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Non-Hodgkin lymphoma is the most common malignancy affecting people living with HIV
(PLWH). Among its several subtypes, diffuse large B-cell lymphoma (DLBCL) is an
important manifestation within the HIV-infected compartment of the population. Since
HIV is able to modulate B cells and promote lymphomagenesis through direct and indirect
mechanisms, HIV-related DLBCL has specific characteristics. In this review, we address
the clinical and molecular properties of DLBCL disease in the context of HIV infection, as
well as the mechanisms by which HIV is able to modulate B lymphocytes and induce their
transformation into lymphoma.
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INTRODUCTION

Historically, lymphomas have been assigned as either Hodgkin or non-Hodgkin types according to
histological features [for example, the Reed-Sternberg cells (1, 2)], clinical presentation and
response to therapies (3, 4). Non-Hodgkin lymphomas (NHLs) are a large spectrum of diseases
that arise from lymphocytes at different stages of development, affecting virtually any organ (5).
Also, NHLs are more frequent than Hodgkin lymphomas (6). According to the latest Globocan
estimates, NHLs show incidence and mortality of 5.8 and 2.6 per 100.000 inhabitants worldwide,
respectively (6). Currently, the World Health Organization (WHO) recognizes more than 60
distinct entities as members of the NHL group, excluding lymphoproliferative disorders and non-
malignant manifestations (7). NHLs may arise from B lymphocytes, T lymphocytes or NK cells (7).
Generally, NHLs subtypes from B cells are more common and represent about 85% of all cases (8,
9). Although data from Globocan represent collective incidence of NHLs, the distribution of
subtypes is not homogenous and varies according to the study population (10). Among B cell-
derived NHLs, the diffuse large B cell lymphoma (DLBCL) is consistently reported as the most
common manifestation worldwide, followed by follicular lymphoma (FL, especially in Central and
South Americas) and chronic lymphocytic leukemia (CLL, especially in southeast Europe) (10, 11).
Individuals with Caucasian ancestry were associated with increased incidence of DLBCL, FL and
CLL when compared with subjects with Hispanic, Asian or African ancestries (12). Few
epidemiological data address specifically DLBCL and, in general, NHLs are reported as a group.
However, a study performed with the US population from 1975 to 2017 showed DLBCL incidence
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estimates of 5.6 per 100.000 individuals per year (13). Also,
between 45-60% of all NHL cases reported in Central and South
America were DLBCL (14). A study performed with 27,796
NHLs diagnosed between 2000 and 2016 in Sweden reported
DLBCL as the most common subtype, accounting for 35% of all
cases (15). Those results indicate the relevance of DLBCL as a
frequent NHLmanifestation. The epidemiological data described
above refers to the general population, however, it is known that
specific subpopulations, such as people living with HIV (PLWH),
harbor even greater burden of NHLs and DLBCL.

Among the risk factors linked with NHL development,
immunosuppression is one of the well-documented. For example,
solid organ transplant recipients had six-fold higher risk of
developing NHL than the general population (16). In this
scenario, HIV infection and lymphomagenesis were also
extensively associated due to the immunosuppression induced by
HIV infection (8). Indeed, before the advent of highly active
antiretroviral therapy (HAART), HIV-infected patients had
increased incidence of cancers associated with infection by other
oncogenic viruses, such as Kaposi’s sarcoma (HHV8 - human
herpes virus 8), cervical cancer (HPV - human papillomavirus)
and NHL (EBV – Epstein-Barr virus) (17). Those cancers, including
the group of NHLs, were subsequently named AIDS defining
cancers (ADCs), given their relationship with HIV-associated
immunosuppression, while all the other tumors observed among
PLWH were called non-AIDS defining cancers (NADCs) (17, 18).
Specifically, PLWH had a 113-fold higher risk of developing NHLs
than uninfected counterparts (18). Accordingly, it was observed that
the increase in NHL cases during the 1980s in USA was due to, in
large part, the increase in AIDS-associated NHL (19). Nevertheless,
after the advent of HAART, the epidemiology of cancers in PLWH
suffered significant changes. With access to HAART, restoration of
immunocompetence and aging of PLWH, the incidence of ADC
started to decline while the incidence of NADC increased (20).
According to a study performed with an European database, NHL
incidence was 462.6 per 100.000 HIV-infected people that did not
receive treatment, while the incidence was 205.1 per 100.000
HAART-treated patients (21). However it is clear that, despite the
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decreasing number of NHL cases in PLWH after the introduction of
HAART, their estimate is not yet comparable to that of the general
population and the incidence remains higher in HIV-infected
people (20). Currently, even in the post-HAART era, NHLs are
still reported as the most common neoplasia in PLWH (22). Among
the numerous subtypes of NHLs, DLBCL and Burkitt lymphoma
are the most frequent manifestations in PLWH (23, 24). In fact,
about 60-70% of all NHLs from HIV-infected subjects are reported
as DLBCL (24–26), indicating its relevance in this specific
subcompartment of the population.

Regarding clinical presentation, NHLs may affect lymph nodes
(nodal manifestation) or other tissues outside lymph nodes
(extranodal manifestation), among which gastrointestinal tract
and central nervous system are relatively common sites (27).
NHL patients may present lymphadenomegalia and/or B
symptoms (≥ 10% weight loss during the last six months, night
sweating and fever ≥ 38°C) (28). NHL staging is based on the Ann
Arbor system, which defines four stages according to the disease
dissemination (29, 30), while the International Prognostic Index
(IPI) is used for the prognosis of NHL patients (31).

In the current review, we address one of the most relevant
subtypes of NHLs, DLBCL. We cover its molecular characteristics
and its specific features when manifested in PLWH.
THE MOLECULAR BASIS OF DLBCL

The DLBCL is not a homogenous disease and can be further
stratified into subtypes according to gene expression signatures
(Figure 1). The first report that identified DLBCL subgroups
based on molecular properties was performed by Alizadeh and
coworkers (2000). Using microarray assays, the authors
investigated the expression pattern of genes related with B cell
development and lymphomagenesis, which allowed the
clusterization of DLBCL samples into two main subgroups
called GCB (germinal center B-like) and ABC (activated B-like)
(32). The GCB subtype was characterized by elevated expression of
A B

FIGURE 1 | Distinctive characteristics of DLBCL subtypes. (A) Germinal center B-like (GCB) subtype was originally characterized by a gene expression pattern that
resembled the germinal center (GC) phenotype. GCB cases are associated with better prognosis, as well as molecular properties, such as increased frequency
of BCL2 translocations and EZH2 mutations. (B) Activated B-like (ABC) subtype was described with a gene expression pattern associated with the post-GC
phenotype. ABC subjects show worse prognosis and specific molecular properties, such as higher frequency of BCL6 translocations and alterations involving the
NF-kB pathway.
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genes associated with germinal center (GC) phenotype, such as
BCL-6, BCL-7A, LMO2 and others, while the ABC subtype was
characterized by low or undetectable levels of GC markers
accompanied by high expression of genes related to plasmacytic
differentiation, a post-GC phenotype (32, 33). Interestingly, even
though the ABC subtype initiates the transition towards the pro-
plasmacytic program, as observed by the high levels of IFR4 and
other markers (34), ABC cells are incapable to conclude the
plasmacytic differentiation because they fail to stimulate
transcription factors ultimately required for the acquisition of
plasma cell phenotype (35), such as Blimp-1 (36, 37). In fact,
Blimp-1 mutations that inhibit its expression or destabilize the
protein were described exclusively in ABC cases (38), emphasizing
its incapacity to follow the plasmacytic program completely.
Therefore, ABC subtype represents an abnormal stage of B cell
ontogenesis in which the differentiation is arrested in between the
end of germinal center reaction and the commitment with plasma
cell generation (33). The distinction between GCB and ABC is
relevant since it adds prognostic value and, classically, ABC
patients exhibit worse survival estimates than GCB subjects (32).

