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Chemotherapy can significantly prolong the survival of patients with breast cancer;
Nevertheless, the majority of patients receiving chemotherapy such as doxorubicin may
have cognitive deficits that manifest as impairments in learning, reasoning, attention, and
memory. The phenomenon of chemotherapy-induced cognitive decline is termed as
chemotherapy-related cognitive impairment (CRCI) or chemo-brain. Doxorubicin (DOX), a
commonly used drug in adjuvant chemotherapy for patients with breast cancer, has been
reported to induce chemo-brain through a variety of mechanisms including DNA damage,
oxidative stress, inflammation, dysregulation of apoptosis and autophagy, changes in
neurotransmitter levels, mitochondrial dysfunction, glial cell interactions, neurogenesis
inhibition, and epigenetic factors. These mechanisms do not operate independently but
are inter-related, coordinately contributing to the development of chemo-brain. Here we
review the relationships of these mechanisms and pathways in attempt to provide
mechanistic insights into the doxorubicin-induced cognitive impairment.
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Chemotherapy is one of the effective conventional and widely used treatments for patients with
cancer. Unfortunately, up to 70% of cancer patients receiving chemotherapy may develop cognitive
impairment during or after treatment, which negatively affects their life-quality (1, 2). Since 1990s, it
has been known that chemotherapy has adverse effects on brain function, causing dysfunctions in
learning, memory, attention, motor activity, and executive function (3, 4). Numerous studies have
shown that tyrosine kinases, antimetabolites, microtubule inhibitors, and alkylating agents all can
induce neurotoxicity (5–7). Doxorubicin belongs to the anthracycline class and is commonly used in
the adjuvant chemotherapy regimens for breast cancer (8). Doxorubicin exerts its antitumor effects
through DNA insertion and inhibition of topoisomerase II. In addition, doxorubicin causes the
production of invasive systemic reactive oxygen species (ROS) (9). Notably, despite its limited
passage through the blood-brain barrier (BBB), doxorubicin can still cause severe neurotoxicity in
Abbreviations: DSBs, DNA double-strand breaks; BRCA1, breast cancer type 1 susceptibility protein; ROS, reactive oxygen
species; MOMP, mitochondrial outer membrane permeability; mPTP, mitochondrial permeability transition pore; PLD,
phospholipase D; ChAT, choline acetyltransferase; AChE, acetylcholinesterase; 5-HT, serotonin; DA, dopamine; ERK,
extracellular signal-regulated kinase; BDNF, brain-derived neurotrophic factor; NF-kB, nuclear factor-kB; TNFR, TNF-a
receptor; TNFR1, TNF-a receptor 1; TNFR2, TNF-a receptor 2; NOX, NADPH oxidases; MnSOD, manganese superoxide
dismutase; ApoA-1, Apolipoprotein A-I.

May 2021 | Volume 11 | Article 6733401

https://www.frontiersin.org/articles/10.3389/fonc.2021.673340/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.673340/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:swallow_jhy@163.com
mailto:wangyanhongmail@126.com
https://orcid.org/0000-0001-7227-2548
https://orcid.org/0000-0002-6960-7869
https://orcid.org/0000-0001-5631-498X
https://doi.org/10.3389/fonc.2021.673340
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.673340
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.673340&domain=pdf&date_stamp=2021-05-13


Du et al. Doxorubicin-Induced Cognitive Impairment
the brain, and several clinical studies reported that patients of all
ages treated with doxorubicin exhibited impaired ability in
cognitive assessments (10–13).

Both direct or indirect mechanisms contribute to the doxorubicin-
induced cognitive deficits, and the inter-relation among the multiple
mechanisms are complex. A better understanding of those
mechanisms and pathways and their coordinative operations may
help devise novel therapeutic interventions to prevent or treat chemo-
brain. The objective of this review is to comprehensively summarize
and discuss the mechanisms involved in doxorubicin-induced
cognitive impairment.
DIRECT NEUROTOXICITY

