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RAS-related C3 botulinum toxin substrate 1 (Rac.1) is one of the important members of
Rho GTPases. It is well known that Rac1 is a cytoskeleton regulation protein that regulates
cell adhesion, morphology, and movement. Rac1 is highly expressed in different types of
tumors, which is related to poor prognosis. Studies have shown that Rac1 not only
participates in the tumor cell cycle, apoptosis, proliferation, invasion, migration and
angiogenesis, but also participates in the regulation of tumor stem cell, thus promoting
the occurrence of tumors. Rac1 also plays a key role in anti-tumor therapy and
participates in immune escape mediated by the tumor microenvironment. In addition,
the good prospects of Rac1 inhibitors in cancer prevention and treatment are exciting.
Therefore, Rac1 is considered as a potential target for the prevention and treatment of
cancer. The necessity and importance of Rac1 are obvious, but it still needs further study.

Keywords: Rac1, tumorigenesis, metastasis, cancer stemness, therapy resistance
BACKGROUND

The classical Rho-GTPase family consists of RhoA (RhoA-RhoC), Rac (Rac1-Rac3 and RhoG),
Cdc42 (Cdc42, RhoJ, and RhoQ), and RhoF (RhoD and RhoF) (1). The Rho-GTPase family is
involved in a variety of important cellular activities, such as acting skeleton remodeling, cell
adhesion, cell movement, vesicle transport, angiogenesis, and cell cycle regulation (2–5). Rho-
GTPase family is called “molecular switch” because it can change between the active GTP bound
conformation and GDP bound conformation. The activation of the “molecular switch” is controlled
by guanine nucleotide exchange factors (GEFs), which stimulates the release of GDP and promote
the combination of GTP (6). The inactive state of Rho-GTPase is maintained by the guanine
nucleotide dissociation inhibitor (GDIs) and GTPase activating protein (GAPs) (7). With the
changes of Rho-GTPase protein level, activity status, and effector protein abundance, the Rho signal
becomes abnormal, which may affects the recombination and migration of cells (8). Rac1, Rho, and
Cdc42 are the three most important characteristic members of the Rho-GTPase family, and Rac1
has received the most attention (4). Rac1 is widely expressed in tissues, which is considered a
regulatory factor related to cell movement and invasion (9). It has been found that Rac1 is highly
expressed and over-activated in many cancers. As an intracellular signal transducer, activated Rac1
can control many basic cellular functions, including cytoskeleton dynamics, so as to maintain cell
morphology, polarity, adhesion, and migration (10, 11). Unbalanced expression or activation
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patterns of Rac1 may lead to abnormal cell signal transduction
and diseases, such as cancer (4). Drug resistance is the most
important reason leading to the poor prognosis of cancer
patients. This is due to the formation of a special drug
resistance mechanism in tumors, and Rac1 plays an important
role in regulating drug resistance in tumor treatment (12). In a
word, it is necessary to make a thorough study on Rac1 as an
important potential therapeutic target.
Rac1 REGULATES CELL ADHESION,
MORPHOLOGY, AND MOVEMENT

The Rho-GTPase family (Rho, Rac1 and Cdc42) plays an
important role as cytoskeleton regulatory proteins (13), which
is best confirmed in fibroblasts and can be observed in many
other cell types, such as epithelial cells, endothelial cells,
astrocytes and mast cells (14–16). Rac1 regulates cytoskeleton
recombination, actin polymerization, and leading-edge extension
by promoting actin assembly (17), which is necessary for the
formation of lamellar lipid membranes and membrane folding
(13). Without Rac1 and Rac2, the ability of osteoclasts to form
actin cytoskeleton is insufficient (18).

Actin polymerization regulated by Rac1 and Cdc42 can
promote cell movement, leading to migration and invasion
(19). The migration of cancer cells is closely related to the
decrease of cell adhesion, rearrangement of cytoskeleton,
degradation of the extracellular matrix and the formation of
cell surface protrusions, which are the key factor affecting
the migration of cancer cells (20). Extension of cytoplasm in
the movement direction is the first step of cell movement. In the
process of long-distance extension of cells, it is necessary to
protrude a wide and flat flaky prosthetic foot on the cell surface,
and Rac1 is needed to form this structure (21, 22). The finger-like
structures formed in lamellipodium is called filopodia, which is
regulated by Cdc42 and participates in cell adhesion (23). Due to
different environments, migrating cells present morphological
differences (such as expansion, contraction and polarization),
which are controlled by the activity levels of cytoskeleton
regulatory protein Rho-GTPase (24). CYRI/FAM49B (CYFIP-
related Rac1 interacting protein) negatively regulates Rac1-
driven cytoskeletal remodeling (25). The dynamic structures of
axonal endings in neuroblastoma cell line N1E-115 was activated
by Rac1 and Cdc42 (26). The depletion of estrogen receptor a
(ERa) affects the biomechanical properties of Breast cancer (BC)
cells, which is related to the decrease of cytoskeletal proteins (F-
actin, FLNA, and a-tubulin) and cytoskeletal regulatory proteins
(Rho, Rac1, and Cdc42) (27). Introducing the mutant Rac1
(P29s) into normal melanocytes can increase membrane
folding, and promote proliferation and migration of
melanocytes (28). The Rac1 mutant (P29s) melanoma cells can
up-regulate the formation of platelet lipoprotein through
dendritic actin polymerization (29). When the integrin-
associated kinase gene is inactivated in mature melanocytes,
motility and dendritic defects occur, which are recovered in
the presence of Rac1 (30). Urobilin A (UA), a metabolite of
Frontiers in Oncology | www.frontiersin.org 2
intestinal bacteria, inhibits cell proliferation and migration
through destroying the activities of Rac1 and PAK1 (31)
(Figure 1).

