CLINICAL TRANSLATION AND CHALLENGES

A widespread interest of RT-based immuno-oncology
combinations has spurred in Clinic due to the mounting
evidence highlighting the role RT as an immune adjuvant.
However, the clinic translation of experimental models turn
out to be more challenging than anticipated due to several of
host-responses to RT. Notably, mounting evidence highlight the
critical aspect of the choice of radiation fractionation and
regimen to elicit anti-tumor immunity. Consequently, the
impact of RT planning and delivery must be considered
including: absolute dose, dose-per-fraction, low dose spread,
path of radiation delivery, and the effects of radiation cell kill.
Radiation dose fractionation and dose per fraction has shown to
differentially affect immune cells and the TME. For instance,
radiation dose-dependent responses can be elicited on T-effector
cells versus Tregs, macrophages, and TME regulation through
TREX1-STING-IFN signaling (87, 125–128). The optimal
radiation dose and regimen together with the best sequencing
between IT and RT remains elusive (19, 129, 130).

Nevertheless, ongoing clinical trials assessing the combination
of IT with either standard fractionation or hypofractionation
regimen in CNS diseases (Table 1) may provide some indication
on the optimal radiation regimen and sequencing of IT to
generate GBM-targeted anti-tumor immune responses.

Another major limitation to RT-induced anti-tumor immunity
is the activation of latent TGFb that stem for the TME. TGFb
activation by RT promotes immunosuppression (131) and
therefore represents a major challenge for the translation of RT-
IT combinations. Nevertheless, cooperative effects of TGFb
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blockade with focal RT has shown some promises in patients
with metastatic breast cancer (132, 133), which underscore that
blocking TGFb in the context of RT might be required to elicit
potent anti-tumor immunity.

There are many emerging ionizing radiation technologies that
may further add to the immune modulatory effects including
ultras-fast dose-rate radiotherapy (FLASH-RT) and particle
therapy (proton and carbon ion therapy) (134). While
preclinical studies hold great promises to generates anti-tumor
immunity against FLASH-irradiated GBM (135), additional
investigations are required to define the immunogenic
properties of FLASH radiation, especially in the context of
brain malignancies.

Overall, to achieve clinical translation for patient care, increase
knowledge of the interplay between radiation responses of the host
and immunosuppression must be investigated.
CONCLUSION

Although to date, the clinical trials assessing the efficacy of IT
have been disappointing, the results from preclinical studies are
very encouraging for the success of RT-IT combinations in
treating GBM. Different strategies adapted from experimental
models are currently being investigated to harness the immense
potential of combining RT with IT (Table 1). As a scientific
community, we strongly await the data from these ongoing
clinical trials. Further efforts to understand the effect of RT in
TME of GBM may uncover novel avenues to optimally combine
RT with IT to generate an in situ vaccination against GBM.
However, given the complexity of the brain immunity, together
with the immunosuppression of GBM, it is likely that multiple
targets will be required to eliminate irradiated GBM.
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