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Background: Growing evidence demonstrates that the initiation and progression of
colorectal carcinoma (CRC) is related to the presence of cancer stem cells (CSCs).
However, the mechanism through which the stem cell features of CRC cells are
maintained is poorly understood. In this study, we identified the oncogenic histone
cluster 2 H2B family member F (HIST2H2BF) and aimed to investigate the function of
upregulated HIST2H2BF expression in maintaining the stem cell features of CRC cells,
which accelerate the progression of CRC.

Methods: HIST2H2BF expression was quantified using real-time polymerase chain
reaction, immunohistochemistry, and western blotting. The correlation between CpG
island methylation status and HIST2H2BF re-expression was assessed through bisulfite
sequencing polymerase chain reaction, methylation-specific polymerase chain reaction,
and 5-Aza-dC treatment. Functional assays were performed on CRC cells and mice to
investigate the HIST2H2BF-induced stem cell-like and cancer properties of CRC. Using
the Notch pathway inhibitor FLI-06, the regulatory effect of HIST2H2BF on downstream
Notch signaling was confirmed.

Results: HIST2H2BF was highly expressed in CRC tissues and cell lines. The reactivation
of HIST2H2BF in CRC stems at least in part from the hypomethylated CpG islands. CRC
patients with high HIST2H2BF expression have poor survival outcomes. Functional
studies have shown that HIST2H2BF promotes CSC phenotype, malignancy, and liver
metastasis through the activation of Notch signaling in CRC. Blockage of the Notch
pathway reduced the stem cell-like and cancer properties.
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Conclusion: Our study suggests that HIST2H2BF upregulation enhances the CSC
phenotype, malignancy, and liver metastasis through the activation of Notch signaling in
CRC. These results identified a new perspective on the mechanism by which the stem cell
features of CRC cells are maintained and highlighted the potential novel therapeutic
targets for CRC.
Keywords: HIST2H2BF, DNA methylation, cancer stem cells, liver metastasis, Notch pathway
INTRODUCTION

Colorectal carcinoma (CRC) is one of the most common types of
cancer in the world (1–3). Despite the advances in CRC
treatment, patients experience a high rate of recurrence and
resistance to chemotherapy (3–5). Consequently, novel
interventions for CRC are urgently needed to enlighten the
advances in novel treatment strategies and improve the
prognosis of patients with CRC.

Previous studies have demonstrated that epigenetic
modifications are involved in the development and progression
of CRC, altering the gene expression without changing the
original DNA sequence (6). DNA methylation, which is a
common epigenetic modification, occurs mainly in promoter
regions and often drives gene silencing (7, 8). The methylation
modifications of specific genes are correlated with the
progression of CRC (9). However, the precise mechanism still
needs to be elucidated.

Compelling evidence has shown that CSCs, also considered as
tumor-initiating cells (TICs), are the primary cells responsible
for the seeding and colonization of distant metastases (10, 11).
CSCs possess the capacity for self-renewal, heterogeneous lineage
differentiation, clonal tumor initiation, and distant repopulation
potential. The CSC hypothesis indicates that similar to normal
colorectal tissues, CRC cells are organized hierarchically and
depend on CSCs for population maintenance (12, 13).
Accumulating evidence has demonstrated that CSCs play an
important role in the poor prognosis and relapse of cancers,
including CRC (14, 15). Thus, the development of an alternative
strategy for targeting CSCs is highly desirable. Nevertheless, the
underlying mechanisms of CSC emergence and expansion in
CRC remain unclear.

To our knowledge, only a few studies have reported the
association between HIST2H2BF and cancer development.
J Castillo et al. claimed that proteomic analysis of the exosome
“surfaceome” demonstrated a series of pancreatic ductal
adenocarcinoma-specific biomarker candidates: HIST2H2BE,
HIST2H2BF, EPCAM, CLDN4, LGALS3BP, and CD151 (16).
Zeng et al. reported that HIST2H2BF could act as a new
biomarker for the prognosis of lung cancer (17). However, it
remains unknown whether HIST2H2BF plays a vital role in
CRC. The clinicopathological significance of HIST2H2BF in the
development of CRC still needs to be investigated, and no study
has uncovered the functional role of HIST2H2BF in the
development of CRC.