It was generally believed that doxorubicin has a limited capacity
to penetrate the blood-brain barrier and thus the brain is
protected from its damage. However, several studies have
shown that doxorubicin has potential antitumor effects on
brain cancer (14). Clinical as well as animal studies have
shown that doxorubicin was detected in the brain after
peripheral administration of the drug (15, 16). Recently, it was
reported that doxorubicin could cross the blood-brain barrier
through vascular-associated apical projections of neural stem
cells (which are about 30 nm in diameter), can establish direct
membrane-membrane contacts with the endothelial cells in
specific regions of the irregular endothelial basement
membrane, and have abundant vesicular activity (17). The
possible direct mechanisms of doxorubicin induced chemo-
brain are illustrated in Table 1 and Figure 1.
DNA Damage
An important mechanism by which doxorubicin kills cancer cells
is its ability to effectively cross-link with DNA, resulting in
disruption of the cell cycle and subsequent death of cancer
cells (23, 42). However, doxorubicin can also damage normal
and non-cancerous cells (43).

Manchon et al. proved that doxorubicin accumulated in the
nucleus of neurons, leading to DNA double-strand breaks (DSBs)
and DNA cross-linking. Furthermore, breast cancer type 1
susceptibility protein (BRCA1), which is responsible for DNA
repair, was downregulated in primary cortical neurons after
doxorubicin treatment (18). DNA fragmentation following
doxorubicin treatment is a strong stimulus to incur internal or
mitochondrial apoptotic pathways via increasing the Bax/Bcl-2
ratio; in addition, it can assemble the bax - bax oligomers on
mitochondrial membranes, resulting in increased mitochondrial
outer membrane permeability (MOMP) and the release of
cytochrome C, and activating the caspase-dependent intrinsic
apoptotic pathways (19, 44, 45). Also, it was showed that
doxorubicin remarkably increased neuronal cell death in the early
and late days (22). In a human neuroblastoma model, doxorubicin
prevented cell cycle progression in the G2/M and S phases (23).

The death of neurons seriously affects the normal activities of
the brain, which is manifested by impaired cognitive functions
such as learning and memory.
Frontiers in Oncology | www.frontiersin.org 2
Increased Oxidative Stress
Doxorubicin causes neurotoxicity by facilitating ROS production
and mitochondrial membrane depolarization in neurons (19,
22). Doxorubicin increases the MOMP and Bax/Bcl-2 ratio,
leading to mitochondrial degeneration and neuronal
dysfunction (19, 24). Previous studies have shown that both
endogenic and ectogenic hydrogen peroxide can induce neural
degeneration (25).

Except for being a site of ATP production, mitochondria are
the main organelles which adjust calcium absorption and
redox signaling under physiological conditions (46). It was
found that doxorubicin damaged mitochondrial function in
the hippocampus, resulting in elevated mitochondrial ROS
levels and calcium disorder (26). In addition, glucose
metabolism was declined in both the hippocampus and
bilateral cortex after intra-thecal injection of doxorubicin
(27). This damage may be generated by the opening of the
mitochondrial permeability transition pore (mPTP), which is
assembled between the mitochondrial membranes by three
protein subunits including cyclophilin D (CyP-D), adenine
nucleotide translocase (ANT), and VDAC (47). ROS initiates
the activation of glycogen synthase kinase-3, which
phosphorylates CyP-D into its active form. In addition,
Calcium dysregulation contributes to mitochondrial
membrane depolarization and ANT conformational changes.
All these contribute to the mPTP formation, leading to
abnormal solute divulgation and mitochondrial swelling (29,
47). Interestingly, injection of the antibodies against TNF-a or
iNOS totally prevented the damage of mitochondrial oxidative
reaction in mice, suggesting that doxorubicin reduces the
mitochondrial function via inflammatory reaction and NO•
production (30).

Tangpong et al. showed that doxorubicin shifted p53 to the
outer mitochondrial membrane, promoting its interaction with
Bcl-xL (30), and this interplay caused the separation of Bax from
Bcl-2 and Bcl-xL, led to Bax oligomerization and increased
MOMP, resulting in the release of cytochrome C (30).

Mitochondria are the energy source of neurons, carrying out
countless REDOX reactions all the time. Oxidative stress and
neuron degeneration caused by abnormal mitochondria are one
of the important causes of cognitive impairment (22).