After the first description of DLBCL subtypes, new
methodologies for subtype identification were published.
Wright and coworkers (2003) identified a list of 27 genes with
predictive value to distinguish between ABC, GCB and a third
group called unclassified, since it did not fit into either of the two
categories established (39). In agreement with the original report
(32), the subtypes described according the list of 27 genes also
had prognostic value and the overall survival estimates were 31%,
59% and 47% for ABC, GCB and unclassified cases respectively
(39). On the other hand, the Hans algorithm proposes subtype
identification based on immunohistochemical assessment of
three key proteins: BCL-6, IRF4 and CD10. According to this
method, the authors were able to distinguish between GCB
(CD10+, IRF4- and/or BCL6+) with overall survival of 76%
and non-GCB cases (CD10- and BCL6- or CD10-, BCL6+ and
IFR4+) that showed only 34% overall survival estimates (40).
Another technology applied in DLBCL subtype identification is
the Lymph2Cx panel, which interrogates the expression levels of
20 key genes using digital gene expression analysis (34). It is a
method especially relevant for formalin-fixed paraffin-embedded
(FFPE) samples and also aggregates prognostic values like the
abovementioned methodologies (34). Interestingly, even though
DLBCL subtype identification had its prognostic relevance
confirmed in several reports, its predictive value was not
observed among HIV-infected patients with the disease (41),
indicating that the lymphoma has unique properties in the HIV
infection context that must be addressed apart.

Molecular events that happen during B lymphocyte
development are also a source of genetic alterations found in
DLBCL (42). Besides somatic hypermutation and class switch
recombination (43), nucleotide substitutions catalyzed by AID
(activation-induced deaminase) may also produce somatic
mutations and large-scale alterations, such as chromosomal
translocations (33). Break sites in genes commonly translocated
in DLBCL are often AID-targeted regions (44–46). Moreover,
DLBCL samples exhibited proto-oncogene mutations at sites
recognized by AID (47). Therefore, deregulation and errors
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resulting from B lymphocyte ontogenesis may also promote
DLBCL development.

Chromosomal translocations consists on the exchange of
DNA segments between distinct chromosomes and are among
the most common DLBCL genetic alterations (48). The pattern
generally observed is the transfer of a protoncogene segment
to a site downstream of an immunoglobulin locus, usually
immunoglobulin heavy-chain (IgH) (49). This mechanism
positions protoncogenes under the regulatory control of IgH
loci and not their original regulatory regions, affecting gene
expression (33, 46, 49). BCL2, BCL6 and MYC are common
translocation targets in DLBCL (50). BCL2 translocation is
described as t(14;18) because it is the transfer of a chromosome
18 segment containing BLC2 to an IgH downstream site on
chromosome 14 (51). This translocation is not observed in ABC
subtypes, but is especially frequent among GCB cases, affecting
35-40% of cases (52, 53). Also, evidence suggests that t(14;18) is
acquired early in ontogenesis during VDJ recombination breaks
(54). BCL2 translocation was associated with increased protein
expression, whose antiapoptotic effect favors the survival of
transformed cells (52, 53, 55). In ABC subtype, increased
expression of BCL2 was also reported, but was associated with
chromosomal duplications and not t(14;18) (55). Moving forward,
BCL6 translocations were described either affecting IgH locus on
chromosome 14 or non-Ig loci. The t(3;14) event occurs between
IgH and a fragment of chromosome 3 containing BCL6 (56). Even
though this translocation affects only 10% of GCB cases, 25% of
ABC samples comprise that event (57). This may also be another
mechanism by which the ABC subtype is unable to completely
assume the plasmacytic program, since t(3;14) positions BCL-6
under the command of IgH regulatory regions and prevents its
complete inhibition after the end of the germinal center reaction
(58). ABC samples carrying t(3;14) expressed higher levels of
BCL6 than non-carriers of the same subtype (57). However, in
analysis without subtype stratification, BCL6 expression was not
significantly affected by t(3;14) (57, 59). On the other hand, BCL6
translocation with non-Ig partners (such as histone H4) were
associated with increased gene expression (60).

MYC translocation towards the IgH locus was reported as t
(8;14) (61). It is a less common event than BCL2 and BCL6
translocations, affecting about 10% of DLBCL cases (62, 63).
Among t(8;14) carriers, the majority belongs to GCB subtype
(64). MYC is a transcription factor related with cell cycle and
survival, and therefore its increased expression after juxtaposition to
IgH locus also contributes to carcinogenesis (65). BCL2, BCL6 and
MYC translocations are not mutually exclusive and may occur
together in the same patient, forming the double-hit and even triple-
hit lymphomas (66, 67). A study with 155 DLBCL subjects showed
that 2.3% were double-hit for MYC/BCL2, 2.3% were double-hit for
MYC/BCL6 and 0.8% (one patient) was triple-hit and carried the
three translocations (68). In general, carriers of multiple hits (two or
three translocations) are associated with worse survival (55, 64, 69).

Besides chromosomal translocations, some point mutations in
DLBCLwere also reported. Nucleotide substitutions, deletions and
duplications were described in several genes, such as BCL6, MYC,
PAX5, PIM1, RhoH and others (47). A large genomic analysis
performed with 1,001 DLBCL cases described a list with the
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60 most frequently mutated genes (70). Among them, they
described mutations in MYC, PAX5, BCL2, CARD11, CDKN2A
and other targets, indicating the genetic heterogeneity found in
this cancer. However, the authors also observed some common
patterns. For example, BCL2, with known antiapoptotic properties
(71) and CARD11, a gene associated with lymphocyte activation
(72) suffered missense mutations or copy number gains, while
genes involved with cell cycle inhibition, such as CDKN2A (73)
suffered nonsense mutations or copy number losses (70). Overall,
mutations found in DLBCL favored pathways associated with
survival or cell cycle progression and blocked pathways with the
opposite effect (74). Accordingly, CARD11 was pointed as an
important oncogene for DLBCL development in other reports
(75, 76).

The distribution of some mutations also varies according to the
DLBCL subtypes (77). Specifically, in GCB cases lesions that allow
the persistence of the germinal center transcriptional program are
observed, preventing the transformed cells to move forward to the
following stages of normal B cell development, a process called
“locking in” (33). One of the main components responsible for
keeping the germinal center phenotype in GCB cases is the EZH2
enzyme, a known repressor of transcription factors needed for
plasma cell differentiation, such as Blimp1 and IRF4 (78). The
inhibition occurs with the triple methylation of lysine 27 residue
on histone H3 located in regulatory regions of those genes (78).
Thereby, the enzyme suppresses the pro-plasmacytic program and
confines the transformed cell within a GC phenotype (58). Gain of
function mutations in EZH2 are found in 20% of GCB cases and
are not found in ABC subtype (79), a pattern already described in
the literature (70, 74, 80). Those are missense mutations in which a
tyrosine residue from the catalytic site of the enzyme is replaced by
another amino acid, affecting directly its affinity for the substrate,
which results in hypermethylation of the target regions and leads
to an inhibition even more pronounced than by wild-type EZH2
(81). On the other hand, ABC subtype is characterized by
alterations in genes of the NF-kB pathway (70, 80). NF-kB is a
transcription factor important for B cell development, mediating
proliferation, survival and apoptotic pathways (82). The NF-kB
pathway is constitutively activated in ABC subtype (83). In vitro
administration of NF-kB pharmacological inhibitors was toxic
exclusively in ABC cell lines and did not have an effect in GCB
models (83). Some genetic lesions are responsible for NF-kB
constitutive activation. TNFAIP3, a NF-kB repressor, suffers
deletions or loss of function mutations in 30% of ABC cases
(84). In parallel, MYD88, an activator of NF-kB, showed gain of
function mutations in 29% of ABC samples (85). Alterations in
those genes are rare or not reported for GCB (70, 84, 85).