Here, we aimed to identify the correlation between CpG
island methylation status and HIST2H2BF re-expression and
2

the oncogenic role of HIST2H2BF in human colorectal CSCs.
The biological, mechanistic, and clinical implications of our
study clarified the mechanisms of CRC malignancy and liver
metastasis and provided a novel prognostic biomarker and
therapeutic target for patients with CRC.
MATERIALS AND METHODS

CRC Tissues and Cell Culture
A total of 100 paired CRC tissues and their corresponding
adjacent normal tissues were obtained from CRC patients who
underwent primary resect ion without preoperat ive
chemoradiotherapy at Jiangsu Province Hospital (Nanjing,
China) between 2011 and 2016. All patients provided a written
informed consent. The CRC cell lines (LOVO, HCT116, DLD-1,
HT29, and SW480) and the human normal colon epithelial cell
line NCM460 were derived from the Chinese Academy of
Science (China) and cultured as previously reported (18, 19).

Lentivirus and Reagents
To upregulate and downregulate the expression of HIST2H2BF,
commercially available lentiviral vectors encoding HIST2H2BF
and short hairpin RNAs targeting HIST2H2BF were synthesized
by GeneChem (Shanghai, China). The empty lentiviral construct
served as a negative control (vector versus overexpression;
control versus knockdown). These constructs were verified by
DNA sequencing before being used to overexpress or
knockdown HIST2H2BF in CRC cells. The infected cell lines
were harvested after selection with 5 mg/ml of puromycin for
10 days.

Cell Counting Kit-8 Assays
In line with the manufacturers’ protocols, Cell Counting Kit-8
(CCK-8) (Dojindo, Japan) was used to analyze the proliferation
of CRC cells. Briefly, the CRC cells (500 cells/100 mL) were
seeded, and 10 mL of Cell Counting Kit-8 solution was added at
the same time of each day. After incubating for 2 h in an
incubator, the absorbance (450 nm) was measured.

Clonogenic Assay
Stable CRC cells (1 × 103) were cultured in a 6-well plate in
Dulbecco’s Modified Eagle Medium for 2 weeks. Proliferating
colonies were stained with crystal violet (Beyotime, Shanghai,
China), and colonies consisting of 50 cells or more were counted
and photographed for statistical analysis. All procedures were
performed in triplicate.
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Apoptosis Assay
Stable CRC cells (3 × 103) cells were treated with or without
various concentrations of 5-fluorouracil (5-FU) (0, 2, 4, and 8 mg/
ml) and cisplatin (0, 25, 50, and 100 mg/ml) for 2 days. The cells
were then collected and stained with fluorescein isothiocyanate-
conjugated annexin V and propidium iodide. The harvested cells
were detected using a flow cytometer on a BD FACSCanto II, and
the data were analyzed using the FlowJo software.

Migration and Invasion Assays
As described previously (20–22), transwell inserts (Corning Inc.,
Corning, NY, USA) with or without Matrigel (BD Biosciences,
San Diego, CA, USA) were used to evaluate cell invasion and
migration, respectively. For cell invasion assay, the upper
chambers were coated with Matrigel. A total of 2 × 104 cells
were seeded into the upper chamber filled with 200 ml of serum-
free medium. Then, the lower chambers were added with 600 ml
of Dulbecco’s Modified Eagle Medium containing 10% fetal
bovine serum. After 24 h of incubation, the invaded cells were
fixed with 4% paraformaldehyde, stained with 1% crystal violet,
and photographed under a microscope. Cell migration assay was
carried out in a similar manner without coating the upper
chambers with Matrigel.

Quantitative Reverse Transcription-
Polymerase Chain Reaction
Total RNA was extracted from CRC tissues and cell lines with a
TRIzol reagent (Invitrogen). cDNA synthesis was carried out
using PrimeScript RT Master Mix (TaKaRa, Dalian, China),
while reverse transcription-polymerase chain reaction (PCR)
was performed using TB Green Premix Ex Taq (TaKaRa) on
the 7900HT Fast Real‐Time PCR System (Applied Biosystems,
Foster City, CA, USA; Thermo Fisher Scientific). b-actin was
used as the internal control. The primer sequences were as
follows: HIST2H2BF: forward: 5′-TCCAAAAAGGCTGTTA
CGAAAG-3′, reverse: 5′-GTTGACGAAGGAGTTCATGATG-
3′; CD133: forward: 5′-CACTACCAAGGACAAGGCGT-3′,
reverse: 5′-TCCAACGCCTCTTTGGTCTC-3′; CD44: forward:
5′- CACACCCTCCCCTCATTCAC-3′, reverse: 5′-CAGCTGT
CCCTGTTGTCGAA-3′; ABCG2: forward: 5′- GCATCGATC
TCTCACCCTGG-3′, reverse: 5′-ATTGCTGCTGTGCA
ACAGTG-3′; ALDH1: forward: 5′-TGCCGGGAAAAGCAAT
CTGA-3′, reverse: 5′-AGCATTGTCCAAGTCGGCAT-3′; Nanog:
forward: 5′-GGGCACTTACGTGCATTGT-3′, reverse: 5′-
GCAGGCACAAGATGGGAAAAG-3′; Bmi-1: forward: 5′-
CGCTTGGCTCGCATTCATT-3′, reverse: 5′-TTGCTGGTCT
CCAGGTAACG-3′; Oct-4: forward: 5′-CCGTATGAGTTCTGT
GGGGG-3′, reverse: 5′-CCAGCTTCTCCTTCTCCAGC-3′; and
b-actin: forward: 5′-TGACGTGGACATCCGCAAAG-3′, reverse:
5′-CTGGAAGGTGGACAGCGAGG-3′.