Effect on Autophagic Lysosomal System
Doxorubicin can cause damage to the progenitor neuronal
degradation pathways, impair progenitor neuronal lysosomes,
promote the formation of pre-autophagic complexes, up-regulate
autophagy, and affect the clearance of the autophagic marker p62
protein (31). Under electron microscopy, an accumulation of
vacuolar structures, autophagosomes, mitochondria, and lipid
droplets was observed in doxorubicin- exposed neurons (31).

Degradation disorders seriously affect the function of neurons,
resulting in cognitive impairment after chemotherapy (31).

Activation of Apoptosis
It has been noted that doxorubicin-induced apoptosis is
dependent on the exogenous pathway in primary cortical
May 2021 | Volume 11 | Article 673340
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neurons (death receptor-mediated” apoptosis). Exogenous
apoptotic pathway is a direct apoptotic mechanism mediated
by doxorubicin. Doxorubicin increases Fas-Fas ligand (FasL)
interactions, leading to the recruitment of Fas-associated protein
with death domain (FADD) by connecting to the death domain,
which initiates exogenous apoptotic pathways (32). Endogenous
apoptotic pathways are activated by cellular stress, DNA damage,
developmental signaling, and loss of survival factors. This
pathway is regulated by Bcl-2 family proteins, and is related to
Frontiers in Oncology | www.frontiersin.org 3
the mechanism of mitochondrial oxidative stress, which has been
described in detail above.

Abnormal apoptosis greatly reduces the number of neurons,
thus leading to cognitive impairment (32).

Damaged Neurogenesis
The hippocampus is one of the structures closely associated with
spatial processing and memory formation, and the integration of
mature neurons in the circuit plays a key role in hippocampal
TABLE 1 | The direct neurotoxicity of doxorubicin on chemo-brain.

Mechanism Interpretation Ref

Direct
Neurotoxicity

DNA Damage and Cell Cycle Disruption DSBs and DNA cross-linking; BRCA1 was downregulated. Manchon JF et al.
(18)

internal or mitochondrial apoptotic pathways; caspase-dependent intrinsic apoptotic
pathways.

Shokoohinia Y et al.
(19)
Lee YJ et al. (20)
Shamas-Din A et al.
(21)

increased neuronal cell death in the early and late days. Ramalingayya GV
et al. (22)

blocked cell cycle progression in the G2/M and S phases. Pei Y et al. (23)
Mitochondrial dysfunction and Increased
Oxidative Stress

ROS production and mitochondrial membrane depolarization. Shokoohinia Y et al.
(19)
Ramalingayya GV
et al. (22)

increases the Bax/Bcl-2 ratio and MOMP. Shokoohinia Y et al.
(19)
Peng W et al. (24)

both endogenic and ectogenic hydrogen peroxide can induce neural degeneration. Errea O et al. (25)
elevated mitochondrial ROS levels and calcium disorder. Park HS et al. (26)
glucose metabolism was decreased in both the bilateral cortex and hippocampus. Lim I et al. (27)
the opening of the mPTP. Javadov S et al. (28)

Wang CY et al. (29)
Tangpong J et al.
(30)

interaction p53 with Bcl-xL. Tangpong J et al.
(30)

Direct
Neurotoxicity

Effect on autophagic lysosomal system impair progenitor neuronal lysosomes;promote the formation of pre-autophagic
complexes.

Moruno-Manchon JF
et al. (31)

Activation of apoptosis exogenous pathway in primary cortical neurons (death receptor-mediated” apoptosis). Walczak H et al. (32)
Damaged neurogenesis reduced cell survival in the dentate gyrus and subgranular areas of rats. Kitamura Y et al. (33)

activation of astrocytes and subsequent release of inflammatory mediators. Kohman RA et al.
(34)

Down-regulation of neurotransmitters the levels of PLD, ChAT activity, and choline-containing compounds in the
hippocampal region were significantly declined.

