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Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and has
poor prognosis. Cytokeratin (CK)19-positive (CK19+) HCC is especially aggressive; early
identification of this subtype and timely intervention can potentially improve clinical
outcomes. In the present study, we developed a preoperative gadoxetic acid-enhanced
magnetic resonance imaging (MRI)-based radiomics model for noninvasive and accurate
classification of CK19+ HCC. A multicenter and time-independent cohort of 257 patients
were retrospectively enrolled (training cohort, n = 143; validation cohort A, n = 75;
validation cohort B, n = 39). A total of 968 radiomics features were extracted from
preoperative multisequence MR images. The maximum relevance minimum redundancy
algorithm was applied for feature selection. Multiple logistic regression, support vector
machine, random forest, and artificial neural network (ANN) algorithms were used to
construct the radiomics model, and the area under the receiver operating characteristic
(AUROC) curve was used to evaluate the diagnostic performance of corresponding
classifiers. The incidence of CK19+ HCC was significantly higher in male patients. The
ANN-derived combined classifier comprising 12 optimal radiomics features showed the
best diagnostic performance, with AUROCs of 0.857, 0.726, and 0.790 in the training
cohort and validation cohorts A and B, respectively. The combined model based on
multisequence MRI radiomics features can be used for preoperative noninvasive and
accurate classification of CK19+ HCC, so that personalized management strategies can
be developed.

Keywords: cytokeratin 19 (CK19), progenitor attributes, enhanced magnetic resonance imaging, radiomics,
hepatocellular carcinoma
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INTRODUCTION

Hepatocellular carcinoma (HCC) is the most common type of
primary liver cancer and the third leading cause of cancer-related
mortality worldwide (1). Although significant progress has been
made in treatment strategies, HCC has poor prognosis due to the
heterogeneity of the disease and high recurrence rate after
treatment (1). Clarifying the tumor biology of HCC can lead to
the development of more effective and personalized
management strategies.

Hepatic progenitor cells (HPCs) are bipotent liver stem cells
that can differentiate into hepatocytes or cholangiocytes (2–5).
HPCs express specific markers such as epithelial cell adhesion
molecular (EpCAM) and cytokeratin (CK)19 and have been
shown to transform into hepatic cancer stem cells that give rise
to HCC (2). In vitro studies have demonstrated that CK19-positive
(CK19+) HCC cell lines exhibit high invasive potential, enhanced
epithelial–mesenchymal transition (EMT), and the ability to
induce angiogenesis (6–8). In the clinical context, CK19+ HCC
is highly invasive and resistant to chemoradiotherapy and shows
high rates of lymph node metastasis and early recurrence after
hepatic resection or liver transplantation (9–11). Thus, CK19+
HCC is a unique disease subtype for which more effective
treatments are needed (12).

Pretreatment diagnosis of CK19+ HCC currently relies on
immunohistochemical analysis of fine-needle aspiration (FNA)
samples. However, as an invasive method, FNA can cause
abdominal hemorrhage as well as tumor rupture and peritoneal
seeding. Additionally, the small quantities of sample obtained by
FNA can lead to misdiagnosis. Radiomics—which refers to the
high-throughput extraction of quantitative features of medical
images and their analysis and use for model construction—has
been widely used in oncology research (13–17). Radiomics can
fully capture tumor heterogeneity and subtle changes in texture
from medical images. CK19+ HCC exhibits unique features in
medical images such as arterial rim enhancement and irregular
tumor margins (18–21) that are not observed in CK19-negative
(CK19−) tumors. There have been attempts made to develop
classifiers using radiomics approaches for the determination of
CK19 status (22–24). However, these studies were conducted at a
single center or were based on a small sample, thereby limiting the
generalizability of the findings.

In this study, we constructed and validated a multisequence
radiomics model for noninvasive and accurate identification of
CK19 status in HCC patients based on multicenter and time-
independent magnetic resonance imaging (MRI) data.
MATERIALS AND METHODS

Study Population
The inclusion criteria were as follows: i) patients who underwent
gadoxetic acid-enhanced MRI within 2 weeks before surgery and
ii) patients who had a postsurgery diagnosis of HCC with definite
CK19 status (+/−). The exclusion criteria were as follows:
i) concurrent malignancies or distal metastasis; ii) clinical data
or MR images were missing or of low quality; and iii) small
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tumors (maximum diameter <1 cm). The patient enrollment
process is illustrated in Supplementary Figure S1.

The study included patients from the following three
independent medical centers: 1) First Affiliated Hospital of
Zhejiang University School of Medicine (FAH-ZJU; patients
treated between January 2016 and December 2017); 2) Shulan
Health (Hangzhou) Hospital (SLH; patients treated between
January 2017 and December 2018); and 3) Lishui Central
Hospital (LSCH; patients treated between January 2018 and
December 2018). FAH-ZJU, from which the majority of
patients were enrolled, was set as the training cohort, and SLH
and LSCH were the independent external validation cohorts.