Regarding DLBCL treatment, the main option is chemotherapy.
Initially, a combination of drugs called CHOP (cyclophosphamide,
hydroxydaunorubicin, vincristine/oncovin and prednisolone) was
used (86–88). The advent of an anti-CD20 monoclonal antibody
(rituximab) with antitumoral activity (89) led to its addition to
chemotherapeutic regimens, creating the R-CHOP treatment. R-
CHOP-treated patients showed significantly greater survival
estimates when compared to CHOP-treated subjects (90–93). For
example, progression-free survival estimates were 66% and 45% for
R-CHOP and CHOP groups, respectively (90). Currently, R-CHOP
Frontiers in Oncology | www.frontiersin.org 4
is the principal treatment option for DLBCL, but 30% of relapsed
cases are still observed (90). More recent studies are searching for
treatment strategies according to DLBCL subtypes, especially for
ABC given its worse survival performance. Since NF-kB pathway
function is crucial in ABC subjects, a study raised the hypothesis
that bortezomib, an NF-kB inhibitor, could exert selective efficacy
on this subtype (86). However, the combination of bortezomib
and R-CHOP did not improve survival estimates when compared to
R-CHOP regimen alone (94, 95), indicating that new subtype-
specific targets must be studied. Accordingly, the combination of
R-CHOP and ibrutinib, a BTK inhibitor, resulted in better survival
estimates in ABC patients that were younger than 60 years when
compared to R-CHOP alone (96). Although statistical significance
was not observed, the R-CHOP and lenalidomide combination
showed a trend towards an improved survival among ABC patients
with worse IPI scores (≥ 3) (97).
HIV-INDUCED MODIFICATIONS IN B CELLS

Although the general molecular mechanisms involved with DLBCL
pathogenesis are well documented and summarized above, the
specificities of DLBCL in an HIV-infected context are yet unclear.
Despite T-CD4 lymphocyte depletion being one of the hallmarks of
HIV infection, viral-induced effects are also reported for the B cell
compartment (Figure 2). Knowing that B lymphocytes are the
progenitor cells of DLBCL, we will first approach how HIV is able
to exert its influence over B lymphocytes either by direct or indirect
mechanisms throughout its life cycle in this section. As suggested
by Moir & Fauci, most of the B cell alterations are due to
unbalanced distribution of subpopulations, that is, while certain
subgroups of B cells suffer a shrinkage under the influence of
HIV, others will undergo enrichment (98) and even participate
in lymphomagenesis.

Studies suggest that HIV is able to directly interact with surface
molecules on B lymphocytes. Despite not expressing CD4,
interaction between the viral glycoprotein gp120 and membrane
immunoglobulins from the variable heavy chain 3 (VH3) family
has been reported (99). Moreover, gp120 was shown to interact
with C-type lectin receptors on B lymphocytes (100, 101). CD21 is
another known binding site of HIV in B cells through interactions
mediated by complement proteins (102). However, whether this
interaction is able to induce direct effects on lymphocytes is still
being discussed (98). On the other hand, a known participation of
CD21-dependent interactions contributes to the maintenance of a
extracellular reservoir of surface-bound viral particles potentially
transmittable to T-CD4 cells (103, 104). Furthermore, HIV may
also influence B cells through indirect mechanisms by altering the
cytokine secretion pattern of different cell types. Indeed, several
cytokines were found overexpressed in plasma samples from
PLWH when compared to uninfected controls (105). For
example, HIV increased T-CD4 lymphocyte spontaneous IL6
secretion (106), IL10 and TNFa production by monocytes
exposed to viral glycoproteins (107) and IFNa secretion by
plasmacytoid dendritic cells (108). Those cytokines contribute to
B cell activation, differentiation (109, 110) and may also guide the
modifications observed upon HIV infection.
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A common feature observed within the B cell compartment
during HIV infection is the acquisition of a hyperactivation
phenotype, characterized by a plethora of physiological
alterations. One of the first studies to suggest chronic B cell
activation in PLWH was performed in 1983 by Lane and
coworkers. The authors indicate that, although the peripheral B
cells extracted from AIDS donors were less responsive to antigenic
stimulation, those cells exhibited spontaneous secretion of IgG, IgA
and IgM at levels 10 times higher than HIV-uninfected controls
(111). In agreement, the increased serum levels of immunoglobulin
molecules, a state defined as hyperglobulinemia, was also associated
with HIV infection (112–114). Analyses regarding the cellular
source of immunoglobulin secretion were suggestive of a
polyclonal B cell activation in PLWH (115). Taken together, these
data suggest a shift in the B cell compartment towards a pro-
plasmacytic pathway, since increased antibody secretion was
reported under the influence of HIV infection (98, 116). This
pattern was also observed when the peripheral B cells from
PLWH were shown to be enriched in a population with low
levels of CD21. This subgroup (CD21low) was associated with
diminished proliferative capacity after antigenic stimuli and with
plasmacytoid morphological features (116). Indeed, both CD21
downregulation and decreased proliferative response are related to
cell priming into the plasmacytic differentiation program (117). The
favoring of plasmacytoid pathways upon HIV infection was
reported by others (118, 119), emphasizing the viral effect on
Frontiers in Oncology | www.frontiersin.org 5
reorganizing the pool of B cells towards a less responsive and
terminally differentiated route. Interestingly, while CD21low cells
showed enhanced antibody secretion in PLWH (116), they were not
able to spontaneously secrete immunoglobulin in uninfected
individuals (117). Another aspect of HIV-induced B cell
hyperactivation is the modification of surface markers, such as the
increased expression of activation-related molecules (120).
Nevertheless, although the baseline levels of CD86 and CD80
were higher among HIV subjects, their B cells were not capable
of upregulating the expression of those markers upon receiving
proper stimulation (121). Similarly, CD38 levels were higher in B
cells from HIV-infected donors, but those cells were also more
susceptible to apoptosis since the levels of the proapoptotic CD95
molecule were increased (122). Those results are in agreement with,
and help to delineate the paradoxical nature of the hyperactivation
phenotype: while B cells show evidence of activation at resting state,
they are poorly responsive to adequate stimuli, which contributes to
impaired humoral responses.

AdditionalHIV-induced effects on theB cell compartment were
reported in the literature, such as effects on memory B cells and
immune exhaustion, a state defined by diminished proliferative
response and effector functions upon antigenic stimulation (123).
Asdescribedabove, the loss ofCD21expression is a valuablemarker
of HIV disease in B cells. The CD21low subpopulation forms a
heterogeneous cluster that reveals multiple B cell modifications
under influence of HIV (124), including evidence of immune
FIGURE 2 | Highlights of HIV-induced B lymphocyte alterations. HIV particle (green) is able to bind B lymphocyte (blue) through direct interactions with surface
immunoglobulins (B-cell receptor, BCR) and through CD21 interactions mediated by complement proteins. Spontaneous immunoglobulin secretion leading to
hyperglobulinemia is observed in the context of HIV infection, as well as alterations in surface markers, such as increased expression of CD80, CD86, CD38 and CD95.
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exhaustion. Although CD21low cells were initially associated with
plasmacytoid features, confirming the hyperactivated phenotype,
not all of them belong to the pro-plasmacytoid compartment (98).
A fractionofCD21lowcells characterizedby low levels ofCD27and
high expression of FCLR4 has been observed in HIV+ patients
(125). The expression of those markers also described a specific
subpopulation of memory B cells found originally in tonsils (126).
Therefore, those CD21LOW CD27- FCRL4+ cells were
subsequently named as tissue-like memory cells and were shown
tobe enriched inPLWH(127). Interestingly, evidence of premature
exhaustion was found in tissue-like memory cells, demonstrating
their poor responsiveness to appropriate BCR stimulation when
compared to conventionalmemory B cells (127, 128). Those results
indicate the expansion of an abnormal B cell subpopulation in
PLWH, suggesting the enrichment of an exhausted memory B cell
phenotype and impaired humoral responses.