Lim I et al. (27)
Keeney JTR et al.
(35)

doxorubicin-induced oxidative stress increased ROS-mediated AChE activity. El-Agamy SE et al.
(36)

reduced glutamate clearance. Thomas TC et al. (37)
TNF-a-induced activation of astrocytes triggers substantial glutamate release. Habbas S et al. (38)
reduced the levels of two monoamines: 5-HT and DA. Kwatra M et al. (39)

Synaptic dysplasia inhibits the growth of neurons, as evidenced by a decline in the number of neurons
and a decrease in synapsin expression.

Manchon JF et al.
(18)
Ramalingayya GV
et al. (22)

Altered protein kinase signaling
pathways

activate ERK and p38 MAPK. El-Agamy SE et al.
(40)

Epigenetic alterations miRNA dysregulation is associated with the altered levels of BDNF. Kovalchuk A et al.
(41)
May 2021 | Volum
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neurogenesis (48). Animals treated with doxorubicin showed an
obvious decrease in neurogenesis, as manifested by a distinct
reduction in the number of neuro-specific nuclear antigen
bromodeoxyuridine (BrdUrd)-labeled cells (49). Others also
found that DOX in combination with cyclophosphamide reduced
cell survival in the subgranular areas and dentate gyrus of rats (33).

A large number of studies have shown that activation of
astrocytes and subsequent release of inflammatory mediators
caused by doxorubicin render the nerve non-viable (50). TNF-a
was reported to be anti-neurogenic, and can cause a decrease of
the BrdUrd-labeled cells in the sub-granular zone following
injection (51). Besides, mice deficient in TNF-a-receptor-1
(TNFR1) had an increased proliferation of BrdUrd-labeled
cells in the sub-granular compartment, suggesting that TNFR1
mediates the anti-neurogenic effects of TNF-a (52). Neuro-
inflammation not only affects the proliferation, differentiation, and
survival of hippocampal cells, but also prevents the incorporation of
new neurons into existing neural networks (53).

Down-Regulation of Neurotransmitters
Many animal researches have manifested that doxorubicin can
cause dysregulation of neurotransmitter production and release
in the brain. Acetylcholine (ACH) is a significant
neurotransmitter in the cholinergic nervous system that
supports brain functions through long-term potentiation (LTP)
(54). During acetylcholine composition, phosphatidylcholine
(PtdCho) is disintegrated by phospholipase D (PLD) and this
releases choline, which is acetylated by choline acetyltransferase
(ChAT) to form acetylcholine (55). In mice, the levels of PLD,
ChAT activity, and choline-containing compounds in the
hippocampal region were significantly declined after
doxorubicin treatment, reflecting the exhaustion of ACH
production (27) (35). Moreover, doxorubicin-induced oxidative
stress increased ROS-mediated acetylcholinesterase (AChE)
activity (36). Changes in the choline-containing substances are
Frontiers in Oncology | www.frontiersin.org 4
thought to be related to membrane turnover (synthesis and
degradation of phospholipids), and have been attributed to
myelin injury following chemotherapy (15).

Elevated TNF-a may decrease PLD activity, thereby inhibiting
PtdCho synthesis (56). In addition, TNF-a is thought to be
associated with decreases of phosphatidic acid levels, suggesting
an interdependence between phospholipase and TNF-a
expression (57).

Inhibition of PLD leads to decreased production of cytokines,
including TNF-a (58, 59). Phosphatidic acid, an intermediate
product of the PLD pathway, stimulates Ca2+ mobilization and
displays growth factor-like activity, which helps reduce
doxorubicin-induced mitochondrial dysfunction in the mouse
brain (60). The enzymatic activity of PLD is critical for cell
survival, and structural damage to PLD and reduced PLD activity
may activate apoptotic pathways (37, 38, 61).

In addition to regulating acetylcholine metabolism, doxorubicin
can alter glutamate levels in the synaptic gap. Doxorubicin reduced
glutamate clearance, as showed by a decline in the rate of uptake of
glutamate in the frontal cortex of mice (62). In this context, it was
suggested that the decreased glutamate clearance is due to decreased
expression of glial transport proteins or increased glutamate
production from neurogliocyte, particularly in astrocytes (62). As
mentioned earlier, TNF-a-induced activation of astrocytes triggers
substantial glutamate release (63). When glutamate concentrations
are high in the synapse, glutamate can diffuse to and combine with
NMDA acceptors. Activation of extrasynaptic NMDA acceptors
causes increased calcium-dependent excitability and suppression of
BDNF composition, leading to loss of synaptic plasticity and
increased neuronal apoptosis (39, 64). This may explain how
doxorubicin decreased the expression of BDNF and its receptor
tropomyosin receptor kinase B (TrkB) (26).