The most mature mechanism of Rac1 mediated cytoskeletal
recombination is through PAKs (P21 activated kinase) (32). Both
cel l prol i ferat ion and cel l movement require actin
recombination, which is controlled by Rac1 and PAK1 (31).
PAKs can be divided into two groups: one is PAK 1-3 and the
other group is PAK 4-6 (33). The C-terminal kinase domain of
PAK subgroup I is a highly conserved sequence, which can exert
its biological activity by binding Cdc42 or Rac1 (34). PAK1 is an
important downstream effector of Rac1 and Cdc42 (35). Rac1
and Cdc42 can activate LIM kinase1 (LIMK1) through PAK,
which leads to the decrease of cofilin activity and enhance
mobility through phosphorylation (36). The effect of PAK on
cell mechanics depends on Rac1, and the formation of the Rac1-
PAK pathway plays an important role in cytoskeleton
reorganization during cell migration (19). Abnormal high
expression of non-receptor tyrosine kinase FER is the key to
metastasis of ovarian tumor cell in vitro and in vivo (37). When
FER is knocked out, the Rac1-PAK1 signaling pathway is
inactivated and the migration ability of ovarian cancer cell
CAOV4 decreased (38). Knocking down PKC-can lead to a
decrease in the proliferation and metastasis of colorectal cancer
(CRC) cells because PKC-z reduces the nuclear translocation of
b-Catenin and affects the Rac1-PAK1-b-catenin signaling
cascade (39).
THE EXPRESSION AND CLINICAL
SIGNIFICANCE OF Rac1 IN TUMORS

The malignant transformation of tumor is mainly related to
over-activation or over-expression of Rac1. Up to now, the
increase of Rac1 expression has been detected in different types
of cancers, such as BC, lung cancer, colorectal cancer, gastric
cancer, prostate cancer, hepatocellular carcinoma and ovarian
cancer (40–46). The activity of Rac1 is also related to many post-
translational modifications, such as phosphorylation (Tyr64,
Ser71), ubiquitination (Lys147, K166R), lipidation, and
adenylation (Y32) (47–53). Rac1 usually does not mutate,
except in certain cancers, such as melanoma. Rac1 (P29S) is
the third most common mutation codon in human skin
melanoma, affecting 4-7% of patients (28) (Figure 2).

The mutant form of Rac1 (N92I) found in human sarcoma
cell line HT1080 not only makes Rac1 highly carcinogenic, but
also resists endoplasmic reticulum stress (54, 55). The mutants of
Rac1 (P29S) or (N92I) can improve the level of the active binding
status (Rac1-GTP) by promoting the decomposition of the
intrinsic inactive binding status (Rac1-GDP) of Rac1, thus
forming a “spontaneous activation” state, which strongly
promotes the occurrence of tumors (54, 56). Other forms of
Rac1 mutants are also found in other tumors, such as the Rac1
(A159V) mutation common in Head and Neck Neoplasms and
the Rac1 (Q61R) mutation in primary prostate cancer (57, 58).
The expression of Rac1 protein in different tumor tissues was
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FIGURE 2 | The domain, post-translational modifications and mutation sites of Rac1. The figure shows that the different domains of Rac1 including nucleotide-
binding site (NBS), switch I, switch II, multi-base region (PBR), and CAAX box. Switch I mainly interacts with the downstream effectors of RAC1, and Switch II
interacts with the RAC1 activation protein guanine nucleotide exchange factor (GEF). The figure also shows the Rac1 adenylation site (Y32), phosphorylation sites
(Y64 and S71), and ubiquitination sites (K147 and K166); and important missense mutations of Rac1 (P29S, Q61R, N92I and A159V) are displayed with a green
frame, and the position is pointed out with an arrow.
FIGURE 1 | Roles of Rac1 in single-cell migration. Single-cell migration is a multi-step process. 1. Protrusion of the leading edge: Rac1 is located at the leading
edge of the cell, remodels the actin cytoskeleton to form lamellipodia, and directs cell migration.; 2. Local formation of new adhesion: integrity contact with
extracellular matrix (ECM) ligand and cluster in the cell membrane (Rac1 involved); 3. Cell body shrinks: Myosin II is responsible for shrinking the trailing edge of cells;
4. The trailing edge is separated: The contractile force generated by the actomyosin structure can make the cell movement translation.
Frontiers in Oncology | www.frontiersin.org May 2021 | Volume 11 | Article 6744263
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detected by immunohistochemistry. It was found that the high
expression of Rac1 protein was closely related to the
differentiation, staging and lymph node metastasis of tumor
(59, 60). The analysis and detection of renal cell carcinoma
(RCC) samples showed that Rac1 protein was highly expressed,
which was positively correlated with the poor clinical prognosis
of RCC (61). The expression of Rac1 in gastric cancer tissues was
detected, and it was found that the expression of Rac1 in TNM
III and IV stages was higher than that in I and II stages and was
associated with tumor lymph node metastasis (62). When
epithelial ovarian cancer, primary gallbladder cancer (PGC)
and hepatocellular carcinoma are analyzed, the same
conclusion is reached (40, 63, 64). According to bioinformatics
analysis, it was found that the overexpression of Rac1 and RRM2
was closely related to the poor prognosis of HER-2 positive BC
patients (41). In the analysis of miRNA related to gastric cancer
metastasis, it was found that the high level of miR-345 was
positively correlated with the good prognosis of patients, because
miR-345 down-regulated the transmission of epidermal growth
factor receptor pathway substrate 8 (EPS8) and Rac1 signal (65).
HACE1 is a ubiquitin ligase of E3. In lung cancer and prostate
cancer, the low expression of HACE1 can make Rac1 overactive,
which is related to the shortened survival time of tumor (66, 67).
A meta-analysis shows that high expression of Rac1 could
predict the poor prognosis of cancer patients (68). Therefore,
abnormal expression of Rac1 can be used as a monitoring index
for the progression and poor prognosis of different types
of cancers.
REGULATION OF Rac1 IN
TUMOR PROGRESSION