The following baseline (presurgery) patient data were collected:
age, sex, tumor number, tumor size, hepatitis B virus infection,
serum tumor markers, and serum liver and kidney function
indices. Histopathologic data included liver cirrhosis, tumor
differentiation grade, microvascular invasion, macrovascular
invasion, and lymph node metastasis.

Study Design
A flow diagram of the study is shown in Figure 1. The study was
divided into four parts: 1) patient enrollment; 2) image
preprocessing and segmentation; 3) multisequence MRI
radiomics feature extraction and model construction; and
4) model validation. The delineation of the region of interest
(ROI) is shown in Figure 2.

MR Image Acquisition
Presurgery gadoxetic acid-enhanced MR images were retrieved
from the Picture Archiving and Communication Systems of the
participating centers. Patients fasted for 4–6 h before MR
scanning. The scan was performed after injection of the contrast
agent (0.025 mmol/kg gadoxetic acid, 15 ml, 7.04 g; Guangzhou
Consun Pharmaceutical Co., Guangzhou, China) at a rate of
2 ml/s via an injector. The contrast agent was flushed with
20 ml saline injected at the same rate. The scanners used at the
three medical centers were as follows: FAH-ZJU, 3.0-T MR
scanner (Signa HDxt; GE Healthcare, Milwaukee, WI, USA);
SLH, 1.5-T or 3.0-T MR scanner (Signa HDxt); and LSCH, 1.5-T
MR scanner (Aera; Siemens Healthcare, Erlangen, Germany) or
3.0-T MR scanner (Ingenia; Philips Healthcare, Best, Netherlands).

Region-of-Interest Segmentation
Tumor delineation was performed using ITK-SNAP software
(http://www.itksnap.orge) (25) by two senior radiologists
specializing in abdominal diagnoses with 6 and 8 years of work
experience. ROIs were manually contoured on each slice in both
T2-weighted and diffusion-weighted imaging (DWI) phase
images. The two radiologists checked each other’s delineation
results for concordance, and a final check was performed by a
chief radiologist.

Quantitative Feature Extraction
Radiomics features in ROIs were extracted from the MR images
using MATLAB 2016a software (MathWorks, Natick, MA,
USA). Image preprocessing was performed to minimize gray
range variation between different MR scanners, including voxel
August 2021 | Volume 11 | Article 672126
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size resampling and gray level normalization. For each patient,
968 image features were extracted including 484 T2- and 484
DWI-derived features. The features belonged to four categories:
intensity, texture, wavelet, and shape. The feature extraction task
was performed as described in our previous work (26, 27).

Immunohistochemistry
Histopathologic examination and diagnosis were carried out
according to World Health Organization criteria. Tumor
specimens were obtained along with surrounding liver tissue at
a volume ratio of 1:1, fixed with formalin, and embedded in
paraffin (28). Positive CK19 expression was defined as
membranous or cytoplasmic immunoreactivity in ≥5% of
tumor cells (29). Pathology data were obtained from the
pathology department of each medical center.

Construction of the Cytokeratin 19
Status Classifier
We established three radiomics-based models, i.e., T2, DWI, and
combined (both T2 and DWI radiomics features), using an
artificial neural network (ANN) algorithm (hidden size = 2,
initial random weight = −0.1 to 0.1, weight decay = 5e−4, and
maximum number of iterations = 200). We used a two-step
process to select optimal radiomics features. We first performed
a univariate analysis to identify features showing a significant
difference between CK19+ and CK19− groups in the training
cohort. The maximum relevance minimum redundancy
(MRMR) algorithm (“mRMR” package in R CRAN) was used
to rank feature importance. Briefly, input features were ranked
Frontiers in Oncology | www.frontiersin.org 3
by maximizing the mutual information (MI) to class labels and
minimizing the MI with other features. To obtain the best
prediction model, four different machine learning algorithms,
namely, multiple logistic regression (MLR), support vector
machine (SVM), random forest (RF), and ANN, were applied
to establish radiomics classifiers with optimal features. For each
patient, a radiomics score was calculated to determine the
probability of positive CK19 status. The diagnostic ability of
the classifiers was evaluated based on the area under the receiver
operating characteristic (ROC) curve (AUROC). Given the
utility of clinical features, we also developed a clinical classifier
to determine CK19 status. A model incorporating clinical factors
was developed in the training cohort by multivariate logistic
regression analysis. Backward stepwise selection was applied
using the likelihood ratio test with Akaike’s information
criterion (AIC) as the stopping rule.

Ethics Approval
This retrospective study was approved by the institutional review
board of all participating centers (FAH-ZJU, SLH, and LSCH).
Written informed consent was waived for the retrospective use of
patients’ clinical and medical imaging data.