In addition, doxorubicin injection distinctly reduced the
levels of two monoamines that are closely related to cognitive
function: serotonin (5-HT) and dopamine (DA) (65). 5-HTergic
FIGURE 1 | The possible mechanisms of doxorubicin-induced chemobrain. (A) Doxorubicin can cross the blood-brain barrier through vascular-associated apical
projections of neural stem cells. (B) Oxidative Stress Ptahway. (C) Synaptic dysplasia. (D) TNF-a is involoved in neurotransmitter pathways. (E) TNF-a is involved in
oxidative stress pathways. (F) TNF-a amplifies inflammatory signals by activating glial cells.
May 2021 | Volume 11 | Article 673340
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neurons play a significant role in regulating hippocampal synaptic
plasticity through 5-HT1A receptor-mediated inhibitory control.
Depletion of 5-HT negatively affects hippocampus-dependent
declarative memory and performs poorly in a new object
recognition task (66). During encoding, doxorubicin mediates
the acquisition of long-lasting, long-term memory in the
hippocampus by activating the D1/D5 receptor (67).

Changes in the levels of neurotransmitters lead to
abnormalities in the transduction of nerve signals, leading to
cognitive impairment.

Synaptic Dysplasia
Abnormal synaptic plasticity in the brain is an important cause
of cognitive impairment. Synaptic plasticity is associated with
synapse-associated proteins such as synapsin protein (SYP) and
postsynaptic dense protein 95 (PSD95). In addition, the
expression of brain-derived neurotrophic factor (BDNF)-
synuclein (SYP)-microtubule-associated protein 2 (MAP2)
pathway-related proteins in the hippocampus is also involved
in the development of synaptic plasticity. Doxorubicin not only
causes chromatin condensation and cell membrane
fragmentation, but also inhibits the growth of neurons, as
evidenced by a decline in the number of neurons and a
decrease in synapsin expression, resulting in cognitive
impairment (18, 22).

Altered Protein Kinase Signaling Pathways
Doxorubicin can affect some key memory-related kinase systems.
For instance, doxorubicin can activate p38 MAPK and
extracellular signal-regulated kinase (ERK), two kinases that
have opposite roles: while the former mediates synaptic
inhibition, the latter promotes synaptic facilitation (40).

In hippocampal sensory neurons, doxorubicin can inhibit
serotonin-induced long-term facilitation (LTF) and promote
Phe-Met-Arg-Phe-NH2 (FMRFa)-mediated long-term
depression (LTD), suggesting that doxorubicin may block
learning-related changes in hippocampal excitability (40).
However, p38-mediated inhibition of LTF was superior to ERK
effects (40). The deviation of LTF was corrected by p38 inhibitors
(68). These studies mean that long-termmemory damage may be
the result of doxorubicin action, partially due to the dominant
activation of p38 MAPK (68). In addition, doxorubicin inhibited
the phosphorylation of the downstream transcriptional repressor
cAMP response element binding protein 2 (CREB2), which
promoted LTD (40).

The ERK pathway is essential for neuronal survival (69) and is
required for the synthesis of Arc, a protein that plays a crucial
part in long-term memory formation, neuronal activity and
synaptic plasticity (41). A recent study found an increase in
Arc staining after doxorubicin treatment, suggesting that
doxorubicin induces neuronal activity. On the contrary,
inhibition of neural activity with n -methyl-d-aspartate
(NMDA) receptor antagonists or a-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA) receptor antagonists
partly eliminated the induction of DNA DSBs by doxorubicin,
suggesting that doxorubicin-induced neurotoxicity is dependent
on neuronal activity (18).
Frontiers in Oncology | www.frontiersin.org 5
Epigenetic Alterations
It has been reported that chemotherapy can trigger epigenetic
reprogramming, another important mechanism that may
contribute to persistent cognitive impairment (70).
Homozygous mice exposed to chemotherapeutic agents show
more pronounced disruptions in post-transcriptional regulation
of gene expression, mainly miRNA changes in the prefrontal
cortices. miRNA dysregulation is associated with the altered
levels of brain-derived neurotrophic factor (BDNF) that plays a
key role in cognition and memory (71).
INDIRECT NEUROTOXICITY