In this scenario, an interesting topic is whether highly active
antiretroviral treatment (HAART) is able to reverseHIV-inducedB
cell modifications. Although it is well established that the therapy is
capable of minimizing B lymphocyte alterations, the extension of
that activity is suggested to be partial and not valid for all the
observed HIV-induced effects . Hyperactivation and
hyperglobulinemia are examples of alterations completely
resolved by HAART (129). When compared to untreated
patients, immunoglobulin serum levels were significantly
decreased after HAART administration and correlated with HIV
viral load reduction (129, 130). However, effects regarding the
reorganization of B cell compartments are incompletely reversed
by HAART (131). As demonstrated by Moir and collaborators,
some B cell subpopulations from HAART-treated PLWH reached
percentages comparable to those found in uninfected donors,
however the increase in resting memory cells was slow and
incomplete, revealing the persistence of memory B cell deficiency
(131). The partial restoration of that compartment was confirmed
by others, indicating that HAART-treated subjects still have lower
levels of memory B cells than uninfected counterparts (132). In
agreement with those findings, the CD21low subset enrichment,
one of the main B cell alterations upon HIV acquisition, was not
completely abolished after HAART introduction, and CD21low
counts were still significantly higher in HAART-treated patients
than inuninfected controls, demonstrating a partial restorationofB
cell subsets (133). In contrast, a report by Tanko and coworkers
showed that, after HAART treatment of HIV subjects, the
percentages of immature transitional, naive and memory B cell
groups were equivalent to non-HIV individuals, except for
plasmablasts, which continued to be enriched in PLWH even
after HAART (134). Altogether, these results suggest that even
after HAART, residual modifications in B cell subpopulations
persist in PLWH.
HIV-INDUCED LYMPHOMAGENESIS

Classically, HIV has been associated with lymphomagenesis (and
carcinogenesis in general) because of its immunosuppressive
activities. PLWH, while immunosuppressed, loose immunological
Frontiers in Oncology | www.frontiersin.org 6
vigilance overotherpathogens andbecomepermissive tooncogenic
viral infection (135). Regarding lymphoma development, EBV
(Epstein-Barr Virus) co-infection has a meaningful role (136,
137). EBV is a gamma-herpes virus able to infect B lymphocytes
through interactions with CD21 (138). EBV infection is worldwide
disseminated and progresses as an asymptomatic condition
throughout life in the majority of carriers (139, 140). The activity
of T lymphocytes is crucial to control EBV infection, assuring its
asymptomatic s tatus (141) . However , HIV-induced
immunosuppression favors EBV oncogenic activities, worsening
the risk of lymphoproliferative diseases and lymphomas (142). The
exact mechanisms by which EBV is able to induce oncogenesis are
beyond the scope of this review and are addressed elsewhere (143–
145). Some examples of oncogenic activities are found in EBV
proteins produced during its life cycle. LMP1 (Latent Membrane
Protein 1) is able to transform B cells and to stimulate
lymphomagenesis (146). Its mechanism of action consists on the
mimicry of CD40 physiological signaling, stimulating lymphocyte
proliferation (147) and antiapoptotic pathways in an NFKB- (148)
and Akt- (149) dependent manner. Another example is EBNA2
(EBV-encodedNuclearAntigen2),which also exhibits pro-survival
activity and favors B cell lymphoma development (150). On the
scope of reduced immunological surveillance, the HIV-infected
context, especially in intravenous drug users, is associated with
higher rates of HCV infection (151). HCV positivity was associated
with lymphomagenesis (152).NHLpatientswithHIV showed even
greater frequencyofHCVinfection thanPLWHthat didnot exhibit
cancer (153). HCV infection was also associated with worse overall
survival and increased the risk of NHL development (153),
suggesting another tumorigenic mechanism in HIV-infected
subjects. Even though immunosuppression is one of the main
oncogenic mechanisms of HIV infection, direct effects induced by
the virus are also being reported as important contributors
to lymphomagenesis.

As discussed in the previous section, HIV exerts influence over
the host’s B cell population. In this scenario, effects on B
lymphocytes contributing to lymphomagenesis have been
reported. The B cell hyperactivation under HIV influence (111,
116, 133) is also associated with immunoglobulin (Ig) class
switching (154, 155), one of the main sources of genetic
variability in B cell lymphomas (33, 44, 46). Therefore, it may
contribute to the acquisition of genetic lesions related to
lymphomagenesis, such as chromosomal translocations (45,
156). Activation-induced deaminase (AID) is an enzyme whose
activity is linked with the double-strand breaks needed for
translocation events (43, 45). The interaction between the HIV
gp120 glycoprotein and C-type lectin receptors on B lymphocytes
is able to upregulate AID expression and, consequently, to trigger
class switching events (100, 101). An additional triggering
mechanism was observed where HIV particles with envelopes
carrying CD40L host molecules stimulate B lymphocytes to,
similarly, upregulate AID and proceed through Ig class switch
(157). Indeed, previous reports had already observed high
expression of immunological markers associated with Ig class
switch in PLWH. Those studies showed that, when compared to
HIV subjects that did not progress to lymphoma, high serum
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levels of IL6, IL10 and IgE were observed specifically among the
ones that developed cancer until three years after enrolment (158,
159), reassuring the relevance of this pathway for HIV-associated
lymphomas. Indeed, both IL6 and IL10 are cytokines associated
with Ig class switch induction (109). Therefore, such favouring of
AID expression and Ig class switch upon HIV infection may
contribute to the acquisition of genetic lesions potentially able to
drive lymphoma.

An additional mechanism recently proposed for HIV-induced
carcinogenesis is the release of pro-tumoral exosomes. Exosomes
derived from infected cells were enriched in HIV transactivator
response element (TAR) RNA and associated with antiapoptotic
properties (160). Chen and coworkers showed that exosomes from
T cells or from PLWHplasma samples were able to directly induce
cancer cell proliferation and oncogene expression through the
EGFR/TLR3 axis followed by ERK1/2 phosphorylation (161).
Interestingly, those effects were not observed when B lymphoma
cell lines were used, apparently due to the lack of EGFR expression
(161). However, exosome-derived microRNAs (miRNAs) were
proposed as relevant biomarkers for Hodgkin lymphoma
diagnosis in HIV-infected donors (162) and, therefore, it
remains to be elucidated whether or not exosomes may have a
role in lymphomagenesis or if their effect is cancer-specific.

Besides the contribution of HIV infection to class switching
events, more recent reports have demonstrated direct participation
of viral proteins during lymphoma development (163). For
example, viral p17 matrix variants were able to stimulate
proliferative and antiapoptotic pathways in B lymphocytes,
facilitating their clonal expansion (164). The p17 variants with
proliferative effect pass through a conformational change and
expose an amino acid sequence originally enclosured in wild-type
p17 three-dimensional structure (165). Even though the identity of
the receptors involved in p17 signaling is not fully understood,
interactions between p17 and CXCR1 or CXCR2 were
demonstrated and associated with angiogenesis (166), another
pro-tumoral effect. Besides p17, oncogenic activities were also
reported for other viral proteins. Kundu and coworkers showed
that Tat (transactivator of transcription) expression in mice favored
B cell lymphoma generation in approximately 30% of animals (167).
Accordingly, a study pointed that Tat was able to activate DNA
repair proteins among B cells cultivated together with HIV (168), as
well as to induce angiogenesis (169). More evidence indicates that
Vpr (viral protein R) and Vpu (viral protein U) also participate in
HIV-induced lymphomagenesis. For example, Vpr induced DNA
double-strand breaks in infected cells (170), while Vpu was
important for lymphoma adhesion in endothelial cells (171).
Altogether, given the relevance of HIV in inducing specific
lymphoma promoting pathways, we will approach the
characteristics of HIV-related DLBCL in the next sections.
MOLECULAR CHARACTERISTICS OF
HIV-RELATED DLBCL

The HIV-related DLBCL has molecular properties underpinning
its specific clinical features described above. In this context,
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a report sought to investigate whether well-established
prognostic genes would be equally informative for the HIV-
related DLBCL. The authors reported that, although relevant for
immunocompetent hosts, the expression of BLC2, Blimp-1 or
FOXP1 did not correlate with patient outcome in PLWH.
Interestingly, neither DLBCL subtype (ABC and GCB) was
informative of survival in the HIV+ cohort (172), a pattern
later confirmed by others (41, 173), suggesting that HIV-
associated DLBCL is a particular disease and has its own
molecular and pathological properties. In this section, we will
address molecular differences reported in the literature when
comparing HIV-DLBCL and IC (Immunocompetent)-DLBCL
such as gene expression, miRNA levels and chromosomal
organization, since the predictors applicable to DLBCL in the
general population are not completely valid for PLWH (Table 1).