Statistical Analysis
Differences between groups were evaluated with the t-test or
Mann–Whitney U test for continuous variables, with the chi-
square test for qualitative variables, and with the Wilcoxon test
for nonparametric variables. Data were analyzed using SPSS v20
software (IBM, Armonk, NY, USA) and R v3.4.1 software (R
FIGURE 1 | Overview of the proposed study design. In general, this study contains four parts: (1) retrospective collection of presurgery gadoxetic acid-enhanced
MRI; (2) tumor segmentation; (3) feature extraction and subsequent ranking; (4) predictive classifier construction and independent validation.
August 2021 | Volume 11 | Article 672126
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Core Team, Vienna, Austria). All statistical tests were two-sided,
and a p-value <0.05 was considered statistically significant.
RESULTS

Clinicopathologic Features of the
Study Population
The study ultimately enrolled 257 HCC patients including 143
from FAH-ZJU (CK19+:CK19− = 64:79), 75 from SLH (CK19+:
CK19− = 34:41), and 39 from LSCH (CK19+:CK19− = 8:31).
Baseline clinical and histopathologic characteristics of the
participants are shown in Table 1.

CK19 Status Radiomics Classifier Feature
Selection and Construction
We identified 64 T2 and 64 DWI radiomics features that differed
significantly between the CK19+ and CK19− groups in the
training cohort according to the Wilcoxon test. These features
were selected with the MRMR algorithm, and the top 15 were
retained for further analysis (Supplementary Figure S2). In the
T2 model, eight radiomics features were identified as optimal
features; in the DWI model, 11 features were selected to
construct the classifier; and in the combined model, the top 12
features were used to develop the predictive model. The selected
features inc luded skewness_DWI, energy_LLL_T2,
Frontiers in Oncology | www.frontiersin.org 4
uniformity_DWI, denth_T2, SZE_LHH_DWI, maxpr_LLH_T2,
SZE_HLH_DWI, SZE_HLH_DWI, and idmnc_T2 ,
Busyness_LLL_DWI, and RP_HLH_DWI.

Of the three radiomics models, the combined model showed
the best predictive performance for CK19+ status with AUROCs
of 0.857 [95% confidence interval (CI): 0.792–0.922] in the FAH-
ZJU training cohort, 0.726 (95% CI: 0.610–0.842) in the SLH
cohort, and 0.790 (95% CI: 0.639–0.941) in the LSCH cohort. We
also found that the performance of the DWI model [FAH-ZJU:
0.854 (95% CI: 0.782–0.927); SLH: 0.635 (95% CI: 0.507–0.764);
LSCH: 0.734 (95% CI: 0.555–0.913)] was superior to that of the
T2 model [FAH-ZJU: 0.802 (95% CI: 0.729–0.875); SLH: 0.623
(95% CI: 0.492–0.754); LSCH: 0.605 (95% CI: 0.418–0.792)]. The
ROC curves of the three radiomics models are shown
in Figure 3.

We also developed classifiers using three other machine learning
methods, namely, theMLR, SVM, andRF algorithms. A comparison
of the predictive performance of the corresponding models in
independent cohorts showed that these three machine learning
method-derived classifiers were inferior to the ANN classifier. The
ROC curves of the four classifiers are shown in Figure 4.

Clinical Classifier Construction
An optimal clinical model was constructed based on the
multivariate analysis that used the minimum AIC. Six clinical
variables including sex, lymph node status, total bilirubin, direct
A

B

D

E

FC

FIGURE 2 | Delineation of the region of interest (ROI). Immunohistochemistry (IHC) staining-based grouping of cytokeratin (CK)19 expression [(A), CK19 positive;
(D), CK19 negative]. Undelineated and delineated image of contrast-enhanced T2-weighted imaging [(B), CK19 positive; (E), CK19 negative]. Undelineated and
delineated image of contrast-enhanced diffusion-weighted imaging [(C), CK19 positive; (F), CK19 negative].
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Yang et al. MRI-Radiomics Classifier for CK19+ HCC
bilirubin, a-fetoprotein, and log a-fetoprotein were used for
model construction. The predictive ability of the clinical model
was worse than that of the radiomics-based model in the training
and independent validation cohorts [FAH-ZJU: 0.737 (95% CI:
0.654–0.819); SLH: 0.560 (95% CI: 0.425–0.694); LSCH: 0.585
(95% CI: 0.313–0.857)]. The ROC curves for the models are
shown in Figure 3.
DISCUSSION

In this multicenter study, we extracted radiomics features from
preoperative enhanced MR images and used these to construct a
classifier that can accurately distinguish between CK19+ and
CK19− HCC patients.
Frontiers in Oncology | www.frontiersin.org 5
CK19+HCC exhibits progenitor characteristics and is associated
with more malignant behavior, higher lymph node metastasis rate,
higher resistance to chemoradiotherapy, and worse outcome after
treatment (9–11). Transcriptomic analyses have revealed a positive
correlation between HCC subtypes with CK19+ status and poor
prognosis including the Hoshida S2, G1, and iClust1 subtypes (30,
31). In in vitro studies, CK19+ HCC cells showed enhanced EMT
and induction of angiogenesis, which was abrogated by CK19
knockdown (6, 7, 32). These results indicate that the features of
CK19+ HCC fundamentally differ from those of CK19− tumors.
Irregular tumor margin, arterial rim enhancement, lower tumor-to-
liver signal intensity ratio on hepatobiliary phase MRI, and lower
tumor-to-liver apparent diffusion coefficient were found to be
significant independent predictors of CK19+ HCC (20). In a
multiparametric MRI heterogeneity analysis of HCC, correlations
TABLE 1 | Clinical Characteristics of the Study Population.