Doxorubicin itself has a limited capacity to penetrate the blood-
brain barrier; however, in the periphery, this agent can induce the
production of a number of inflammatory factors and
neurotransmitters that can pass through the BBB, thus affecting
neurogenesis and survival, suggesting indirect neurotoxicity. The
possible indirect mechanisms of doxorubicin induced chemo-
brain are illustrated in Table 2 and Figure 1.

Induction of Oxidative Stress
Peripheral inflammation and oxidative stress are believed to be
responsible, at least in part, for doxorubicin-induced chemo-
brain pathogenesis (30, 35, 84). Doxorubicin is a quinone-
containing compound, a structure that is readily reduced by a
single electron, and can be converted to semiquinone radicals by
NADPH cytochrome P450 reductase (85), NADH dehydrogenase
(mitochondrial complex I) (86), and cytoplasmic xanthine oxidase
(87). The semiquinone form of doxorubicin can react with oxygen
molecules and return to the natural quinone form, while forming a
superoxide anion radical (O2•−). This process is repeated
following doxorubicin injection and is known as the redox cycle
(72). O2•− is a secondary product of ROS, including hydrogen
peroxide (H2O2) and hydroxyl radicals (•OH), which can cause
peripheral oxidative stress (73). Excess ROS production leads to
the oxidative modification of biochemical molecules such as
proteins, nucleic acids, and lipids (74). In clinical researches,
doxorubicin-mediated increases of oxidative stress were
indicated by increased protein oxidation and lipid peroxidation
as well as decreased levels of enzymatic and nonenzymatic
antioxidants (35, 84).

ROS can activate nuclear factor-kB (NF-kB), a redox-
sensitive transcription factor, through a classical IkB kinase
(IKK)-dependent pathway (88, 89). NF-kB activation enhances
the expression of several pro-inflammatory cytokines, including
tumor necrosis factor-a (TNF-a) (83), interleukin-1b (IL-1b),
and interleukin-6 (IL-6) (90). It has been demonstrated that
doxorubicin injection into mice caused an increase in plasma
TNF-a levels 1 hour after the treatment (75). Similarly, serum
cultures of isolated macrophages from the doxorubicin-treated
mice show elevated levels of TNF-a (91). This suggests an
interaction between oxidative stress and inflammatory factors.

Neuronal degeneration caused by oxidative stress is one of the
important causes of cognitive impairment (91).
May 2021 | Volume 11 | Article 673340
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Inflammation
TNF-a can affect the volume of the hippocampus (65) and
inhibit the long-term enhancing effects of hippocampal CA1
and the dentate gyrus (92). Circulating TNF-a is able to migrate
into the brain via endothelial cells expressing TNF-a receptors 1
and 2 (TNFR1 and TNFR2) in the BBB (76, 77). Once in the
brain and upon binding to receptors on glial cells, TNF-a can
augment the inflammatory signals by activating astrocytes and
microglia, which lead to the local production of TNF-a in the
brain (78, 79). Binding of TNF-a to TNFR recruits intracellular
proteins and transduces inflammatory signaling, leading to NF-
kB translocating to the nucleus (80, 93).

In addition to inflammatory cytokines, activation of microglia
and astrocytes via TNF-a receptor 1 (TNFR1) can enhance the
expression and activity of NADPH oxidases (NOX), particularly
NOX2, leading to an increase in ROS production (94). Moreover,
brain inflammation can down-regulate the expression of inducible
nitric oxide synthase (iNOS) through NF-kB transcriptional activity,
causing oxidative and nitrification stress in the brain (95, 96).

Inflammatory factors and oxides interact with each other to
strengthen each other, affecting the shape and function of the
hippocampus, causing cognitive impairment (93).