One of the first reports to address gene expression signatures in
HIV-DLBCL was performed by Teitell and coworkers (1999).
Using cDNA subtraction techniques, they described
overexpression of TCL1 (T-cell leukemia 1) oncogene in AIDS-
related DLBCL samples when compared to non-AIDS tumors
(174), which was later confirmed by the same group (190).
Moreover, upregulation of a-myb and pub genes was also
described in HIV-DLBCL cases, despite the limited number of
human biological samples (n = 2) available in the study (175).
More recent data compared the transcriptional profiles between 22
HIV-DLBCL and 14 IC-DLBCL from Malawi (Africa) using the
whole transcriptome sequencing technology (176). The analysis
revealed HIV status as a major contributor to differences observed
in the expression levels of 2,523 genes. In fact, HIV-DLBCL
samples were enriched in pathways related to hypoxia and cell
metabolism when compared to the immunocompetent
counterparts. Likewise, higher expression of IFNg and IFNa
were associated with better outcomes only in HIV-DLBCL
patients (176). Another study found 126 differentially expressed
genes when comparing the expression profiles between GCB
subtypes from either PLWH or HIV-uninfected donors. The
HIV-related GCB showed upregulation in genes associated with
cell cycle progression, downregulation of cell cycle inhibitors and
enhanced expression of DNA repair genes (177), indicating
greater proliferative capacity. In fact, Ki67 staining, a
proliferation marker, was reported as a valuable prognostic
marker in HIV-DLBCL (172, 176). Consistently, stronger Ki67
staining was observed in HIV-DLBCL samples when compared to
immunocompetent donors (177, 178). Immunohistochemistry
studies have also provided valuable insights about HIV-DLBCL.
The protein levels of cMYC, BCL6, PKC-b2, MUM1 and CD44
were significantly increased in HIV-DLBCL patients, while p27
levels were reduced (179). Among all those differentially expressed
markers, cMYC positivity was associated with inferior survival in
HIV-infected subjects (179), indicating new possible predictors for
this population. cMYC and BCL2 simultaneous overexpression
(double expressor lymphomas) comprehends a relevant inferior
prognostic predictor in non-infected donors (191, 192). Some
studies showed that the frequency of double expressors is similar
between HIV-DLBCL and immunocompetent patients (193).
However, its prognostic relevance was not yet addressed in the
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TABLE 1 | Highlights of reports that explored the molecular characteristics of HIV-DLBCL.

Study Population Methodology Main Findings

Teitell et al. (174) U.S.A. cDNA
Subtraction

- Overexpression of TCL1 among AIDS-related DLBCL when compared to non-AIDS lymphomas.

Nenasheva et al.
(175)

Germany cDNA
Subtraction

- Upregulation of a-myb and pub observed in two biological samples from AIDS-related DLBCL when
compared to normal B lymphocytes.- Upregulation of a-myb and pub in three biological samples of
simian immunodeficiency virus (SIV)-associated monkey lymphomas.

Fedoriw et al. (176) Malawi WTS and IHC - 2,523 genes found differentially expressed between HIV-DLBCL and IC-DLBCL applying an adjusted
p -value of <0.1.- HIV status and DLBCL subtypes were not associated with OS differences.- IFNg and
IFNa were markers of positive prognostic among HIV-DLBCL only.- Ki-67 staining ≥80% was
associated with lower survival among HIV-DLBCL.- cMYC/BCL2 co-expression was associated with
lower survival independent of HIV status.

Maguire et al. (177) HIV-DLBCL samples
from ACSR and IC-
DLBCL institutional
cases

Digital Gene
Expression
Analysis, IHC
and CNV
Analysis

- Both HIV-DLBCL and IC-DLBCL groups were enriched in GCB subtype.- Increased frequency of Ki-
67 >80% in HIV-DLBCL.- Reduced frequency of BCL2 positivity in HIV-DLBCL.- IC-DLBCL samples
showed more copy number variations (CNVs) than HIV-DLBCL subjects.- 126 genes were differentially
expressed between IC-DLBCL and HIV-DLBCL.- Gene set enrichment analysis indicated enhancement
of genes associated with cell cycle progression, DNA replication and DNA repair in HIV-DLBCL.

Cassim et al. (178) South Africa IHC - Higher frequency of Ki-67 >75% in HIV-DLBCL.- HIV-DLBCL patients with CD4 < 150 cells/mm³ had
significantly worse survival than the HIV-uninfected counterpart.

Chao et al. (179) U.S.A. IHC - Increased expression of cMYC, p27, BCL6, PKC-b2, MUM1, and CD44 among HIV-DLBCL
subjects.- c-MYC expression was associated with worse 2-year mortality estimates in HIV-DLBCL.

Barreto et al. (180) Brazil IHC - HIV-DLBCL samples exhibited 84%, 55%, 45% and 41% of positivity for CD20, CD10, Bcl-6 and
MUM-1, respectively.

Madan et al. (181) U.S.A. IHC - AIDS-DLBCL samples formed an intermediary cluster between GCB and ABC subtypes from non-
AIDS subjects.

Thapa et al. (182) Samples from ACSR Microarray and
qPCR

- Overexpression of miR-17, miR-106a, miR-106b, miR-18a, and miR-19a in AIDS-NHL (including
DLBCL) patients when compared to normal B lymphocytes.- The activity of miR-106a and miR-106b
significantly blocked the cell cycle inhibitor p21 using in vitro models.- miR-106a and miR-106b also
exhibited positive effect on cellular proliferation.- Protein and mRNA levels of p21 were low or
undetectable in AIDS-DLBCL and AIDS-BL (Burkitt Lymphoma) samples.

Phillips et al. (183) South Africa qPCR - Higher expression levels of miR-21 among HIV-DLBCL when compared to IC-DLBCL.- High levels of
miR-21 in HIV-DLBCL patients were associated with worse prognosis.

Thapa et al. (184) Samples from MACS
repository

qPCR - miR-21, miR-122 and miR-222 were upregulated and miR-223 was downregulated in the serum of
HIV-DLBCL patients when compared to HIV-uninfected tumor-free subjects.- miR-222 serum levels
were higher among the HIV+ patients who went on to develop lymphomas (including DLBCL) when
compared to HIV+ who did not progress to cancer.

Capello et al. (185) Institutional cases SNP-based
microarray
comparative
genomic
hybdridization,
qPCR and
methylation
analysis

- HIV-BL exhibited lower copy number (CN) alterations than HIV-DLBCL cases.- The overall genomic
complexity was similar between IC-DLBCL and HIV-DLBCL, however the distribution of genomic
alterations was significantly different.- HIV-DLBCL showed more frequently 3p14.3 deletion (containing
FHIT and the fragile site FRA3B) and 12q21.31 gains.- IC-DLBCL exhibited more often 18q gains
(containing BCL2, NFATC1 and others).- The tumor suppressor genes FHIT and WWOX were
downregulated among HIV-NHL samples that carried either gene deletion or abnormal methylation
patterns.

Morton et al. (186) U.S.A. IHC and FISH - Only 31% of HIV-DLBCL subjects exhibited at least one of the three translocations assessed (MYC/
IgH, IgH/BCL2 and BCL6/IgH).- MYC/IgH was the most common translocation among
HIV-DLBCL cases.- Although subtype differences were not observed in HIV-DLBCL, in IC-DLBCL,
MYC/IgH translocations were associated with GCB and BCL6/IgH were associated with ABC.

Deffenbacher et al.
(187)

Samples from NCI
AIDS and
CancerSpecimen
Repository and
University of Nebraska

Microarray
comparative
genomic
hybdridization

- Gene set enrichment analysis revealed enhanced representation of MYC, FAS and mTOR pathways
in HIV-DLBCL when compared to IC-DLBCL.- HIV-ABC showed enrichment of MYC and ARF
pathways when compared to IC-ABC.- The authors identified 13 recurrent copy number losses and 16
recurrent copy number gains among B-cell derived AIDS-related lymphomas.

Capello et al. (188) Institutional samples
from Caucasian HIV-
infected patients

Sanger
Sequencing

- HIV-DLBCL cases showed enrichment of IGVH4 family and underrepresentation of IGHV3 family
when compared to normal B lymphocytes.- The same pattern was not observed among HIV-BL cases.

Yawetz et al., (158) Samples from the
UCLA- MACS

Enzyme
Imunoassay

- Higher serum levels of sCD23 and IgE were observed among HIV-infected subjects that went on to
develop HIV-NHLs when compared to either HIV-uninfected or HIV-infected patients who did not
progress to cancer.