The inactive state of Rac1 can combine with various effector
proteins and regulate cell events, such as cell cycle, cell
proliferation, apoptosis, stem cell characteristics of cancer cells,
and neovascularization, thus participating in the occurrence and
development of cancer (3, 56, 69, 70).

Rac1 Participates in the Cell Cycle,
Apoptosis, and Proliferation
Rac1 shuttles between cytoplasm and nucleus during the whole
cell cycle, and accumulates in nucleus in the late G2 stage (71).
And the induction of the G1 cell cycle by Rac1 is independent of
the JNK/SAPK MAP kinase cascade (72). Rac1 overexpression
activates the 70kDa ribosomal S6 kinase (pp70S6k), which plays
an important role in the G1 phase of the cell cycle (73).
Overexpression of ARHGAP24 significantly inhibits the
activities of RhoA and Rac1 and induced apoptosis of lung
cancer cells via STAT6-WWP2-p27 axis (74). Rac1 participates
in the formation and elimination of apoptotic cells and
coordinates receptor signals related to apoptosis and
proliferation (75, 76). In B-cell lymphoma, Rac1 was found to
be a new binding partner of Bcl-2, which can stabilize its anti-
apoptosis activity (77). It has been confirmed that the regulation
of chromosome condensation 2 (RCC2) on apoptosis is mediated
Frontiers in Oncology | www.frontiersin.org 4
by inhibiting Rac1 signal transduction (78). Rac1 can also form
miR-506-rock2-rac1 signal axis with mir-506 and ROCK2 (Rho
protein kinase 2), and participate in the proliferation and
apoptosis of hepatocellular carcinoma (HCC) cells (79). The
apoptosis of glioma cells induced by Rac1 inhibition can be
partly saved by mitogen-activated protein kinase 1, which is the
activator of JNK (80). Lionarons et al. further revealed that Rac1
(p29s) can activate the gene expression program initiated by the
PAK, AKT and SRF/MRTF transcription pathways. It can induce
melanocytes to transform into mesenchymal-like cells, inhibit
apoptosis, and enhance tumorigenesis (81). OPA interacting
protein-5 (OIP5) regulates proliferation, apoptosis and cell
cycle of HCC cells by influencing BMPR2-JUN-CHEK1-Rac1
signal axis (82).

Rac1 Promotes Tumor Angiogenesis
Angiogenesis is one of the hallmarks of malignant tumors.
Overexpression of Rac1 is related to the high levels of vascular
endothelial growth factor (VEGF) and vascular endothelial growth
factor receptor (VEGFR) can form a VEGF-VEGFR signaling
pathway, which participates in the regulation of angiogenesis (83,
84). The role of Rac1 in retinal angiogenesis has been well
documented (85, 86). IQ- guanosine triphosphatase activating
protein 1 (IQGAP1) is a scaffold protein with Rac1 binding
domain, and its knock-out can significantly inhibit choroidal
neovascularization induced by the VEGFR2-Rac1 signal axis (87).
Sphingosine-1 phosphate receptor1 (S1PR1) can amplify the
angiogenic signal of VEGF-VEGFR2, thus maintaining the activity
of Rac1 and promoting the growth of tumor (88). Sevoflurane, a
volatile anesthetic agent, exerts an anti-angiogenic effect by inhibiting
the signal transduction of Rac1-paxillin-FAK and Ras-Akt-mTOR
(89).M1macrophage-derivedexosomes (M1-Exos) inhibit theRac1-
PAK2 signaling pathway and decrease the angiogenesis ability of
endothelial cells (ECs) (90). In mouse models, it has been found that
the activation of PAK1 by endothelial Rac1 is helpful for post-stroke
recovery and angiogenesis (91). NCK1, an adaptor with Src
homologous domain, can promote the angiogenesis of cervical
squamous cell carcinoma (CSCC) through the Rac1-PAK1-MMP2
signaling pathway (92). In the study of aristolochic acid-induced
nephropathy, it was found that over-expression of NCK1 can not
only restore the decrease of Rac1 activation, but also save the
damaged angiogenesis (93). Tomm7 (translocase of outer
mitochondrial membrane 7) gene is selectively inactivated, which
induces an increase in the entry of Rac1 into mitochondria, and
promotes the redox signal transduction coupled with mitochondria
Rac1, which leads to cerebrovascular disorders and affects the
homeostasis of the cerebrovascular network (94).