Nitrification Stress
Several in vivo studies have shown that doxorubicin can induce
iNOS expression and elevate levels of nitric oxide (NO•) in the body
(80, 91, 93). It has been demonstrated that high concentrations of
NO• can react with O2•− to form peroxynitrite (ONOO), one of the
Frontiers in Oncology | www.frontiersin.org 6
most detrimental oxidants (81). In the mice treated with
doxorubicin, both NO• and ONOO− cause nitrification by
adding a 3-nitrotyrosine (3-NT) to the protein (91) (97). Studies
have shown that an antioxidant enzyme, manganese superoxide
dismutase (MnSOD), was nitrated in the mitochondria in the
animals subjected to doxorubicin treatment, and the nitrated
MnSOD resulted in impaired mitochondrial respiratory activity,
which in turn synergized with O2•− production (30, 82).
Inflammatory processes and oxidative stress may exacerbate
doxorubicin-induced neurotoxicity, and ultimately lead to
neuronal apoptosis in the neurogenic regions of the brain.

Apolipoprotein A-I
Apolipoprotein A-I (ApoA-1) is the primary lipoprotein
component of high-density lipoprotein cholesterol (HDLeC)
and has important biological functions (98).

Besides removing excess cholesterol through ATP-binding cassette
protein 1 (ABCA1), ApoA-1 exerts anti-inflammatory effects by
blocking contact between activated T lymphocytes and monocytes
and inhibiting the production of TNF-a, which is achieved through up-
regulating the production of an mRNA-unstable protein,
tristetraprolin. Tristetraprolin can induce the disassembly of TNF-
deletion factor mRNA, thereby inhibiting TNF-deletion factor
translocation (99). Similar to other biochemicals in the circulation,
ApoA-1 is sensitive to the doxorubicin-induced oxidative damage (84),
leading to dyslipidemia and increased circulating TNF-a in the
doxorubicin- injection animals (22, 75), resulting in cognitive
impairment (84).
TABLE 2 | The indirect neurotoxicity of doxorubicin on chemo-brain.

Mechanism Interpretation Ref

Indirect
Neurotoxicity

Induction of
oxidative Stress

Excess ROS production leads to the oxidative modification of biochemical molecules such as proteins, lipids,
and nucleic acids.

Birben E et al. (72)

ROS can activate NF-kB. Herb M et al. (73)
Yan S et al. (74)

Inflammation TNF-a can affect the volume of the hippocampus. Kwatra M et al.
(39)

TNF-a can inhibit the long-term enhancing effects of hippocampal CA1 and the dentate gyrus. Motaghinejad M
et al. (75)

TNF-a can augment the inflammatory signals by activating astrocytes and microglia, which lead to the local
production of TNF-a in the brain.

Guidotti G et al.
(76)
Zhou H et al. (77)

Binding of TNF-a to TNFR recruits intracellular proteins and transduces inflammatory signaling, leading to
NF-kB translocates to the nucleus.

Mohamed RH
et al. (78)
Wu YQ et al. (79)

activation of microglia and astrocytes via TNFR1 can enhance the expression and activity of NOX, particularly
NOX2, leading to an increase in ROS production.

Blaser H et al. (80)

Indirect
Neurotoxicity

Nitrification Stress the nitrated MnSOD resulted in impaired mitochondrial respiratory activity, which in turn synergized with
O2•− production.

Tangpong J et al.
(30)
Holley et al. (81)

Apolipoprotein A-I ApoA-1 exerts anti-inflammatory effects by blocking contact between activated T lymphocytes and
monocytes and inhibiting the production of TNF-a.

Ronkina N et al.
(82)

ApoA-1 is sensitive to the doxorubicin-induced oxidative damage, leading to dyslipidemia and increased
circulating TNF-a.