Western Blotting
CRC tissues and cell lines were collected and lysed in
radioimmunoprecipitation assay buffer with PMSF (Beyotime,
Shanghai, China). Protein samples were separated by sodium
dodecyl sulphate–polyacrylamide gel electrophoresis and
Frontiers in Oncology | www.frontiersin.org 3
transferred in the polyvinylidene difluoride membranes
(Millipore). Then, 5% non-fat milk was used to block the
membranes for 2 h. Subsequently, the membranes were
incubated with primary antibodies at 4°C overnight and
incubated with the corresponding horseradish peroxidase-
conjugated secondary antibody. Each band was visualized by
enhanced chemiluminescence reagents (Yeasen, Shanghai,
China). The following antibodies were used for Western
blotting: HIST2H2BF (Thermo Fisher Scientific, USA, 1:1000),
NICD (CST, Beverly, MA, USA, 1:1000), Hes1 (CST, 1:1000),
Hey1 (Abcam, 1:1000), CD133 (Abcam, 1:1000), CD44 (Abcam,
1:1000), ABCG2 (Abcam, 1:1000), ALDH1 (Abcam, 1:1000),
Nanog (Abcam, 1:1000), Bmi-1 (Abcam, 1:1000), Oct-4
(Abcam, 1:1000), glyceraldehyde-3-phosphate dehydrogenase
(Abcam, 1:1000), horseradish peroxidase-linked anti-rabbit IgG
(CST, 1:3000), and horseradish peroxidase-linked anti-mouse IgG
(CST, 1:3000). Glyceraldehyde-3-phosphate dehydrogenase was
used as an internal control.

Limiting Dilution Assay
As previously described (23), in vitro limiting dilution assay
(LDA) was performed using ultra-low adhesion plates. After 10
days of incubation, wells without spheres were counted to
analyze the efficiency of sphere formation. For in vivo LDA,
CRC cells were serially diluted to obtain the correct number for
transfer and then subcutaneously injected into the nonobese
diabetic/severe combined immunodeficiency mice. Two months
later, the number of tumors was recorded, and the frequency of
CSCs was analyzed using the Extreme Limiting Dilution
Analysis software.

Subcutaneous Tumorigenicity
CRC cells (1 × 106 cells/100 mL) were injected subcutaneously
into the nude mice. Two dimensions of tumors were recorded
using calipers. After 24 days, the mice were euthanized, and the
tumor size was obtained using the formula (length × width2)/2.
The heterografts were collected for immunohistochemistry
(IHC) analysis.

Liver Metastasis Assays
Using a 29-G injector, CRC cells (1 × 106 cells/100 mL) were
injected into the portal vein of nude mice. The mice were
euthanized 8 weeks after the injection or died spontaneously.
The livers were harvested, fixed in 4% paraformaldehyde, and
stained with hematoxylin and eosin. The liver metastatic foci
were validated and counted microscopically. The survival time
was also recorded at 12 weeks as the cutoff.