Rac1 Participates in Tumor Migration
and Invasion
Overexpression of Rac1 enhances cell proliferation and
migration, and plays an important role in the invasion and
migration of many tumor cells (65, 95–99). Atypical protein
kinase C-z (PKC-z) mediates BC cell invasion through Rac1 and
RhoA pathways (100). A high concentration of stromal cell-
derived factor 1-a (SDF-1a) promotes the expression of Rac1
and mediates the migration and adhesion of BC cells (101). The
May 2021 | Volume 11 | Article 674426
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ability of the oral contraceptive centchroman (CC) to inhibit
migration and invasion of BC cells is achieved by inhibiting the
Rac1-PAK1-b-catenin signal axis (102). The stimulation of NF-kB
by Rac1 partly regulates the proliferation and invasion of the
melanoma cell line FEMX (103). Our research team found that
Rac1 was significantly up-regulated in metastatic colorectal cancer
tissues, and the overexpression of Rac1 can significantly promote
the migration and invasion of colorectal cancer cells (43). We have
further found that diallyl disulfide (DADS) inhibits the migration
and invasion of colorectal cancer cell line SW480 by regulating the
Rac1-ROCK1/PAK1-LIMK1-ADF/cofilin signaling pathway (104,
105). Zhang, et al. found that Plastin1 (PLS1), which is related to
the microvilli structure of the intestinal epithelium, drives the
metastasis of colorectal cancer through the IQGAP1-Rac1-ERK
pathway (106). Overexpression of phospholipid phosphatase-
related protein 1 (PLPPR1) in the mouse neuroblastoma cell line
(Neuro2a) reduces the level of active Rac1. Therefore, it can lead to
increased cell adhesion and decreased cell migration (107). miR-
142-3p inhibits the migration of bladder cancer cells through Rac1
(97). The long non-coding RNA LCAT1 is a competitive
endogenous RNA of miR-4714-5p, which leads to the up-
regulation of the activity of its endogenous target Rac1 and
promotes the growth and invasion of lung cancer cells (96).

Epithelial-mesenchymal transition (EMT) is another important
characteristics in the process of tumor cell metastasis. Cells
undergoing EMT will lose their cell polarity and adhesion
between cells, which is related to the reorganization of the
cytoskeleton structure (108). Rab23 is a member of the Ras-
related small GTPase family, which can activate Rac1-TGFb
signal transduction and promotes EMT in HCC cells (109).
POTEE, a member of the POTE anchor protein family E,
promotes invasion and migration of colorectal cancer and EMT
by promoting the activation of Rac1 and Cdc42 (110). miR-331-3p
targets ErbB2 and Vav2 through the Rac1-PAK1-b-catenin axis to
inhibit EMT, migration andmetastasis of non-small cell lung cancer
(NSCLC) cells (111). Tualang honey in the jungle of Malaysia
maintains the epithelial polarity of cells by overexpressing b-catenin
and E-cadherin, and inhibits the invasiveness of oral squamous cell
carcinoma (OSCC) by downregulating TWIST1 and Rac1 (112).
Our previous experiments confirmed that Rac1 can influence the
expression of EMT-related molecules, and participate in the
invasion and metastasis of CRC (43). Guanine nucleotide
exchange factor T (GEFT) affects the occurrence of EMT and
interstitial transformation (MET) in rhabdomyosarcoma (RMS)
cells through the Rac1-Cdc42-PAK1 (113). miR-142-3p affects the
expression of Rac1 at the protein level, thus inhibiting the
phosphorylation of PAK1 and EMT in BC cells (114).
Rac1 Functions in Cancer Stem Cells
The stemness of tumor cells is considered to be a key factor in
tumor initiation, progression, and recurrence. Rac1 is involved in
the regulation of stem cell characteristics of various tumor cells.
Rao, et al. found that Rac1 participates in semaphorin-3F
(Sema3F) -mediated CRC cell stemness regulation by targeting
the classical Wnt-b-catenin pathway (115). Rac1 can participate in
Frontiers in Oncology | www.frontiersin.org 5
the regulation of intestinal stem cell proliferation and the
occurrence of colorectal cancer through the activation of Wnt
pathway by NF-kB or in a ROS-dependent manner (116, 117).
Integrin can activate the Rac1 signaling pathway in stem cells, and
thus stimulate Wnt pathway. Integrin-b1/Rac1 signal plays an
important role in the maintenance and self-renewal of mammary
epithelial stem cells (118). The expression of integrin-a5 (ITGA5)
is down-regulated by miR-205, which can inhibit the stem cell
characteristics of triple negative breast cancer (TNBC) through the
Src-Vav2-Rac1 pathway (119). However, Carmon, et al. found that
LGR5 (containing the leucine-rich repetitive sequence of G
protein-coupled receptor 5) mainly activates the IQGAP1-Rac1
pathway, but not Want signaling pathway, so as to promote cell
adhesion between stem cells and colon cancer cells (120). LncRNA
NR2F2-AS1 mediated the up-regulation of Rac1 expression can
increase the cancer stemness of clear cell renal cell carcinoma
(ccRCC) cells (121). Inhibition of b2-chimaerin protein mediated
by hippocampus effector TAZ leads to the persistence of Rac1
activity in cancer stem cells (CSCs) (122). Semaphorin-3C (Sema
3C) is involved in promoting the survival and tumorigenicity of
glioma stem cells by activating Rac1, which is related to activating
Rac1-NF-kB signal (123, 124). Inhibition of Rac1 can block the
proliferation and metastasis of NSCLC tumor stem cells (125).
Both miR-365 and miR-194 can inhibit the dedifferentiation of
HCC cells and the proliferation of HCC stem cells by targeting
Rac1 signals (126, 127). In addition to endowing tumor cells with
the ability of migration and invasion, EMT can also make highly
invasive tumor cells acquire stem cell-like characteristics and
promote the production of CSCs (128). In NSCLC, inhibiting
Rac1 activated during EMT can inhibit the dynamic
transformation between cancer stem/progenitor cells (CS/PC)
and non-CS/PC (129). DJ001 is a receptor-type protein tyrosine
phosphatase-sigma (PTPs) inhibitor, which can inhibit radiation-
induced apoptosis of hematopoietic stem cells (HSCs), and
promote the regeneration of HSC by activating Rac1 and
inducing the expression of Bcl-xl (130).