Ramalingayya GV
et al. (22)
Aluise CD et al.
(70)
Tangpong J et al.
(83)
May 2021 | Volume
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CONCLUSIONS AND PROSPECT

It has been confirmed by a number of clinical as well as pre-
clinical investigations that chemotherapy may cause cognitive
impairment, and the mechanisms involved in the chemo-brain
problem include DNA damage, oxidative stress, inflammatory
responses, dysregulation of apoptosis and autophagy, altered
neurotransmitter levels, aberration of some key kinases,
mitochondrial dysfunction, glial cell interactions, inhibition of
neurogenesis, and epigenetic factors. Noteworthily, all of these
mechanisms are inter-related and collectively involved in the
development of the chemo-brain. Although there is no specific
treatment for chemotherapy-induced cognitive impairment, it
has been reported that rehabilitation behavioral training, such as
cognitive behavioral therapy (CBT), neuropsychological/
cognitive training intervention, physical activity, might
improve the quality of life of the patients who suffer from
chemo-brain. In addition, because doxorubicin has limited
ability to penetrate through the BBB and key factors in the
induction of chemo-brain are oxidative stress and peripheral
TNF-a products, antioxidant or anti-inflammatory therapy often
can significantly improves chemo-brain. In fact, several
pharmacological agents have shown promising benefits in
blocking neurotoxic pathways through their antioxidant or
anti-inflammatory action, such as 2-mercaptoethane sulfonate
sodium(MESNA) (100), donepezil (27), astaxanthin(AST) (36);
however, their impact on the antitumor efficacy of chemotherapy
regimens remains to be evaluated.

Chemotherapy is one of the most important modalities in the
comprehensive treatment of breast cancer. In order to improve
the therapeutic effect, chemotherapy regimens combining two or
more drugs or sequential chemotherapy are often used in clinical
practice. This review focuses on the mechanism of action of
doxorubicin in causing cognitive impairment, yet, there are
numerous studies showing that paclitaxel, cyclophosphamide,
and platinum drugs are also associated with chemotherapy
brain. We speculate that the cognitive deficits caused by
these chemotherapeutic drugs also have multiple cross-linked
mechanisms, such as pterostilbene causes neuronal abnormalities,
apoptosis, neuroinflammation, and endoplasmic reticulum stress;
cyclophosphamide induces dendritic abnormalities, oxidative
damage, and DNA methylation in hippocampal granule cells; and
platinum drugs affect brain glucose metabolism and cause
mitochondrial damage. When different drugs are used in
combination or sequentially, the mechanisms leading to
chemotherapy of the brain become more complex. Therefore,
more animal experiments and clinical studies are needed to
elucidate the network of these mechanisms related to chemo-brain,
to provide a theoretical basis for the treatment and prevention of
cognitive disorders caused by different chemotherapy regimens, and
to hopefully achieve evidence-based, precision medicine for
chemotherapy-related cognitive disorders in the near future.

During our research, we found that cognitive function is
highly susceptible to subjective factors, and that stress and
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negative emotions affect the brain by disrupting the body’s
hormonal homeostasis. In addition, cancer, general anesthesia,
and surgery can increase cytokine levels and cause cognitive
impairment. Therefore, in future research, we should pay special
attention to the selection of subjects and the design of
experimental protocols. Currently, there is no unified standard
for the diagnosis of chemotherapy-related cognitive impairment
at home and abroad. Examination methods mainly include
neuropsychological testing and imaging examinations. The
Functional Assessment of Cancer Therapy–Cognitive Function
(FACT-Cog) is a scale developed by Wagner et al. for the
evaluation of subjective cognitive impairment in cancer
patients, which has been proved to have good reliability and
validity for breast cancer patients in China. Montreal Cognitive
Assessment (MoCA) is an assessment tool for rapid screening of
objective cognitive dysfunction, which is suitable for clinical
application due to its high sensitivity and short test time for
mild cognitive impairment. However, these neuropsychological
tests are highly susceptible to subjective factors such as stress and
negative emotions, and need to refer to objective cognitive
assessment methods such as MRI. In recent years, multimodal
magnetic resonance imaging (MRI) such as arterial spin labeling
(ASL), blood oxygen level dependent (BOLD) functional MRI
(fMRI), and diffusion tensor imaging (DTI) have been widely
used to evaluate chemotherapy-induced breast cancer. This set of
techniques significantly improves our understanding of the
neural mechanisms underlying chemotherapy-induced
cognitive dysfunction from a holistic and local brain structure
and function perspective.
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