Statistical Analysis
The results were recorded as the mean ± standard error of the
mean (SEM). SPSS software ver. 20.0 and GraphPad Prism 7.0
were used to performed the statistical analysis. The differences
between groups were assessed using the Student’s t-test or analysis
of variance. The Kaplan-Meier analysis was utilized to investigate
the survival disparity between different groups. Cox proportional
hazards models were used for univariate and multivariate
analyses. The statistical significance was set at P < 0.05.
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RESULTS

High Expression of HIST2H2BF in CRC
and Its Correlation With Poor Prognosis
We initially compared the HIST2H2BF expression in 100 paired
CRC tissues and adjacent normal tissues using reverse
transcription-PCR. Results showed that HIST2H2BF was
overexpressed in CRC tissues (Figure 1A). IHC analysis
verified that HIST2H2BF protein expression was markedly
higher in CRC tissues than in adjacent normal tissues
(Figure 1B). The results of Western blotting confirmed the
increased HIST2H2BF protein expression in eight randomly
selected pairs of CRC tissues and adjacent normal tissues
(Figure 1C). The HIST2H2BF expression was analyzed in five
human CRC cell lines and normal human colon epithelial cells
(NCM460). Consistently, both HIST2H2BF mRNA and protein
expression levels were found to be elevated in CRC cell lines by
reverse transcription-PCR and Western blotting, respectively
(Figures 1D, E). The expression levels of HIST2H2BF in
different stages of CRC determined using the online database
GEPIA (http://gepia2.cancer-pku.cn/#analysis) showed a
positive correlation with tumor stage (Figure 1F). The
relevance analysis of HIST2H2BF expression in 100 CRC
patients also revealed its positive correlation with tumor size,
TNM stage, depth of invasion, and distant metastasis
(Supplemental Table 1). The Kaplan-Meier analysis of the
survival outcomes of the 100 CRC patients showed that
patients with high HIST2H2BF expression had poor overall
survival (OS) and recurrence-free survival (Figures 1G, H).
This finding is consistent with the results of the analysis
conducted using the online database GEPIA (Figures 1I, J).
High HIST2H2BF expression was an independent prognostic
factor for OS (hazard ratio = 1.95, 95% confidence interval: 1.23–
2.87; P = 0.014) and recurrence-free survival (hazard ratio =
1.803, 95% confidence interval: 1.294–2.989; P = 0.029) in CRC
patients using multivariate Cox regression analysis
(Supplemental Table 2). These data indicate that HIST2H2BF
overexpression plays a vital role in CRC progression and may
predict poor clinical outcomes in CRC.

CpG Hypomethylation Stimulating the
HIST2H2BF Expression in CRC
Next, we explored the potential mechanisms that may lead to
HIST2H2BF upregulation in CRC. Data from cBioPortal
database showed that, in CRC tissues, a negative correlation
was observed between HIST2H2BF DNA methylation and
HIST2H2BF mRNA expression (Figure 2A). Indeed, one
typical CpG island was detected near the HIST2H2BF
promoter region (Figure 2B). Thus, we employed bisulfite
sequencing PCR analysis to determine the methylation status
of the promoter region of HIST2H2BF in two matched CRC
tissues and adjacent normal tissues. The bisulfite sequencing
PCR results confirmed the lower CpG methylation levels in CRC
tissues with higher HIST2H2BF expression (Figure 2C).
Methylation-specific PCR analysis was then performed on the
three paired CRC tissues. The methylation proportion of
Frontiers in Oncology | www.frontiersin.org 4
HIST2H2BF in CRC tissues was significantly lower than that
in adjacent normal tissues (Figure 2D). 5‐Aza‐deoxy‐cytidine
(5‐Aza‐dC) is a commonly used DNA demethylating agent. We
treated the low HIST2H2BF-expressing CRC cell lines (LOVO
and DLD-1) with 5-Aza-dC (5 mmol/L for 4 days). The
HIST2H2BF levels were significantly elevated in LOVO and
DLD-1 cells treated with 5-Aza-dC. Consistently, the
HIST2H2BF protein was also elevated in LOVO and DLD-1
cells following 5-Aza-dC treatment (Figures 2E, F). Collectively,
these data verified that the reactivation of HIST2H2BF in CRC
results from the hypomethylation of CpG.