Widney et al. (189) Samples from UCLA-
MACS

ELISA - Increased serum levels of sCD27 in HIV-infected patients that developed HIV-NHLs when compared
to HIV-infected patients who did not develop lymphoma.
Frontiers in Oncology
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HIV-infected context, even though cMYC (179) and BCL2 (194)
expression were described separately as prognostic factors for
HIV-DLBCL. Similarly, another immunohistochemistry study
detected high frequency (around 40%) of HIV-DLBCL samples
positive for BCL6 and MUM1 (180).

Since DLBCL molecular subtypes are also determined by gene
expression profiling (32), some reports investigated which one of
them (ABC or GCB) were predominant in HIV-DLBCL. Those
investigations, however, resulted in conflicting data. Some reports
consistently show enrichment of GCB phenotype in HIV-DLBCL
samples (172, 176, 177, 179, 180). On the other hand, enhanced
expression of ABC markers was also demonstrated for those
cancers (186, 187, 195). A third approach has indicated that
HIV-DLBCL possess intermediate features between ABC and
GCB, co-expressing markers of both subtypes simultaneously
(181, 195, 196), which may explain discrepancies between
reports. Indeed, a clusterization analysis performed by Madan
and collaborators revealed that AIDS-related DLBCL samples
formed an intermediary group between GCB and ABC clusters
originated from non-AIDS donors (181). Taken together, the
heterogeneous results on the cellular origin of DLBCL in the HIV
+ context indicate that more studies are necessary to elucidate
whether there is a subtype prevalence among HIV-DLBCL subjects
or if the frequencies vary according to the study population.

Differential miRNA expression was also associated with HIV-
DLBCL phenotype. When compared to non-neoplastic B cells
from healthy donors, overexpression of miR-17, miR-106a, miR-
106b, miR-18a and miR-19a was detected in lymphomas arising
in the HIV+ context, including DLBCL. Among those, miR-106a
and miR-106b significantly blocked the p21 cell cycle inhibitor
and, consequently, enhanced cellular proliferation (182), which
corroborates with the increased proliferative behavior already
described in HIV-DLBCL. Also, miR-21 expression was higher
in HIV-DLBCL than in IC-DLBCL and those patients considered
“miR-21 high” exhibited poorer survival (183). Another report
demonstrated elevated serum levels of miR-222 in PLWH prior
to DLBCL development, suggesting its measurement as a
valuable marker for the identification of HIV+ subjects at risk
of developing lymphoma before diagnosis (184).

Besides miRNA expression signatures, different chromosomal
alterations were reported comparing HIV-DLBCL and IC-DLBCL.
A study showed that, although the overall number of genomic
alterations was similar between groups, the distribution of certain
lesions was significantly associated with HIV status (185). The
most common alterations in HIV-DLBCL were deletions in 3p14.3
and gains of 12q21.31, while gains of 18q (a region containing
BCL2) were the most frequent rearrangements in IC-DLBCL. The
authors also showed that the alterations had functional impact. The
chromosomal deletions enriched in HIV+ samples were associated
with reduced expression of known tumor suppressor genes, such as
WWOX, FHIT, DCC and PARK2 (185), another example of a
carcinogenic pathway exclusively detected in HIV-DLBCL.
Morton and coworkers (2014) also showed that, among the three
most common translocation targets in DLBCL, translocation of
MYC was the most frequent in HIV-infected individuals, while
translocations of BCL2 or BCL6 were rare (186). In agreement with
Frontiers in Oncology | www.frontiersin.org 9
both previous reports, enrichment of MYC targets, as well as losses
affecting WWOX and FHIT were observed in HIV-DLBCL by
Deffenbacher and colleagues (2010) (187). Altogether, multiple
data show various molecular mechanisms altered specifically in
PLWH and support the assumption that HIV-DLBCL is a
particular disease with a considerable amount of differences from
its manifestation in immunocompetent hosts.

Lastly, few studies have also indicated deregulation of
immunological pathways in HIV-related lymphomas (155). For
example, the pattern of immunoglobulin gene rearrangement
products observed in HIV-DLBCL is particular and differs from
that of HIV-uninfected individuals (189). Capello and coworkers
(2008) showed an enrichment of IGHV4 family (especially the
IGHV4-34 gene) and an underrepresentation of IGHV3 family
(in particular, the IGHV3-23 gene) among HIV-DLBCL patients
(188). Moreover, serum levels of the soluble forms of CD23 and
CD27 were increased in AIDS patients who went on to develop
lymphomas, including DLBCL, when compared to HIV+ or even
to AIDS subjects who did not progress to cancer (158, 189).
Although there is a lack of data addressing immune-related gene
expression signatures specifically in HIV-DLBCL, those seminal
reports provided valuable insights about immune pathways
possibly altered. Interestingly, in immunocompetent subjects,
sCD27 was not associated with increased risk of DLBCL (197),
corroborating its relevance and biomarker potential in HIV-
DLBCL only.
HIV-RELATED DLBCL: PARTICULAR
CLINICAL FEATURES AND
TREATMENT OUTCOMES

The HIV+ population not only harbors greater incidence
estimates of non-Hodgkin lymphomas (24–26), but also DLBCL
is clinically distinct between PLWH and the general HIV-
uninfected population. Some reports comparing clinical
variables between HIV+ and HIV- people affected by DLBCL or
NHLs in general have indicated differences regarding age at
diagnosis, tumor staging, frequency of symptoms and frequency
of extranodal site involvement (Figure 3). A report from Spanish
patients with DLBCL described that HIV+ individuals were
significantly younger at the time of diagnosis compared to the
HIV-uninfected counterparts (median 44 years vs. 62 years,
respectively). Also, HIV+ patients with DLBCL exhibited more
frequently B-symptoms, later clinical staging (III-IV) and worse
ECOG score (≥ 2) than HIV- subjects (198). The younger age at
diagnosis appears as a common feature of lymphomas from
PLWH and was also noticed in a report studying HIV-related
NHL cases in Italy (199). In agreement with those previous
reports, data from USA and Puerto Rico confirmed the earlier
age presentation, higher frequency of B-symptoms and more
advanced clinical staging (III-IV) in HIV+ patients with either
DLBCL or NHLs (24, 200). Altogether, the results consistently
show particular clinical features of DLBCL in PLWH from
different populations worldwide. Additionally, other clinical
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specificities were reported in the literature. Increased risk of
DLBCL occurring at a extranodal site was observed in PLWH
when compared to HIV-uninfected patients (25, 200, 201),
although this difference was not observed in the work by
Baptista and collaborators (198) possibly due to differences in
study population and sample size. Among extranodal sites,
gastrointestinal tract was significantly more common in HIV+
patients (25, 201, 202) and an increase in central nervous system
involvement was also reported (24). It is noteworthy that, in
general, the reports did not observe statistical differences between
HIV+ and HIV- subjects regarding the international prognostic
index (IPI) (25, 198, 203). However, an exception is the work by
Spina and collaborators which found worse IPI scores (≥ 2),
significantly more frequent in PLWH (201). Taken together,
data from different reports indicate that, in fact, the DLBCL
(and the NHL as a whole) from PLWH has a particular clinical
presentation suggestive of more aggressive features at diagnosis.