Characteristic CK19 negative (151) CK19 positive (106) p-value

Age 0.266
≥50 112 71
<50 39 35
Gender 0.009
Male 141 87
Female 10 19
Differentiation 0.719
Good 63 41
Poor 88 65
Tumor size 0.600
≥5 cm 66 42
<5 cm 85 64
Tumor number 0.711
Single 93 62
Multiple 58 44
Microvascular invasion 0.089
Yes 54 50
No 97 56
Macrovascular invasion 0.581
Yes 18 16
No 133 90
Lymph node metastasis 0.688
Yes 2 3
No 149 103
Cirrhosis 0.651
Yes 106 78
No 45 28
HBV infection 0.699
Yes 136 93
No 15 13
PLT 135.50 ± 59.40 149.10 ± 75.17 0.107
ALB 39.96 ± 5.66 40.79 ± 5.97 0.255
ALT 50.58 ± 101.03 50.16 ± 63.79 0.970
AST 60.45 ± 158.22 55.16 ± 77.12 0.750
GGT 114.74 ± 158.89 93.17 ± 85.55 0.204
FBG 5.46 ± 1.68 5.76 ± 2.15 0.215
TB 19.60 ± 19.55 26.24 ± 50.65 0.145
DB 10.03 ± 16.31 15.08 ± 43.95 0.198
IB 9.58 ± 6.69 11.19 ± 8.72 0.096
Serum AFP 2,666.07 ± 11,635.29 4,312.00 ± 14,029.66 0.307
Serum CEA 3.14 ± 1.77 3.37 ± 4.59 0.588
Serum CA19-9 84.60 ± 840.43 19.54 ± 33.05 0.427
August 2021 | Volume 11 | Article
HBV, hepatitis B virus; PLT, platelet; ALB, albumin; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, gamma-glutamyl transferase; FBG, fasting blood glucose;
TB, total bilirubin; DB, direct bilirubin; IB, indirect bilirubin; AFP, a-fetoprotein; CEA, carcinoembryonic antigen; CA19-9, carbohydrate antigen 19-9.
Bold values indicate statistically different at P values < 0.05.
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were observed between dynamic contrast-enhanced MRI findings
and CK19 status (33). These studies indicate that the unique
tumor biology of CK19+ HCC is reflected in MRI-based
radiomics features.

Classifiers in previous studies were constructed based on
subjective characteristics, which could limit their reliability and
generalizability. In contrast, we used time-independent data
from different medical centers for the radiomics analysis. We
compared the prediction strength of twoMRI sequences, namely,
DWI and T2, and found that a model combining features from
both sequences had the best predictive performance. This is
likely because the two models revealed different structural
information about the tumors. We identified 128 features
differing significantly between patients with opposite CK19
status (i.e., positive and negative). We used four machine
learning algorithms to determine the best classifier and found
that the one based on the ANN algorithm showed the best
prediction performance for CK19 status. The top 12 features
were identified as the optimal combination for construction of
Frontiers in Oncology | www.frontiersin.org 6
the ANN classifier, which achieved AUROCs of 0.857 (95% CI:
0.792–0.922) in the FAH-ZJU training cohort and 0.726 (95% CI:
0.610–0.842) and 0.790 (95% CI: 0.639–0.941) in the SLH and
LSCH validation cohorts, respectively, outperforming classifiers
derived using the other algorithms. The SVM, RF, and MLR
algorithms have been used in other previous radiomics analyses.
A classifier developed using SVM was able to identify glypican 3-
positive HCC (34); one that was based on RF effectively predicted
the malignant potential of gastrointestinal stromal tumors (35);
and an MLR-based classifier predicted coronavirus disease
(COVID)-infected pulmonary lesions (36). We applied the
ANN method because it can automatically approximate
nonlinear functions with arbitrary accuracy from the training
data, outperforming other algorithms by capturing subtle
functional relationships in the data (37). Thus, the ANN
algorithm enhanced the robustness of our radiomics model.