In recent years, the mechanism of Rac1 involved in the
regulation of different tumorigenic phenotypes has been
elucidated. As an important goal of cancer prevention and
treatment, the relationship between Rac1 and tumorigenesis,
proliferation, metastasis, and development of drug resistance has
gradually become clear. Although we already know that Rac1 plays
an important role in cancer, there are few clinical studies related to
Rac1, and the detailed mechanism of Rac1 participating in cancer
has not yet been clarified. The synergistic effect of Rac1 and other
carcinogens is particularly reflected in the intersection of signal
pathways, which needs further exploration (Figure 3).
Rac1 Is Involved in the Regulation of
Resistance to Tumor Therapy
The application of molecularly targeted drugs has greatly
improved the clinical efficacy of cancer treatment. However,
with the progress of treatment, acquired drug resistance
appears, which greatly reduces the treatment effect and even
leads to failure. The development of molecular targeted drug
May 2021 | Volume 11 | Article 674426
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resistance is closely related to cancer as a dynamic and highly
heterogeneous disease. This is because the heterogeneity of
cancer not only drives the development of cancer, but also
affects drug resistance, which provides a driving force for the
drug resistance of cancer treatment (131, 132). In addition,
mutations of the drug target gene and the enhancement of
DNA damage repair ability are also the important mechanisms
for drug resistance (133, 134). Therefore, the analysis of the
Frontiers in Oncology | www.frontiersin.org 6
mechanism of drug resistance is helpful to find effective targets to
overcome drug resistance, to better select effective treatment
methods for patients and to improve prognosis.

The increase of Rac1 expression is one of the characteristics of
drug-resistant cells (135). The instability of the genome leads to
an increase in mutation rate, and then promotes the
development of cancer, which affects drug resistance through
various mechanisms. Taking melanoma as an example, Rac1 is
FIGURE 3 | Rac1 is involved in tumorigenesis. Schematic diagram of the Rac1 signaling pathway and effectors. The Rac1 signaling pathway plays an important role
in the pathobiology of various tumor progression processes, including tumor cell proliferation, cell cycle, apoptosis, tumor cell invasion, and migration, tumor
angiogenesis, and tumor cell stemness. ARHGAP24: Rho GTPase activating protein 24; PKC-z: protein kinase C-z; PAKs: p21 activated kinase; M1-Exos: M1-type
macrophage-derived exosomes; IQGAP1:IQ-guanosine triphosphatease-activating protein 1; SDF-1a: stromal cell-derived factor 1-a; Sema3F: semaphorin-3F;
Sema3C: Semaphorin-3C.
May 2021 | Volume 11 | Article 674426
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an important somatic-driven mutation gene in melanoma (136).
Melanoma is mostly treated with inhibitors of the MAPK
signaling pathway that targets BRAF or MEK kinase (137).
However, the treatment response rate in the middle and late
stages of treatment is not high, which may be due to the
reactivation of the MAPK signaling pathway and/or the
activation of the PI3K-AKT pathway caused by selected genetic
changes before or during treatment, which caused the primary
and acquired resistance (138). BRAF600E and Rac1P29S are hot
spot mutations in melanoma. MAP kinase pathway inhibitor
(MAPKi) is effective for melanoma patients with BRAFV600E
mutation. According to the understanding of MAPKi resistance
mechanism, it was found that CUL3, the key protein in the E3
ubiquitin ligase complex, participated in vemurafenib resistance
mechanism by enhancing Rac1 activity and MEKS 298
phosphorylation. Furthermore, it was found that the Src family
inhibitor Saracatinib can inactivate Rac1, thereby inhibiting
MAPKi resistance phenotype (139). Rac1P29s was found to
confer resistance to BRAF/MEK inhibitors (BRAFi/MEKi) to
melanoma cells (140), which can be reversed by SRF/MRTF
inhibitor (81). When drug resistance occurs in tumors, the
endogenous metabolic profile changes significantly, and Rac1 is
involved in it. Li, et al. showed that targeting Rac1 can effectively
reduce the multidrug resistance of BC cells to neoadjuvant
chemotherapy (NAC). This is because Rac1 activates aldolase
A (ALDOA) and ERK signaling, thereby up-regulating
glycolysis, especially the non-oxidized pentose phosphate
pathway (PPP), which leads to the enhancement of nucleotide
metabolism (141). Rac1 silencing can also inhibit AKT-FOXO3a
signal and cell glycolysis enzymes, so as to overcome cisplatin
resistance in esophageal squamous cell carcinoma (ESC) (142).