Besides analyzing clinical features, some reports have also
compared survival estimates between HIV+ and HIV- patients
with DLBCL or NHL. The overall survival (OS) of HIV+ subjects
with DLBCL was lower than in the HIV-uninfected counterparts
even in multivariate models adjusted for type of treatment
Frontiers in Oncology | www.frontiersin.org 10
(24, 198–200). However, differences in the survival estimates
according to the HIV status are not clear when analyzing
specifically the death by lymphoma instead of death by any cause
(overall survival). Indeed, the disease-free survival (DFS) did not
differ between HIV-DLBCL and immunocompetent DLBCL (IC-
DLBCL) treated with R-CHOP (198). Also, the 2-year lymphoma
specific mortality remained unchanged between NHL patients with
or without HIV when the former group had CD4 counts of at least
200 cells/mL and no history of other AIDS-defining illnesses,
although the ones with less than 200 cells/mL and/or AIDS-
defining illness performed worse when compared to non-HIV
subjects (24). An analysis with HIV+ patients with different types
of cancers showed that there were no differences in cancer-specific
mortality for DLBCL subjects stratified according to the HIV status
and, in fact, 64.8% of all deaths from PLWH with DLBCL were
attributable to HIV-related complications and not to the lymphoma
itself (204). Nevertheless, in contrast with those previous reports,
Coutinho and collaborators reported unexpected better estimates of
both OS and DFS in HIV+ individuals with DLBCL (25). Taken
together, the results indicate that the HIV-DLBCL is accompanied
by worse OS and equal estimates of lymphoma-specific death,
suggesting that, independently of HIV, the response to lymphoma
FIGURE 3 | Clinical properties of HIV-DLBCL. HIV-related DLBCL (blue) is commonly associated with particular clinical features when compared to
immunocompetent DLBCL (yellow), such as early age at diagnosis, later clinical staging, higher frequency of B-symptoms and worse overall survival estimates.
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treatment could be similar in both groups. In agreement with that, a
systematic review showed that the R-CHOP regimen is a lymphoma
treatment associated with improvement in OS and progression-free
survival (PFS) in HIV-infected patients. The authors also
demonstrate that the use of R-CHOP together with HAART did
not affect survival or response to treatment (26), emphasizing the
effectiveness of this chemotherapeutic regimen in PLWH.
Moreover, the administration of R-CHOP significantly improved
the survival and reduced the frequency of death due to lymphoma
in HIV-DLBCL patients under HAART treatment (205), which
may explain the unchanged estimates of lymphoma-specific
mortality seen in previous studies.

In contrast with the data described above (26, 205), the first
studies to address the response to chemotherapy in HIV-related
DLBCL cases raised the concern of treatment-related toxicity
being increased in this group. For example, the work by Kaplan
and collaborators indicated that the addition of rituximab to the
CHOP drug combination (the R-CHOP regimen) was associated
with greater incidence of adverse effects in PLWH (206). The
addition of rituximab to the CDE (cyclophosphamide,
doxorubicin and etoposide) regimen was also suggestive of
increased frequency of adverse events in HIV-related NHL
subjects (207). Nevertheless, after these first publications, the
feasibility of adding rituximab in different drug combinations for
lymphoma treatment in PLWH has been reassessed by several
clinical trials. Indeed, different reports showed the effectiveness
and safety of rituximab-containing chemotherapeutic regimens
for the HIV+ population (26, 208–211) and, interestingly, even
in severely immunosuppressed HIV-infected patients (with CD4
counts less than 100 cells/mL), rituximab was associated with
improved survival without increasing the rate of adverse effects.
A possible difference between reports, as suggested by Dunleavy
& Wilson (212), was that HIV+ patients with very low CD4
counts (less than 50 cells/mm3) were the most affected by the
treatment-related adverse effects reported primarily by Kaplan
and collaborators, while other reports excluded patients with
clinical signs of advanced HIV disease (209). In fact, HAART
improved the survival in patients with HIV-related B-cell
lymphomas (205, 213), as well as low CD4 counts were
associated with worse OS in HIV-DLBCL (214). Therefore,
despite having more aggressive clinical features at diagnosis,
HIV-infected patients are consistently being reported as equally
Frontiers in Oncology | www.frontiersin.org 11
eligible for chemotherapeutic regimens as well as their HIV-
uninfected parallels, especially in the context of the HAART era
and with comparable CD4 levels.
CONCLUDING REMARKS

HIV-DLBCL is a particular illness with specific characteristics. As
shown previously by diverse data, DLBCL from PLWH is
accompanied by specific clinical features, such as early age at
diagnosis, higher frequency of B symptoms and extranodal
involvement, as well as later tumor staging. Interestingly, unique
molecular properties are also observed in HIV-DLBCL subjects,
including gene expression signatures, chromosomal rearrangements
and miRNAs altered levels. All in all, HIV-DLBCL-related properties
may occur due to viral modulation of B cell compartments and direct
influence during lymphomagenesis. Even though HIV-DLBCL
patients consistently exhibit equal estimates of survival when
compared to IC-DLBCL subjects (198, 204), PLWH are commonly
excluded from clinical trials. In fact, regarding lymphoma-associated
clinical trials, the estimates of PLWH exclusion are around 70% (215,
216).Given the intrinsic relationshipbetween lymphomaandHIV, the
inclusion of HIV-DLBCL in clinical trial protocols may benefit and
improve the understanding of the disease in this particularly
susceptible population.
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Micrornas From the Mir-17-92 Paralog Clusters in AIDS-related non-
Hodgkin ’s Lymphomas. PloS One (2011) 6:21–3. doi: 10.1371/
journal.pone.0020781

183. Mcgrath E PP. MicroRNA 21 Expression Levels in HIV Negative and HIV
Positive Diffuse Large B Cell Lymphoma. Hered Genet (2015) 04:2–5.
doi: 10.4172/2161-1041.1000143

184. Thapa DR, Hussain SK, Tran W-C, D'souza G, Bream JH, Achenback CJ,
et al. Serum MicroRNAs in HIV-Infected Individuals as Pre-Diagnosis
Biomarkers for AIDS-NHL. JAIDS J Acquir Immune Defic Syndr (2014)
66:229–37. doi: 10.1097/QAI.0000000000000146

185. Capello D, Scandurra M, Poretti G, Rancoita PMV, Mian M, Gloghini A,
et al. Genome Wide DNA-Profiling of HIV-related B-Cell Lymphomas. Br J
Haematol (2010) 148:245–55. doi: 10.1111/j.1365-2141.2009.07943.x

186. Morton LM, Kim CJ, Weiss LM, Bhatia K, Cockburn M, Hawes D, et al.
Molecular Characteristics of Diffuse Large B-cell Lymphoma in Human
Immunodeficiency Virus-Infected and -Uninfected Patients in the Pre-
Highly Active Antiretroviral Therapy and Pre-Rituximab Era. Leuk
Lymphoma (2014) 55:551–7. doi: 10.3109/10428194.2013.813499

187. Deffenbacher KE, Iqbal J, Liu Z, Fu K, Chan WC. Recurrent Chromosomal
Alterations in Molecularly Classified AIDS-related Lymphomas: An
Integrated Analysis of DNA Copy Number and Gene Expression.
J Acquir Immune Defic Syndr (2010) 54:18–26. doi: 10.1097/QAI.0b013e
3181d3d9eb

188. Capello D, Martini M, Gloghini A, Cerri M, Rasi S, Deambrogi C, et al.
Molecular Analysis of Immunoglobulin Variable Genes in Human
Immunodeficiency Virus-Related non-Hodgkin’s Lymphoma Reveals
Implications for Disease Pathogenesis and Histogenesis. Haematologica
(2008) 93:1178–85. doi: 10.3324/haematol.12705

189. Widney D, Gundapp G, Said JW, Van Der Meijden M, Bonavida B,
Demidem A, et al. Aberrant Expression of CD27 and Soluble Cd27
(sCD27) in HIV Infection and in AIDS-associated Lymphoma. Clin
Immunol (1999) 93:114–23. doi: 10.1006/clim.1999.4782

190. Patrone L, Henson SE, Teodorovic J, Malone CS, French SW, Wall R, et al.
Gene Expression Patterns in AIDS Versus non-AIDS-Related Diffuse Large
B-cell Lymphoma. Exp Mol Pathol (2003) 74:129–39. doi: 10.1016/S0014-
4800(03)00007-8

191. Ting C-Y, Chang K-M, Kuan J-W, Sathar J, Chew L-P, Wong O-LJ, et al.
Clinical Significance of BCL2 , C- MYC , and BCL6 Genetic Abnormalities,
Epstein-Barr Virus Infection, CD5 Protein Expression, Germinal Center B
Cell/non-Germinal Center B-Cell Subtypes, Co-Expression of MYC/BCL2
Proteins and Co-expression of MYC/BCL2/BCL. Int J Med Sci (2019)
16:556–66. doi: 10.7150/ijms.27610