There were some limitations to our study. Firstly, the sample
size was relatively small—especially the LSCH cohort—that
could have caused sample bias. Secondly, we used MRI data
A B C

FIGURE 4 | The comparison of diagnostic performance of artificial neural network (ANN), multiple logistic regression (MLR), random forest (RF), and support vector
machine (SVM) classifiers in the training cohort [(A) First Affiliated Hospital of Zhejiang University School of Medicine (FAH-ZJU)] and validation cohorts [(B) Shulan
Health (Hangzhou) Hospital (SLH); (C) Lishui Central Hospital (LSCH)]. The performance was measured by the area under the receiver operating characteristic
(AUROC) curve. ANN classifier (purple line), MLR classifier (green line), RF classifier (red line), SVM classifier (orange line).
A B C

FIGURE 3 | The comparison of diagnostic performance of the radiomics classifiers and clinical classifier in the training cohort [(A) First Affiliated Hospital of
Zhejiang University School of Medicine (FAH-ZJU)] and independent validation cohorts [(B) Shulan Health (Hangzhou) Hospital (SLH); (C) Lishui Central Hospital
(LSCH)]. The performance was measured by the area under the receiver operating characteristic (AUROC) curve. The radiomics classifiers consisted of the
combined classifier (purple line), the T2 classifier (green line), and the diffusion-weighted imaging (DWI) classifier (orange line). The clinical classifier was shown as
the red line.
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from three medical centers equipped with different MRI
scanners; although the images were processed before they were
combined and the features extracted, there may have been bias
related to the instruments. Lastly, CK19 is expressed in liver
tumors other than HCC (e.g., cholangiocarcinoma, combined
cholangiocarcinoma–HCC, and hepatoid adenocarcinoma);
whether our classifier can accurately differentiate CK19+ HCC
from these tumors remains to be determined.
CONCLUSION

In conclusion, based on multicenter and time-independent
preoperative gadoxetic acid-enhanced MRI data and radiomics
analysis, we established a noninvasive and accurate radiomics
classifier to determine CK19 status in HCC patients. Our
findings can guide the development of personalized
management strategies for CK19+ HCC patients that can
improve their prognosis.
DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material. Further inquiries can be
directed to the corresponding authors.
ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by First Affiliated Hospital Zhejiang University School
of Medicine Lishui Central Hospital Shulan Health (Hangzhou)
Hospital. The patients/participants provided their written
informed consent to participate in this study.
Frontiers in Oncology | www.frontiersin.org 7
AUTHOR CONTRIBUTIONS

XX and TN designed the study. FY and YCW collected the data.
FY, YDW, and LX analyzed the data. FY and YDW wrote the
manuscript. XS, JW, and DL did the ROI delineation and
recheck. CS and SZ revised the manuscript. All authors
contributed to the article and approved the submitted version.
FUNDING

This work was supported by the National Science and Technology
Major Project (No. 2017ZX10203205), the National Natural
Science Funds for Distinguished Young Scholar of China (No.
81625003), Key Program, National Natural Science Foundation of
China (No. 81930016), Key Research & Development Plan of
Zhejiang Province (No. 2019C03050), and Natural Science
FoundationofChina (No.81801824,No. 81802889,No. 82003248).
ACKNOWLEDGMENTS

We thank Dr. Ruihui Wang and for his help on image check. We
also want to express our thanks to Dr. Xue Wen, who worked as
our consultant, for her professional pathology advice.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fonc.2021.
672126/full#supplementary-material

Supplementary Figure 1 | The patient enrollment of the study.

Supplementary Figure 2 | The mRMR algorithm importance ranking of top 15
radiomics features. The lengthof thehistogramrepresents the score valueof each feature.
REFERENCES
1. Forner A, Reig M, Bruix J. Hepatocellular Carcinoma. Lancet (2018) 391

(10127):1301–14. doi: 10.1016/S0140-6736(18)30010-2
2. Lee JS, Heo J, Libbrecht L, Chu IS, Kaposi-Novak P, Calvisi DF, et al. A

Novel Prognostic Subtype of Human Hepatocellular Carcinoma Derived
From Hepatic Progenitor Cells. Nat Med (2006) 12(4):410–6. doi: 10.1038/
nm1377

3. Tummala KS, Brandt M, Teijeiro A, Grana O, Schwabe RF, Perna C, et al.
Hepatocellular Carcinomas Originate Predominantly From Hepatocytes and
Benign Lesions From Hepatic Progenitor Cells. Cell Rep (2017) 19(3):584–
600. doi: 10.1016/j.celrep.2017.03.059

4. Sia D, Villanueva A, Friedman SL, Llovet JM. Liver Cancer Cell of Origin,
Molecular Class, and Effects on Patient Prognosis. Gastroenterology (2017)
152(4):745–61. doi: 10.1053/j.gastro.2016.11.048

5. Matsumoto T, Takai A, Eso Y, Kinoshita K, Manabe T, Seno H, et al.
Proliferating EpCAM-Positive Ductal Cells in the Inflamed Liver Give Rise to
Hepatocellular Carcinoma. Cancer Res (2017) 77(22):6131–43. doi: 10.1158/
0008-5472.CAN-17-1800