The expression of Rac1 regulates the sensitivity of cancer to
chemotherapy (143). Targeting theRac1pathway canovercome the
resistance of NSCLC patients to EGFR-TKI, and it works
independently of the MEK or PI3K mechanism (144). Silencing
of cadherin 2 (DSG2) can inhibit the EGFR-Src-Rac1-PAK1
signaling pathway and increase resistance to osimertinib (145). In
multidrug-resistant lymphoma cell lines expressing a higher levels
of Tiam1, the researchers found that dual inhibition of Tiam1-Rac1
and Notch pathways would be an important treatment for
overcoming the resistance of lymphoma cells to adriamycin
(146). Hofbauer, et al. found that inhibition of Tiam1-Rac1
signaling can antagonize the chemical resistance of chronic
lymphocytic leukemia (CLL) cells to fludarabine (147). YAP, a
key effector of the Hippo pathway, confers multidrug resistance to
HCC cells by up-regulating the Rac1-ROS-mTOR pathway, which
leads to the inhibition of autophagy-related cell death (148).
Similarly, Rac1 also affects the sensitivity of cancer to
radiotherapy. RP-4, a new type of radiosensitizer derived from
rhein, activates the sensitivity of nasopharyngeal carcinoma (NPC)
cells to radiotherapy by targeting the Rac1-NADPHpathway (149).
Our research team has confirmed that Rac1 can target the PAK1-
LIMK1-Cofilins signaling pathway to cause radiotherapy resistance
in lung cancer (150). In the treatment of head and neck squamous
cell carcinoma (HNSCC), itwas found that the combinationofRac1
inhibitors based on radiotherapy can improve the therapeutic effect
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(151). Inhibition of Rac1 with specific inhibitors of Rac1 not only
eliminates the activation of G2 checkpoints induced by
radiotherapy (IR) but also improves the sensitivity of pancreatic
cancer cells to radiotherapy by inducing apoptosis (152). It is
evidenced that inhibition of Rac1 activity can be used to
overcome treatment resistance, which has also been confirmed in
cisplatin-resistant gastric adenocarcinoma cells (153) and
trastuzumab-resistant BC cells (154).

As shown before, Rac1, as an important “commander” of drug
resistance in tumor therapy, regulates the drug resistance of tumor
cells to targeted drugs by participating in various mechanisms and
thus affects the sensitivity of tumor cells to radiotherapy and
chemotherapy. However, although Rac1 may be a useful target
for overcoming drug resistance, the mechanism of each has not
been clearly explained (136, 155), and it is necessary to explore how
Rac1 participates in the resistant mechanism. It is worth
mentioning that the regulatory mechanism of Rac1 on the
endogenous metabolic profile in the development of drug
resistance can be further explored. Using evolutionary thinking to
deal with drug resistance is an important way to deal with
heterogeneity and evolutionary drug resistance of tumors. It is
also worth noting that the combined treatment of targeted Rac1,
radiotherapy, and chemotherapy combined with Rac1 inhibitor
may be a reasonable and reliable solution to improve the sensitivity
of tumor cells to radiotherapy and chemotherapy andovercome the
drug resistance of tumor cells to targeted drugs (Figure 4).

Rac1 Participates in Tumor
Microenvironment-Mediated
Immune Escape
Tracing back to the “seed and soil”hypothesis publishedbyPaget in
the 19th century, we know that the occurrence and development of
tumors depend not only on the tumor cells themselves but also on
the environment in which tumors depend, that is, the tumor
microenvironment. The tumor microenvironment is mainly
composed of various infiltrating immune cells and other
interstitial cells, as well as a variety of secretory factors. With the
development of the tumor, the tumor microenvironment changes
the immune microenvironment by recruiting or amplifying a
variety of immune heterogeneous cells, blocking the effective
immunemonitoring ability of hosts andmediating immune escape.

There is some correlation between Rac1 and immunity (156,
157). Rac1 regulates the immune homeostasis of the liver, which
may exist as an immune checkpoint (158). The activation of Rac1
can drive the pathogenic interaction between epithelial cells and
the immune system, which is also the pathological basis of
psoriasis (159). Rac1 and Rac2 play a role in the regulation of
B cell humoral immune response and in vitro Ig class switching
(76). Rac1 forms a complex with Tiam1 and regulates the
transcription of interleukin 17A (IL17A) and autoimmunity
(160). TNFAIP8L2/TIPE2 (tumor necrosis factor, alpha-
induced protein 8-like 2) can directly bind to and block Rac1
GTPase activity, thereby regulating innate immunity (161). PI3K
activates immunity by up-regulating IL-10 and inhibiting pro-
inflammatory cytokines, possibly through the regulation of Rac1
protein (162). Withanolides, as immunopotentiators and
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antiviral agents against COVID -19, may play a role by targeting
the Rac1 protein (163). Compared with Rac1 WT, melanoma
cells with Rac1(P29S) mutations express high levels of PD-L1
and therefore have the ability to evade immune surveillance
(164). The use of lenalidomide, an immunomodulatory drug, can
restore the normal activity levels of Rac1, RhoA, and Cdc42 in T
cells of patients with chronic lymphocytic leukemia (CLL), and
preserve the adhesion and movement ability of T cells and the
function of integrin lymphocyte activation-related antigen 1
(LFA-1) (165). Therefore, targeted inhibition of Rac1 in tumor
cells may be a way to prevent immune escape, and may also be
used as immune checkpoint inhibitors (ICIs).
GENERAL Rac1 INHIBITOR

Guanine nucleotide exchange factors (GEFs) are responsible for
the activation of Rac1. Up to date, more than 70 GEFs related to
Rac1 activation have been confirmed. GEFs are related to
Frontiers in Oncology | www.frontiersin.org 8
tumorigenesis, but the specific regulatory mechanism is still
unclear, and different GEFs have different abilities to activate
Rho family GTPases. The Rac1 inhibitor developed for the
interaction between GEF and Rac1 is an important strategy for
finding clinical drug candidates. As an inhibitor of Rac1, its most
essential role is to inhibit the tumorigenicity mediated by Rac1
and the malignant biological behaviors of different tumor cells,
such as cell migration, cell invasion, and rearrangement of actin
skeleton (166, 167).