192. Hu S, Xu-Monette ZY, Tzankov A, Green T, Wu L, Balasubramanyam A,
et al. Myc/Bcl2 Protein Coexpression Contributes to the Inferior Survival of
Activated B-Cell Subtype of Diffuse Large B-cell Lymphoma and
Demonstrates High-Risk Gene Expression Signatures: A Report From the
International Dlbcl Rituximab-Chop Consortium Program. Blood (2013)
121:4021–31. doi: 10.1182/blood-2012-10-460063
April 2021 | Volume 11 | Article 675353

https://doi.org/10.1074/jbc.M112.438895
https://doi.org/10.1074/jbc.M112.438895
https://doi.org/10.1038/s41467-018-07006-2
https://doi.org/10.1038/s41467-018-07006-2
https://doi.org/10.3390/jcm9030760
https://doi.org/10.1182/blood-2015-11-681411
https://doi.org/10.1182/blood-2015-11-681411
https://doi.org/10.1038/s41598-017-06848-y
https://doi.org/10.1016/j.bbagen.2018.09.016
https://doi.org/10.1016/j.bbagen.2018.09.016
https://doi.org/10.1073/pnas.1206605109
https://doi.org/10.1182/blood.V94.1.275.413a30_275_282
https://doi.org/10.1097/00002030-200103090-00001
https://doi.org/10.1097/00002030-200103090-00001
https://doi.org/10.1128/jvi.74.1.344-353.2000
https://doi.org/10.1128/jvi.74.1.344-353.2000
https://doi.org/10.1158/0008-5472.CAN-05-3144
https://doi.org/10.1128/jvi.78.9.4408-4420.2004
https://doi.org/10.1200/JCO.2008.20.5450
https://doi.org/10.1182/blood-2018-99-116437
https://doi.org/10.1073/pnas.96.17.9809
https://doi.org/10.7150/ijms.2.122
https://doi.org/10.7150/ijms.2.122
https://doi.org/10.1038/s41379-020-0506-3
https://doi.org/10.1002/ijc.32381
https://doi.org/10.1016/j.pathol.2020.02.007
https://doi.org/10.1158/1078-0432.CCR-14-2083
https://doi.org/10.1016/S1413-8670(12)70278-7
https://doi.org/10.1038/modpathol.3800493
https://doi.org/10.1371/journal.pone.0020781
https://doi.org/10.1371/journal.pone.0020781
https://doi.org/10.4172/2161-1041.1000143
https://doi.org/10.1097/QAI.0000000000000146
https://doi.org/10.1111/j.1365-2141.2009.07943.x
https://doi.org/10.3109/10428194.2013.813499
https://doi.org/10.1097/QAI.0b013e3181d3d9eb
https://doi.org/10.1097/QAI.0b013e3181d3d9eb
https://doi.org/10.3324/haematol.12705
https://doi.org/10.1006/clim.1999.4782
https://doi.org/10.1016/S0014-4800(03)00007-8
https://doi.org/10.1016/S0014-4800(03)00007-8
https://doi.org/10.7150/ijms.27610
https://doi.org/10.1182/blood-2012-10-460063
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


de Carvalho et al. HIV-Associated DLBCL
193. Shponka V, Reveles CY, Alam S, Jaramillo M, Maguire A, Rimsza LM, et al.
Frequent Expression of Activation-Induced Cytidine Deaminase in Diffuse
Large B-cell Lymphoma Tissues From Persons LivingWith Hiv. AIDS (2020)
34:2025–35. doi: 10.1097/QAD.0000000000002653

194. Philippe L, Lancar R, Laurent C, Algarte-Genin M, Chassagne-Clément C,
Fabiani B, et al. In Situ Bcl2 Expression is an Independent Prognostic Factor
in HIV-associated DLBCL, a LYMPHOVIR Cohort Study. Br J Haematol
(2020) 188:413–23. doi: 10.1111/bjh.16176

195. Carbone A, Gloghini A, Larocca LM, Capello D, Pierconti F, Canzonieri V,
et al. Expression Profile of MUM1/IRF4, Bcl-6, and CD138/syndecan-1
Defines Novel Histogenetic Subsets of Human Immunodeficiency Virus–
Related Lymphomas. Blood (2001) 97:744–51. doi: 10.1182/blood.V97.3.744

196. Hoffmann C, Tiemann M, Schrader C, Janssen D, Wolf E, Vierbuchen M,
et al. Aids-Related B-cell Lymphoma (Arl): Correlation of Prognosis With
Differentiation Profiles Assessed by Immunophenotyping. Blood (2005)
106:1762–9. doi: 10.1182/blood-2004-12-4631

197. Hosnijeh FS, Portengen L, Späth F, Bergdahl IA, Melin B, Mattiello A, et al.
Soluble B-cell Activation Marker of sCD27 and sCD30 and Future Risk of B-
cell Lymphomas: A Nested Case-Control Study and Meta-Analyses. Int J
Cancer (2016) 138:2357–67. doi: 10.1002/ijc.29969

198. Baptista MJ, Garcia O, Morgades M, Gonzalez-Barca E, Miralles P, Lopez-
Guillermo A, et al. Hiv-Infection Impact on Clinical-Biological Features and
Outcome of Diffuse Large B-cell Lymphoma Treated With R-CHOP in the
Combination Antiretroviral Therapy Era. Aids (2015) 29:811–8.
doi: 10.1097/QAD.0000000000000624

199. Cingolani A, Lepri AC, Teofili L, Galli L, Mazzotta V, Baldin GM, et al.
Survival and Predictors of Death in People With HIV-associated Lymphoma
Compared to Those With a Diagnosis of Lymphoma in General Population.
PloS One (2017) 12:1–15. doi: 10.1371/journal.pone.0186549

200. Han X, Jemal A, Hulland E, Simard EP, Nastoupil L, Ward E, et al. Hiv
Infection and Survival of Lymphoma Patients in the Era of Highly Active
Antiretroviral Therapy. Cancer Epidemiol Biomarkers Prev (2017) 26:303–
11. doi: 10.1158/1055-9965.EPI-16-0595

201. Spina M, Carbone A, Vaccher E, Gloghini A, Talamini R, Cinelli R, et al.
Outcome in Patients With Non-Hodgkin Lymphoma and With or Without
Human Immunodeficiency Virus Infection. Clin Infect Dis (2004) 38:142–4.
doi: 10.1086/380129

202. Vaccher E, Tirelli U, Spina M, Talamini R, Errante D, Simonelli C, et al. Age
and Serum Lactate Dehydrogenase Level are Independent Prognostic Factors
in Human Immunodeficiency Virus-Related non-Hodgkin’s Lymphomas: A
Single-Institute Study of 96 Patients. J Clin Oncol (1996) 14:2217–23.
doi: 10.1200/JCO.1996.14.8.2217

203. Navarro J-T, Lloveras N, Ribera J-M, Oriol A, Mate J-L, Feliu E. The
Prognosis of HIV-infected Patients With Diffuse Large B-Cell Lymphoma
Treated With Chemotherapy and Highly Active Antiretroviral Therapy is
Similar to That of HIV-negative Patients Receiving Chemotherapy.
Haematologica (2005) 90:704–6.

204. Coghill AE, Shiels MS, Suneja G, Engels EA. Elevated Cancer-Specific
Mortality Among Hiv-Infected Patients in the United States. J Clin Oncol
(2015) 33:2376–83. doi: 10.1200/JCO.2014.59.5967

205. Ezzat H, Filipenko D, Vickars L, Galbraith P, Li C, Murphy K, et al. Improved
Survival inHIV-AssociatedDiffuse Large B-Cell LymphomaWith theAddition of
Rituximab to Chemotherapy in Patients Receiving Highly Active Antiretroviral
Therapy.HIV Clin Trials (2007) 8:132–44. doi: 10.1310/hct0803-132
Frontiers in Oncology | www.frontiersin.org 17
206. Kaplan LD. Rituximab Does Not Improve Clinical Outcome in a
Randomized Phase 3 Trial of CHOP With or Without Rituximab in
Patients With HIV-associated non-Hodgkin Lymphoma: Aids-
Malignancies Consortium Trial 010. Blood (2005) 106:1538–43.
doi: 10.1182/blood-2005-04-1437

207. Spina M, Jaeger U, Sparano JA, Talamini R, Simonelli C, Michieli M, et al.
Rituximab Plus Infusional Cyclophosphamide, Doxorubicin, and Etoposide
in HIV-associated non-Hodgkin Lymphoma: Pooled Results From 3 Phase 2
Trials. Blood (2005) 105:1891–7. doi: 10.1182/blood-2004-08-3300

208. Ribera J-M, Oriol A, Morgades M, González-Barca E, Miralles P, López-
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