HIST2H2BF Overexpression Markedly
Enhancing the Stemness of CRC Cells
CSCs are thought to contribute to tumor initiation and development
of cancers, especially in CRC. Thus, we investigated the relationship
betweenHIST2H2BF andCSCs. Sphere-forming assayswere used to
separate CSCs from the CRC cell lines. In comparison with
monolayer cells, sphere cells displayed higher HIST2H2BF
expression at the mRNA and protein levels (Figures 3A, B).
Furthermore, low HIST2H2BF-expressing LOVO cells were
selected to overexpress HIST2H2BF by transfection with LV-
HIST2H2BF. The HIST2H2BF overexpression was validated at
the mRNA and protein levels (Figures 3C, D). In addition,
high HIST2H2BF-expressing SW480 cells were selected to
establish the HIST2H2BF knockdown cell lines by transfection
with short hairpin RNA. We then confirmed the knockdown
efficiency of three HIST2H2BF-specific short hairpin RNAs at
the mRNA and protein levels (Figures 3C, D). Subsequent
experiments were performed using sh1 and sh2, which induced
the highest knockdown efficiency. HIST2H2BF over
expression increased the expression of CSC-related biomarkers
(CD133, CD44, ABCG2, ALDH1, Nanog, Bmi-1, and Oct-4).
By contrast, HIST2H2BF suppression decreased the CSC-
related biomarker levels (Figures 3E, F). Spheroid formation
was enhanced in HIST2H2BF-overexpressing LOVO cells
and attenuated in HIST2H2BF knockdown SW480 cells
(Figure 3G). In vitro limiting dilution analysis also showed
that HIST2H2BF overexpression increased the sphere formation,
whereas HIST2H2BF knockdown decreased the sphere
formation (Figure 3H).

HIST2H2BF Promoting the Proliferation,
Migration, Invasion, and Drug Resistance
in CRC
Cell Counting Kit-8 assays demonstrated that HIST2H2BF
overexpression markedly promoted the LOVO cell proliferation,
while HIST2H2BF knockdown suppressed the SW480 cell
proliferation (Figures 4A, B). Subsequently, colony formation
assays confirmed the enhanced effect of increased HIST2H2BF
expression on LOVO cell proliferation, while HIST2H2BF
knockdown suppressed the colony formation ability in SW480
cells (Figures 4C,D). Apoptosis analysis revealed thatHIST2H2BF
overexpression in CRC cells decreased the cell apoptosis, while the
opposite effect was observed in SW480 cells with HIST2H2BF
August 2021 | Volume 11 | Article 677646
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knockdown (Figures 4E, F). Transwell assays suggested that
HIST2H2BF overexpression resulted in a significant increase in
the migratory and invasive ability of CRC cells. Meanwhile,
HIST2H2BF downregulation decreased the migratory and
invasive ability of these cells (Figures 4G, H). Chemoresistance is
a vital trait of CSCs, and 5-FU and cisplatin are commonly used
chemotherapeutic agents in the treatment of CRC. In this study,
Frontiers in Oncology | www.frontiersin.org 5
HIST2H2BF overexpression contributed to the resistance of CRC
cells to apoptosis induced by 5-FU and cisplatin. However,
HIST2H2BF knockdown contributed to the chemosensitivity of
CRC cells to apoptosis induced by 5-FU and cisplatin (Figures 4I,
J). In addition, following treatment with 5-FU and cisplatin, LOVO
cells displayed a HIST2H2BF-enriched subpopulation
(Figures 4K, L).
A B C

D E

G H

I J

F

FIGURE 1 | HIST2H2BF was overexpressed in CRC and relates to poor prognosis in patients with CRC. (A) HIST2H2BF mRNA levels were determined in 100 paired
CRC and adjacent normal tissues using real-time PCR. (B) Representative images of HIST2H2BF expression analyzed by immunohistochemistry in paired CRC and
adjacent normal tissues. Scale bars, 100 mm. (C) Western blotting of HIST2H2BF expression in paired CRC and adjacent normal tissues (n = 8). (D) The expression
levels of HIST2H2BF mRNA in five CRC cell lines (LOVO, HCT116, DLD-1, HT29, and SW480) and the human normal colon epithelial cell NCM460 were detected
using real-time PCR. (E) The expression levels of HIST2H2BF protein in CRC cell lines and NCM460. (F) The rxpression levels of HIST2H2BF in different stages of CRC
in the GEPIA database using TCGA data. (G, H) The Kaplan-Meier OS (G) and RFS (H) curves of patients with CRC with high (n = 50) and low (n = 50) expressions of
HIST2H2BF mRNAs in 100 paired CRC and adjacent normal tissues, respectively. (I, J) The Kaplan-Meier OS (I) and RFS (J) curves of patients with CRC with high
(n = 179) and low (n = 179) expressions of HIST2H2BF mRNAs, respectively, in the GEPIA database using TCGA data. *P < 0.05, ***P < 0.001.
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HIST2H2BF Facilitating CRC Initiation,
Progression, and Liver Metastasis In Vivo
We examined the impact of HIST2H2BF on CSC expansion using
in vivo LDA. We found that HIST2H2BF overexpression in LOVO
cells resulted in a higher tumor formation rate and CSC frequency.
Consistently, HIST2H2BF knockdown inhibited the tumor
formation rate and decreased the CSC frequency in CRC cells
(Figures 5A, B). Moreover, HIST2H2BF overexpression in CRC
cells increased the tumor growth, volume, and weight (Figures 5C–E).
IHC staining showed decreased apoptosis and increased
proliferation in the HIST2H2BF-overexpressed xenografts, as
revealed by Ki-67 and TUNEL staining (Figure 5F). Moreover,
compared with the controls, the combination of HIST2H2BF
overexpression and cisplatin treatment promoted tumor growth
Frontiers in Oncology | www.frontiersin.org 6
by as much as 152%, indicating the promotive role of HIST2H2BF
in CSC propagation and development (Figures 5C–E). As expected,
HIST2H2BF knockdown decreased the tumor growth, volume, and
weight (Figures 5C–E). Meanwhile, Ki-67 and TUNEL staining also
exhibited decreased proliferation and increased apoptosis rate in
SW480-sh1 xenografts, respectively (Figure 5F). As expected,
HIST2H2BF knockdown suppressed the tumor growth following
cisplatin treatment in comparison with the effects observed in the
control group (Figures 5C–E). Liver metastasis models were
established through adoptive CRC cell transfer into the nude mice
via the portal vein. The biological effect of HIST2H2BF on liver
metastasis was further investigated using LOVO and SW480 cells
transfected with HIST2H2BF-overexpressed and knockdown
vectors, respectively (12 mice/group) (Figure 5G). IHC staining
A B