6. Takano M, Shimada K, Fujii T, Morita K, Takeda M, Nakajima Y, et al.
Keratin 19 as a Key Molecule in Progression of Human Hepatocellular
Carcinomas Through Invasion and Angiogenesis. BMC Cancer (2016) 16
(1):903. doi: 10.1186/s12885-016-2949-y
7. Govaere O, Komuta M, Berkers J, Spee B, Janssen C, de Luca F, et al. Keratin
19: A Key Role Player in the Invasion of Human Hepatocellular Carcinomas.
Gut (2014) 63(4):674–85. doi: 10.1136/gutjnl-2012-304351

8. Kawai T, Yasuchika K, Ishii T, Katayama H, Yoshitoshi EY, Ogiso S, et al.
Keratin 19, A Cancer Stem Cell Marker in Human Hepatocellular Carcinoma.
Clin Cancer Res (2015) 21(13):3081–91. doi: 10.1158/1078-0432.CCR-14-
1936

9. Kim H, Choi GH, Na DC, Ahn EY, Kim GI, Lee JE, et al. Human
Hepatocellular Carcinomas With “Stemness”-Related Marker Expression:
Keratin 19 Expression and a Poor Prognosis. Hepatology (2011) 54
(5):1707–17. doi: 10.1002/hep.24559

10. Lee SH, Lee JS, Na GH, You YK, Kim DG. Immunohistochemical Markers for
Hepatocellular Carcinoma Prognosis After Liver Resection and Liver
Transplantation. Clin Transplant (2017) 31(1). doi: 10.1111/ctr.12852

11. Fatourou E, Koskinas J, Karandrea D, Palaiologou M, Syminelaki T,
Karanikolas M, et al. Keratin 19 Protein Expression Is an Independent
Predictor of Survival in Human Hepatocellular Carcinoma. Eur J
Gastroenterol Hepatol (2015) 27(9):1094–102. doi: 10.1097/MEG.00000
00000000398

12. Guan DX, Shi J, Zhang Y, Zhao JS, Long LY, Chen TW, et al. Sorafenib
Enriches Epithelial Cell Adhesion Molecule-Positive Tumor Initiating Cells
and Exacerbates a Subtype of Hepatocellular Carcinoma Through TSC2-AKT
Cascade. Hepatology (2015) 62(6):1791–803. doi: 10.1002/hep.28117
August 2021 | Volume 11 | Article 672126

https://www.frontiersin.org/articles/10.3389/fonc.2021.672126/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2021.672126/full#supplementary-material
https://doi.org/10.1016/S0140-6736(18)30010-2
https://doi.org/10.1038/nm1377
https://doi.org/10.1038/nm1377
https://doi.org/10.1016/j.celrep.2017.03.059
https://doi.org/10.1053/j.gastro.2016.11.048
https://doi.org/10.1158/0008-5472.CAN-17-1800
https://doi.org/10.1158/0008-5472.CAN-17-1800
https://doi.org/10.1186/s12885-016-2949-y
https://doi.org/10.1136/gutjnl-2012-304351
https://doi.org/10.1158/1078-0432.CCR-14-1936
https://doi.org/10.1158/1078-0432.CCR-14-1936
https://doi.org/10.1002/hep.24559
https://doi.org/10.1111/ctr.12852
https://doi.org/10.1097/MEG.0000000000000398
https://doi.org/10.1097/MEG.0000000000000398
https://doi.org/10.1002/hep.28117
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Yang et al. MRI-Radiomics Classifier for CK19+ HCC
13. YuanM, PuXH, XuXQ, Zhang YD, Zhong Y, LiH, et al. LungAdenocarcinoma:
Assessment of Epidermal Growth Factor Receptor Mutation Status Based on
ExtendedModels of Diffusion-Weighted Image. JMagn Reson Imaging (2017) 46
(1):281–9. doi: 10.1002/jmri.25572

14. Hu XX, Yang ZX, Liang HY, Ding Y, Grimm R, Fu CX, et al. Whole-Tumor
MRI Histogram Analyses of Hepatocellular Carcinoma: Correlations With Ki-
67 Labeling Index. J Magn Reson Imaging (2017) 46(2):383–92. doi: 10.1002/
jmri.25555

15. Moriya T, Saito K, Tajima Y, Harada TL, Araki Y, Sugimoto K, et al. 3D
Analysis of Apparent Diffusion Coefficient Histograms in Hepatocellular
Carcinoma: Correlation With Histological Grade. Cancer Imaging (2017) 17
(1):1. doi: 10.1186/s40644-016-0103-3

16. Choi Y, Kim SH, Youn IK, Kang BJ, Park WC, Lee A. Rim Sign and
Histogram Analysis of Apparent Diffusion Coefficient Values on Diffusion-
Weighted MRI in Triple-Negative Breast Cancer: Comparison With ER-
Positive Subtype. PloS One (2017) 12(5):e0177903. doi: 10.1371/
journal.pone.0177903