As the first specific Rac1 inhibitor, NSC23766 targets Rac1
activation through GEFs (Trio or Tiam1) but does not interfere
with the binding or activation of the closely related targets Cdc42
or RhoA (168, 169). The seven residues on Rac1 are very
important for the interaction of NSC23766 and Tiam1 (170). It
has been found that NSC 23766 can inhibit the invasion and
migration of human HCC by inhibiting the CAMSAP2-
dependent Rac1/JNK pathway, or the cysteine-rich domains-1
(LMCD1)-Rac1 pathway (171, 172). The inhibition of Rac1 by
NSC23766 can regulate NF-kB activity, cell proliferation, and
FIGURE 4 | Rac1 is involved in the regulation of resistance to tumor therapy. Rac1 is involved in the regulation of tumor treatment resistance. Targeting Rac1 can
improve the sensitivity of the tumors to chemotherapy and overcome the drug resistance of the tumors to molecularly targeted drugs. The combined application of
Rac1 inhibitor on the basis of radiotherapy can significantly improve the therapeutic effect. DSG2: cadherin 2.
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cell migration in NSCLC cells (166). EHop-016 is a derivative of
NSC23766. Compared with the parental compound, EHop-016
has a lower IC50. EHop-016 inhibits the binding of active Vav2 to
the nucleotide-free Rac1 (G15A) mutant fusion protein and
inhibits the activity of the downstream effector p21 activated
kinase (PAK), valve foot extension, and cell migration in
metastatic cancer cells (173). EHop-016 can also reduce the
activity of Akt and Jun kinase (JNK) and the expression of c-Myc
and Cyclin D, and increase the activity of caspase 3/7 in
metastatic cancer cells, thereby affecting cell survival (174,
175). EHop-016 can eliminate the growth, metastasis, and self-
renewal ability of gallbladder cancer cells caused by
overexpression of miR-365 (176). Unlike NSC23766, EHT1864
was initially described as a small molecule, which interfered with
the binding of nucleotides to Rac1 and prevented the binding of
GTPase to downstream effectors (177, 178). The growth inhibition
of BC cells induced by EHT1864 is related to the dual inhibition of
PI3K-AKT-mTORC1andMEK-ERKpathways (179). Studies have
shown that Rac1 plays an important role in the contraction of
various smoothmuscles, such as bronchial smoothmuscle, bladder
smooth muscle, and prostate smooth muscle (180–183). Although
both EHT1864 and NSC23766 are Rac1 inhibitors, they have
different pharmacological mechanisms in the inhibition of
different smooth muscles (182, 184, 185), and EHT1864 tends to
perform better (186, 187). In recent years, newRac1 inhibitors have
been continuously developed. ZINC69391 is a specific Rac1
inhibitor, which interferes with Rac1-GEF interaction by masking
Trp56 residue on Rac1 surface. The 1A-116 analog is a Rac1
inhibitor designed and developed based on ZINC69391. It plays a
role by inhibiting the interactionofRac1with theVav family (Vav1-
3), Tiam1, and Dbl (188). Trp56 is necessary for 1A-116 to play an
inhibitory role (189). ZINC69391 and 1A-116 can inhibit the
interaction of Rac1 and GEF (Tiam1, Dock180) (188, 190, 191). It
hasbeen found that 1A-116and its parental compoundZINC69391
can inhibit the proliferation, invasion, migration, and cell cycle of
BC cells, glioma cells, and leukemia cells, and 1A-116 shows higher
specificity and intensity in vivo and in vitro (190, 191). 1D-142 is a
newly discovered new guanidine inhibitor, which can inhibit the
activation of Rac1 by interfering with the interaction of Rac1-
Tiam1, and its effectiveness in vivo and in vitro ismuch higher than
that of the reported derivative 1A-116 (192). InHCCmousemodel,
1D-142 was found to significantly reduce tumor growth and
intrahepatic metastasis (193). Similarly, in mouse models of
NSCLC, 1D-142 was found to inhibit NSCLC cell proliferation
and migration by reducing Rac1-mediated TNFa-induced NF-kB
nuclear translocation (192).

In the process of exploring Rac1 inhibitors, there are many
gratifying discoveries: for example, the inhibitory effect of
NSC23766 on Rac1 can antagonize the drug resistance of tumor
cells to targeted drugs, such as fludarabine resistance of chronic
lymphocytic leukemia (CLL) cells (147), fluorouracil and cisplatin
resistance of gastric adenocarcinoma cells (153), and trastuzumab
resistance of BC cells (154). NSC23766 increases the anti-
proliferative effect of erlotinib on glioblastoma cells in a
synergistic manner (167). EHop-016 was found to be an effective
inhibitor of human and mouse leukemia cells, but NSC23766 does
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not have the ability, whichmay be related to the specific targeting of
EHop-016 to Vav1 (194). ZINC69391 and 1A-116 can selectively
induce apoptosis of leukemia cells from patients, which may be
related to significant activation of caspase-3 and loss of
mitochondrial membrane potential (191). This suggests that the
combination of drugs targeting Rac1 and other therapeutic drugs
may provide a new direction for the treatment of leukemia.
EHT1864 can inhibit the proliferation of BC cells induced by
increased transcription activity of estrogen receptor-a (Era)
(195). The pharmacological inhibitory effect of 1A-116 on the
Rac1-PAK1 axis, inhibition of PAK1 activity and reduction of the
level of estrogen receptor phosphorylation at Ser305, is beneficial to
the recovery of drug resistance mechanisms in endocrine therapy
(196). Gonzalez, et al. confirmed that 1A-116 can also inhibit the
Rac1 (P29S) mutation of melanoma (189). EHT1864 can block the
Rac1-dependent processing of amyloid precursor protein, and
amyloid precursor protein forms senile plaque of Alzheimer’s
disease (AD), which provides a prototype for developing new
drugs suitable for AD therapy (197). EHT1864 can reduce kidney
injury caused by salt and aldosterone by abnormal activation of the
mineralocorticoid receptor (MR) mediated by Rac1 (198). Ziegler,
et al. also confirmed that the use of EHT1864 can promote DNA
repair and reduce DNA damage induced by radiotherapy (IR)
(199). Rac1 inhibitors are considered to be beneficial in the
treatment of many diseases, but at the same time, some scholars
have proposed that the widespread use of Rac1 inhibitors (such as
NSC23766 and EHT1864) may cause serious off-target effects in
mouse platelets (200). It is interesting to note that Xie, et al. found
that deacetylepoxydiene (DA-MED) acts as a Rac1 agonist in
human NSCLC H1299 cells with p53 gene deletion and also
activates the massive production of ROS (201).