C

D E F

FIGURE 2 | CpG hypomethylation contributes to the upregulation of HIST2H2BF in CRC. (A) cBioPortal data were employed to display the relevance between
HIST2H2BF DNA methylation status and its mRNA expression in CRC. (B) MethPrimer program was employed to predict the CpG islands of the HIST2H2BF
promoter and synthesis primers. (C) Bisulfite sequencing PCR was employed to demonstrate the methylation status of HIST2H2BF CpG islands using two paired
CRC tissues and adjacent normal tissues. Open circles: unmethylated CpG sites, filled circles: methylated CpG sites. (D) Methylation-specific PCR was employed to
determine the HIST2H2BF methylation status in three paired CRC tissues (T) and adjacent normal tissues (N). M: methylated, U: unmethylated. (E, F) LOVO and
DLD-1 cells were treated with 5-Aza-dC. HIST2H2BF mRNA and protein expression were then detected by RT-qPCR and Western blotting, respectively. **P < 0.01,
***P < 0.001.
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confirmed that the protein levels of HIST2H2BF were consistent
with those observed in vitro (Figure 5H). There were significantly
more liver metastases in the LOVO-HIST2H2BF group, while the
opposite result was observed in the HIST2H2BF knockdown group
(Figure 5G). HE staining of liver metastasis was further performed
to verify the metastatic nodules (Figure 5I). Compared with the
corresponding control mice, HIST2H2BF overexpression and
knockdown mice also displayed shorter and longer OS,
respectively (Figure 5J). Collectively, these data suggest that
HIST2H2BF plays a significant role in facilitating CRC
progression and liver metastasis.

HIST2H2BF Activating the Notch
Signaling to Promote Stemness
and Malignancy of CRC
Investigation of the downstream signaling of HIST2H2BF is
crucial to uncover the mechanisms underlying the HIST2H2BF
regulation of stemness and malignancy of CRC. Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis was
Frontiers in Oncology | www.frontiersin.org 7
then performed using LinkedOmics (http://www.linkedomics.
org/login.php) (Figure 6A). The data revealed that Notch
signaling was regulated by HIST2H2BF (Figure 6B). Previous
studies have shed light on the significant role of Notch signaling
in promoting stemness and malignancy. As shown in Figure 6C,
HIST2H2BF overexpression contributed to the release of the
Notch intracellular domain (NICD) and upregulated the
downstream target genes, including Hes-1 and Hey-1 in LOVO
cells. By contrast, HIST2H2BF knockdown significantly
suppressed the Notch signaling in SW480 cells. Consistently,
the cellular immunofluorescence assay indicated a similar effect.
As shown in Figure 6D, HIST2H2BF overexpression enhanced
the fluorescence intensity of NICD in the nucleus. These
results indicated that HIST2H2BF promotes the expression of
NICD, the activated form of Notch1, and this effect may further
promote downstream gene transcription. To confirm that
HIST2H2BF activates Notch signaling to promote stemness
and malignancy in CRC, we treated the LOVO cells with
FLI-06 (Notch pathway suppressor) for 2 days (24).
A