17. Shen X, Yang F, Yang P, Yang M, Xu L, Zhuo J, et al. A Contrast-Enhanced
Computed Tomography Based Radiomics Approach for Preoperative
Differentiation of Pancreatic Cystic Neoplasm Subtypes: A Feasibility Study.
Front Oncol (2020) 10:248. doi: 10.3389/fonc.2020.00248

18. Joo I, Kim H, Lee JM. Cancer Stem Cells in Primary Liver Cancers:
Pathological Concepts and Imaging Findings. Korean J Radiol (2015) 16
(1):50–68. doi: 10.3348/kjr.2015.16.1.50

19. Jeong HT, Kim MJ, Kim YE, Park YN, Choi GH, Choi JS, et al. MRI Features
of Hepatocellular Carcinoma Expressing Progenitor Cell Markers. Liver Int
(2012) 32(3):430–40. doi: 10.1111/j.1478-3231.2011.02744.x

20. Choi SY, Kim SH, Park CK, Min JH, Lee JE, Choi YH, et al. Imaging Features
of Gadoxetic Acid-Enhanced and Diffusion-Weighted MR Imaging for
Identifying Cytokeratin 19-Positive Hepatocellular Carcinoma: A
Retrospective Observational Study. Radiology (2018) 286(3):897–908. doi:
10.1148/radiol.2017162846

21. Hu XX, Wang WT, Yang L, Yang ZX, Liang HY, Ding Y, et al. MR Features
Based on LI-RADS Identify Cytokeratin 19 Status of Hepatocellular
Carcinomas. Eur J Radiol (2019) 113:7–14. doi: 10.1016/j.ejrad.2019.01.036

22. Wang W, Gu D, Wei J, Ding Y, Yang L, Zhu K, et al. A Radiomics-Based
Biomarker for Cytokeratin 19 Status of Hepatocellular Carcinoma With
Gadoxetic Acid-Enhanced MRI. Eur Radiol (2020) 30(5):3004–14. doi:
10.1007/s00330-019-06585-y

23. Wang HQ, Yang C, Zeng MS, Rao SX, Ji Y, Weng X, et al. Magnetic Resonance
Texture Analysis for the Identification of Cytokeratin 19-Positive
Hepatocellular Carcinoma. Eur J Radiol (2019) 117:164–70. doi: 10.1016/
j.ejrad.2019.06.016

24. Huang X, Long L, Wei J, Li Y, Xia Y, Zuo P, et al. Radiomics for Diagnosis of
Dual-Phenotype Hepatocellular Carcinoma Using Gd-EOB-DTPA-Enhanced
MRI and Patient Prognosis. J Cancer Res Clin Oncol (2019) 145(12):2995–
3003. doi: 10.1007/s00432-019-03062-3

25. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. User-
Guided 3D Active Contour Segmentation of Anatomical Structures:
Significantly Improved Efficiency and Reliability. Neuroimage (2006) 31
(3):1116–28. doi: 10.1016/j.neuroimage.2006.01.015

26. Liang W, Xu L, Yang P, Zhang L, Wan D, Huang Q, et al. Novel
Nomogram for Preoperative Prediction of Early Recurrence in
Intrahepatic Cholangiocarcinoma. Front Oncol (2018) 8:360. doi: 10.3389/
fonc.2018.00360

27. Xu L, Yang P, Liang W, Liu W, Wang W, Luo C, et al. A Radiomics Approach
Based on Support Vector Machine Using MR Images for Preoperative Lymph
Node Status Evaluation in Intrahepatic Cholangiocarcinoma. Theranostics
(2019) 9(18):5374–85. doi: 10.7150/thno.34149
Frontiers in Oncology | www.frontiersin.org 8
28. Cong WM, Bu H, Chen J, Dong H, Zhu YY, Feng LH, et al. Practice
Guidelines for the Pathological Diagnosis of Primary Liver Cancer: 2015
Update. World J Gastroenterol (2016) 22(42):9279–87. doi: 10.3748/
wjg.v22.i42.9279

29. Durnez A, Verslype C, Nevens F, Fevery J, Aerts R, Pirenne J, et al. The
Clinicopathological and Prognostic Relevance of Cytokeratin 7 and 19
Expression in Hepatocellular Carcinoma. A Possible Progenitor Cell Origin.
Histopathology (2006) 49(2):138–51. doi: 10.1111/j.1365-2559.2006.02468.x

30. Miltiadous O, Sia D, Hoshida Y, Fiel MI, Harrington AN, Thung SN, et al.
Progenitor Cell Markers Predict Outcome of Patients With Hepatocellular
Carcinoma Beyond Milan Criteria Undergoing Liver Transplantation.
J Hepatol (2015) 63(6):1368–77. doi: 10.1016/j.jhep.2015.07.025

31. Llovet JM, Montal R, Sia D, Finn RS. Molecular Therapies and Precision
Medicine for Hepatocellular Carcinoma. Nat Rev Clin Oncol (2018) 15
(10):599–616. doi: 10.1038/s41571-018-0073-4