It is worth noting that Rac1 inhibitors have made some
breakthroughs in the clinical applications. R- ketorolac, as a
component of a racemic drug approved by the FDA to relieve
pain, is a dual Rac1/Cdc42 inhibitor, which can reduce the invasive
biological behavior of ovarian cancer and glioblastoma (202–204).
A novel anthraquinone−quinazoline hybrid 7B blocks TNBC cell
migration, invasion and EMT via targeting EGFR and Rac1 (205).
However, the limitations of the clinical application of Rac1
inhibitors cannot be ignored. Although NSC23766 has a good
effect in the treatment of resistance to EGF-TKI in NSCLC
patients, it cannot be widely used in clinical treatment due to its
excessively high IC50 (50 Um) (206). With the discovery of new
functions of Rac1 in other diseases, the treatment targeting Rac1 is
undoubtedly a promising treatment option. Therefore, there is an
urgent need to develop more new Rac1 inhibitors which can be
widely used in clinical treatment (Figure 5).
CONCLUSION

Rac1, as a cytoskeletal regulator, regulates the polymerization of
actin and promotes the migration and invasion of tumor cells,
thus playing a key role in tumor evolution. Rac1 is highly
expressed in different types of tumors, and it is related to poor
prognosis. In addition, Rac1 is not only involved in tumor cell
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cycle, apoptosis, proliferation, invasion, migration, and
angiogenesis, but also involved in the regulation of tumor cell
stemness, thus promoting the occurrence of tumors. In addition,
Rac1, as an entry point to explain the mechanism of drug
resistance, also plays a key role in anti-tumor therapy and
participates in immune escape mediated by the tumor
microenvironment. Rac1 inhibitors have good prospects in the
prevention and treatment of tumors. Therefore, Rac1 is
considered a potential target for the prevention and treatment
of cancers.
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5-FU 5-fluorouracil
ARHGAP24 Rho GTPase activating protein 24
AD Alzheimer’s disease
BC Breast cancer
CSCs cancer stem cells
ccRCC clear cell renal cell carcinoma
CRC colorectal cancer
CYRI/FAM49B CYFIP-related Rac1 interacting protein
CSCC cervical squamous cell carcinoma
CC contraceptive centchroman
CLL chronic lymphocytic leukemia cell
circRSF1 circRNA-RSF1
DADS diallyl disulfide
DA-MED deacetylepoxydiene
DSG2 Desmoglein-2
ESCC esophageal squamous cell carcinoma
Era estrogen receptor a
EOC epithelial ovarian cancer
ECs endxothelial cells
EMT Epithelial-mesenchymal transition
EPS8 epidermal growth factor receptor pathway substrate 8
GSLC glioma stem-like cells
GEFT Guanine nucleotide exchange factor T
GDIs guanine nucleotide dissociation inhibitor
GAPs GTPase activator protein
HCC hepatocellular carcinoma
HSC hepatic stellate cells
HNSCC head and neck squamous cell carcinoma
HSCs hematopoietic stem cells
ISC intestinal stem cells
IQGAP1 IQ-guanosine triphosphatease-activating protein 1
ITGA5 Integrin alpha5
ICIs Immune checkpoint inhibitors
IR radiation therapy
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IL17A interleukin 17A
LIMK1 LIM kinase 1
LFA-1 lymphocyte function-associated antigen-1
MET mesenchymal-epithelial transformation
M1-Exos M1-type macrophage-derived exosomes
NAC neoadjuvant chemotherapy
NPC nasopharyngeal carcinoma
NSCLC non-small cell lung cancer
NBS nucleotide-binding site
OIP5 OPA interacting protein-5
OSCC oral squamous cell carcinoma
OXA oxaliplatin
PPP pentose phosphate pathway
PBR multi-base region
PGC primary gallbladder cancer
PKC-z protein kinase C-z
PAKs p21 activated kinase
pp70s6k The 70 kDa S6 kinase complexes
PLS1 Plastin1
PTPs protein tyrosine phosphatase-sigma
PLPPR1 phospholipid phosphatase-related protein 1
RIII radiation-induced intestinal injury
RILD radiation-induced liver disease
Rac1 RAS-related C3 botulinum toxin substrate 1
RCC renal cell carcinoma
RCC2 regulation of chromosome condensation 2
ROCK2 Rho-linked kinase 2
RMS rhabdomyosarcoma
Sema3F semaphorin-3F
Sema3C Semaphorin-3C
S1PR1 Sphingosine-1 phosphate receptor 1
SDF-1a stromal cell-derived factor 1-a
SCC squamous cell carcinoma
Tiam1 T lymphoma invasion and metastasis protein 1
TNBC triple-negative breast cancer
TNFAIP8L2/TIPE2 tumor necrosis factor, alpha-induced protein 8-like 2
UA Urobilin A
VEGF vascular endothelial growth factor
VEGFR vascular endothelial growth factor receptor
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