B

C

D

E

G H

F

FIGURE 3 | HIST2H2BF promotes stemness of CRC cells. (A, B) Real-time PCR and Western blotting detected HIST2H2BF levels in sphere-forming cells and
monolayer cells in CRC cell lines. (C, D) Real-time PCR and Western blotting of HIST2H2BF expression after transfection with lentivirus HIST2H2BF or
shHIST2H2BF. (E, F) Real-time PCR and Western blotting of the expression CSC-related biomarkers in LOVO and SW480 cells transfected with lentivirus
HIST2H2BF or shHIST2H2BF. (G) Number of spheres in LOVO and SW480 cells infected with lentivirus HIST2H2BF or shHIST2H2BF. Scale bar, 100 mm. (H) LDA
determined sphere formation ability following HIST2H2BF overexpression or knockdown. *P < 0.05, **P < 0.01, ***P < 0.001.
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Immunofluorescence assay and Western blotting verified the FLI-
06-induced inactivation of Notch signaling (Figures 6D, E).
Meanwhile, the FLI-06-induced inhibition of Notch signaling
reversed these stem cell-like properties, based on the results of
spheroid formation assays and CSC-related biomarker levels
(Figures 6F–H). In addition, the enhanced proliferative,
migratory, and invasive ability of HIST2H2BF overexpression in
LOVO cells was rescued by treatment with FLI-06 (Figures 6I–K).
These results suggest that HIST2H2BF activates Notch signaling
to promote stemness and malignancy in CRC.
Frontiers in Oncology | www.frontiersin.org 8
DISCUSSION

Extensive evidence indicates that CRC is attributed to various
factors, including genetic, molecular, and epigenetic alterations
(25, 26). An understanding of the underlying mechanisms and
factors that facilitate the development and progression of CRC
can aid in the exploration of specific therapeutic targets to
improve the standard treatments. Our results indicated an
obvious overexpression of HIST2H2BF in CRC tissues and cell
lines. Moreover, high HIST2H2BF expression is an independent
A B
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G H

I J K

L

F

FIGURE 4 | HIST2H2BF promoted proliferation, migration, invasion, and drug resistance in CRC. (A, B) Growth curves were recorded using CCK8 assays.
(C, D) Colony formation assays of CRC cells; the number of colonies in each well was then counted. (E, F) Apoptosis of CRC cells was analyzed using a flow
cytometer. (G, H) Migration and invasion assays of CRC cells; the number of migrated and invaded CRC cells were then counted. (I, J) Apoptosis of CRC cells was
detected after 5-FU and cisplatin treatment. (K, L) Western blotting indicating HIST2H2BF expression in LOVO cells after treatment with various concentrations of
5-FU and cisplatin. *P < 0.05, **P < 0.01, ***P < 0.001.
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prognostic biomarker for OS and recurrence-free survival in
patients with CRC. Both in vitro and in vivo assays revealed that
HIST2H2BF promotes malignant tumor behaviors in CRC.

DNAmethylation deregulation contributes markedly to tumor
progression and acts as a vital marker to predict the response to
therapy and prognosis in tumors (27, 28). In our study, we
examined the methylation levels of the HIST2H2BF promoter
Frontiers in Oncology | www.frontiersin.org 9
with methylation-specific PCR and bisulfite sequencing PCR in
CRC tissues and adjacent normal tissues. Our results showed a
lower methylation level of the HIST2H2BF promoter in CRC
tissues, suggesting that promoter hypomethylation might
contribute to HIST2H2BF transcription. As expected,
HIST2H2BF was also significantly upregulated following 5’-Aza-
dC treatment. To our knowledge, this is the first study to report the
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FIGURE 5 | HIST2H2BF promoted tumor initiation, self-renewal, and liver metastasis in mice. (A) LOVO and SW480 cells transfected with lentivirus HIST2H2BF or
shHIST2H2BF were injected subcutaneously in nonobese diabetic/severe combined immunodeficiency mice. The tumor-forming rates were determined 2 months
post-injection. (B) The frequency of CSCs was obtained. (C) Tumors harvested from LOVO and SW480 cells, with or without cisplatin treatment. (D) Growth curves
of LOVO and SW480 xenografts. Two-way ANOVA was employed to analyze the differences in tumor growth. (E) Tumor weight was weighted in LOVO and SW480
cells. (F) Ki-67 and TUNEL staining in the tumors harvested from LOVO and SW480 cells without cisplatin treatment. (G) Representative images of liver metastatic
foci (marked by black arrowheads). (H) IHC staining for HIST2H2BF expression in the liver metastatic foci from LOVO and SW480 cells. (I) Hematoxylin and eosin
(HE) of liver metastasis in the mouse model (upper panel). Scale bar, 200 mm. The number of liver metastatic foci were counted (lower panel). (J) OS of mice injected
with LOVO and SW480 cells. *P < 0.05, **P < 0.01, ***P < 0.001.
August 2021 | Volume 11 | Article 677646