32. Yoneda N, Sato Y, Kitao A, Ikeda H, Sawada-Kitamura S, Miyakoshi M, et al.
Epidermal Growth Factor Induces Cytokeratin 19 Expression Accompanied
by Increased Growth Abilities in Human Hepatocellular Carcinoma. Lab
Invest (2011) 91(2):262–72. doi: 10.1038/labinvest.2010.161

33. Hectors SJ, Wagner M, Bane O, Besa C, Lewis S, Remark R, et al.
Quantification of Hepatocellular Carcinoma Heterogeneity With
Multiparametric Magnetic Resonance Imaging. Sci Rep (2017) 7(1):2452.
doi: 10.1038/s41598-017-02706-z

34. Gu D, Xie Y, Wei J, Li W, Ye Z, Zhu Z, et al. MRI-Based Radiomics Signature:
A Potential Biomarker for Identifying Glypican 3-Positive Hepatocellular
Carcinoma. J Magn Reson Imaging (2020) 52(6):1679–87. doi: 10.1002/
jmri.27199

35. Wang M, Feng Z, Zhou L, Zhang L, Hao X, Zhai J. Computed-Tomography-
Based Radiomics Model for Predicting the Malignant Potential of
Gastrointestinal Stromal Tumors Preoperatively: A Multi-Classifier and
Multicenter Study. Front Oncol (2021) 11:582847. doi: 10.3389/
fonc.2021.582847

36. Qiu J, Peng S, Yin J, Wang J, Jiang J, Li Z, et al. A Radiomics Signature to
Quantitatively Analyze COVID-19-Infected Pulmonary Lesions. Interdiscip
Sci (2021) 13(1):61–72. doi: 10.1007/s12539-020-00410-7

37. Huynh E, Hosny A, Guthier C, Bitterman DS, Petit SF, Haas-Kogan DA, et al.
Artificial Intelligence in Radiation Oncology. Nat Rev Clin Oncol (2020) 17
(12):771–81. doi: 10.1038/s41571-020-0417-8

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

The reviewer JQ declared a shared affiliation with several of the authors, FY, LX,
YDW, YCW, JW, XS, SZ, and XX, to the handling editor at time of review.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Yang, Wan, Xu, Wu, Shen, Wang, Lu, Shao, Zheng, Niu and Xu.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums is
permitted, provided the original author(s) and the copyright owner(s) are credited and
that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.
August 2021 | Volume 11 | Article 672126

https://doi.org/10.1002/jmri.25572
https://doi.org/10.1002/jmri.25555
https://doi.org/10.1002/jmri.25555
https://doi.org/10.1186/s40644-016-0103-3
https://doi.org/10.1371/journal.pone.0177903
https://doi.org/10.1371/journal.pone.0177903
https://doi.org/10.3389/fonc.2020.00248
https://doi.org/10.3348/kjr.2015.16.1.50
https://doi.org/10.1111/j.1478-3231.2011.02744.x
https://doi.org/10.1148/radiol.2017162846
https://doi.org/10.1016/j.ejrad.2019.01.036
https://doi.org/10.1007/s00330-019-06585-y
https://doi.org/10.1016/j.ejrad.2019.06.016
https://doi.org/10.1016/j.ejrad.2019.06.016
https://doi.org/10.1007/s00432-019-03062-3
https://doi.org/10.1016/j.neuroimage.2006.01.015
https://doi.org/10.3389/fonc.2018.00360
https://doi.org/10.3389/fonc.2018.00360
https://doi.org/10.7150/thno.34149
https://doi.org/10.3748/wjg.v22.i42.9279
https://doi.org/10.3748/wjg.v22.i42.9279
https://doi.org/10.1111/j.1365-2559.2006.02468.x
https://doi.org/10.1016/j.jhep.2015.07.025
https://doi.org/10.1038/s41571-018-0073-4
https://doi.org/10.1038/labinvest.2010.161
https://doi.org/10.1038/s41598-017-02706-z
https://doi.org/10.1002/jmri.27199
https://doi.org/10.1002/jmri.27199
https://doi.org/10.3389/fonc.2021.582847
https://doi.org/10.3389/fonc.2021.582847
https://doi.org/10.1007/s12539-020-00410-7
https://doi.org/10.1038/s41571-020-0417-8
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

	MRI-Radiomics Prediction for Cytokeratin 19-Positive Hepatocellular Carcinoma: A Multicenter Study
	Introduction
	Materials and Methods
	Study Population
	Study Design
	MR Image Acquisition
	Region-of-Interest Segmentation
	Quantitative Feature Extraction
	Immunohistochemistry
	Construction of the Cytokeratin 19 Status Classifier
	Ethics Approval
	Statistical Analysis

	Results
	Clinicopathologic Features of the Study Population
	CK19 Status Radiomics Classifier Feature Selection and Construction
	Clinical Classifier Construction

	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