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Qiu et al. HIST2H2BF Promotes Malignancy of CRC
A B

C

D E

G

H I

J

K

F

FIGURE 6 | HIST2H2BF activates Notch signaling to promote the development of stem cell-like and cancer properties in CRC. (A) Kyoto Encyclopedia of Genes
and Genomes (KEGG) analysis was performed via LinkedOmics. (B) Notch signaling is regulated by HIST2H2BF. (C) Western blotting indicated NICD, Hey1, and
Hes1 expression in LOVO and SW480 cells infected with lentivirus HIST2H2BF or shHIST2H2BF. (D) Fluorescence microscopy analysis for NICD in LOVO cells.
Arrowheads indicate the expression of NICD in the nucleus. Green, NICD; blue, nucleus. (E) Following FLI-06 treatment, Western blotting indicated NICD, Hey1, and
Hes1 expression in LOVO cells infected with lentivirus HIST2H2BF. (F) Following FLI-06 treatment, the spheres were counted in LOVO cells infected with lentivirus
HIST2H2BF. (G) Following FLI-06 treatment, the expression CSC-related biomarkers were detected in LOVO cells infected with lentivirus HIST2H2BF using real-time
PCR. (H) Following FLI-06 treatment, the expression CSC-related biomarkers were detected in LOVO cells infected with lentivirus HIST2H2BF using Western
blotting. (I) Following FLI-06 treatment, colony formation assays were carried out in LOVO cells infected with lentivirus HIST2H2BF. (J) Following FLI-06 treatment,
apoptosis assays were carried out in LOVO cells infected with lentivirus HIST2H2BF. (K) Following FLI-06 treatment, migration and invasion assays were carried out
in LOVO cells infected with lentivirus HIST2H2BF. *P < 0.05, **P < 0.01, ***P < 0.001.
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association of hypomethylation of the HIST2H2BF promoter with
transcriptional upregulation of HIST2H2BF in CRC.

CSCs account for tumor initiation, development, progression,
and metastasis (29, 30). CSCs are also attributed to tumor relapse,
resistance to chemotherapy, and radiation therapy, which are
common clinical events (31). Thus, therapies targeting cells may
be a potential strategy for cancer therapy. In our study, we found
that HIST2H2BF was highly expressed in CSCs. HIST2H2BF
overexpression in vitro significantly increased the sphere
formation and gene expression levels related to stemness. A
series of in vivo experiments also indicated that HIST2H2BF
contributes to tumor initiation and liver metastasis in CRC.

The Notch pathway, which is an extremely conserved pathway,
accounts for the direct cell-to-cell interactions in multicellular
organisms (32, 33). The normal state of the Notch pathway is
important for maintaining cell proliferation, apoptosis,
development, and differentiation (34, 35). Growing evidence
suggests that the activation of the Notch pathway plays an
oncogenic role in CRC tumorigenesis (36). The activation of
Notch1 upregulated the expression of the downstream targets,
Hes-1, and Hey-1 in CRC cells (37). Recent research also claimed
that the activity of the Notch pathway in the early stage of CRC is
comparatively elevated compared with that in the advanced stage.
Notch signaling mainly promotes CRC development and
progression by regulating the cell cycle and apoptosis (38).
Moreover, accumulating evidence has confirmed that Notch
signaling plays a vital role in the development of cancer stem cell-
like properties (39). In our study, we found that HIST2H2BF
activates Notch signaling to promote stemness and malignancy in
CRC. FLI-06, a Notch pathway suppressor, reversed the stemness
andmalignancy.However, given the complexity ofdisruptionof the
signaling pathways in CRC such as the JNK signaling pathway and
Wnt signaling pathway (40–42), it remains unclear whether
HIST2H2BF also affects other pathways to promote stemness and
malignancy, which needs further investigation.

In conclusion, we found that hypomethylation-induced
HIST2H2BF upregulation enhances the CSC phenotype,
malignancy, and liver metastasis through the activation of
Notch signaling in CRC. This provides a new perspective on
the mechanism by which the stem cell features of CRC cells are
maintained and highlights potential novel therapeutic targets
for CRC.
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