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Polyphosphoinositides (PPIns) and their modulating enzymes are involved in regulating
many important cellular functions including proliferation, differentiation or gene expression,
and their deregulation is involved in human diseases such as metabolic syndromes,
neurodegenerative disorders and cancer, including Acute Myeloid Leukemia (AML). Given
that PPIns regulating enzymes are highly druggable targets, several studies have recently
highlighted the potential of targeting them in AML. For instance many inhibitors targeting
the PI3K pathway are in various stages of clinical development and more recently other
novel enzymes such as PIP4K2A have been implicated as AML targets. PPIns have
distinct subcellular organelle profiles, in part driven by the specific localisation of enzymes
that metabolise them. In particular, in the nucleus, PPIns are regulated in response to
various extracellular and intracellular pathways and interact with specific nuclear proteins
to control epigenetic cell state. While AML does not normally manifest with as many
mutations as other cancers, it does appear in large part to be a disease of dysregulation of
epigenetic signalling and many novel therapeutics are aimed at reprogramming AML cells
toward a differentiated cell state or to one that is responsive to alternative successful but
limited AML therapies such as ATRA. Here, we propose that by combining bioinformatic
analysis with inhibition of PPIns pathways, especially within the nucleus, we might
discover new combination therapies aimed at reprogramming transcriptional output to
attenuate uncontrolled AML cell growth. Furthermore, we outline how different part of a
PPIns signalling unit might be targeted to control selective outputs that might engender
more specific and therefore less toxic inhibitory outcomes.
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ACUTE MYELOID LEUKEMIA

Acute myeloid leukemia (AML) is a cancer of blood cells, in which
myeloid progenitor cells lose their ability to differentiate while
increasing their rate of proliferation giving rise to too many and/or
too immature myeloid cells derivatives. These blast cells fail to
differentiate into granulocytes or monocytes. Blast accumulation in
the absence of proper haematopoiesis leads to impairment of the
immune system and eventually to death. Although, compared to
other types of cancers, AML is characterised by a low number of
mutations, it is a highly heterogenous hematologic disease classified
into many different subtypes, reflected in different clinical
manifestations: understanding the relevance of this heterogeneity is
critical to develop novel and more personalized clinical therapies
(1). Today, the first line of treatment is still chemotherapy, with a 5-
year survival rate of less than 30%: it is now clear that treating all
patientswith the same startingprotocol (i.e. “one sizefits all” strategy)
benefits only a specific group of patients. Personalized therapies are
aimed at using novel insights into patient specific genetic signatures
of AML to define strategies to treat the AML (1, 2). Compared to the
last 50 years, when administration of cytarabine and anthracyclines
was the only standard therapy, the last 6 years has seen the
introduction of many novel successful clinical trials, aimed to
stratify and treat patients in subgroups tailored on patient specific
genomic backgrounds (3). Although new molecular therapies are
showing promising results, patients often relapse and therefore
more therapeutic strategies are required. We propose that by more
fully understanding how polyphosphoinositides (PPIns) profiles
impact on cell behaviour, and by targeting the enzymes that
modulate these lipids, a roadmap in the cell state could be
generated to lead to new therapeutic strategies in AML treatments.
This review will focus on how phosphoinositides participate in the
regulation of cellular processes important in AML, i.e. cell growth,
differentiation, apoptosis and epigenetic behaviour and how
regulation of their modulating enzymes can be a beneficial additive
for a more personalized AML treatment.
PHOSPHOINOSITIDES

Phosphoinositides are a family of phosphorylated lipid molecules
that directly control several essential cellular processes, such as
proliferation, survival, adhesion, vesicular trafficking and
transcription (4). They are derived from phosphorylation of
the parent precursor molecule, phosphatidylinositol (PtdIns) and
can generate seven well characterised polyphosphoinositides
(PPIns) (5). The structural basis of PtdIns consists of an inositol
head group linked to diacylglycerol (DAG) by a phosphodiester
bond. The inositol head group of PtdIns can be reversibly
phosphorylated at the 3, 4 and 5 positions of the inositol ring
giving rise to 7 different molecules: phosphatidylinositol 3-
phosphate (PtdIns3P), PtdIns4P, PtdIns5P, PtdIns 3,4-
bisphosphate [PtdIns(3,4)P2], PtdIns(3,5)P2, PtdIns(4,5)P2 and
PtdIns 3,4,5-trisphosphate [PtdIns(3,4,5)P3]. PPIns can be
interconverted by the activity of kinases and phosphatases whose
activations can be controlled by extracellular and intracellular inputs
(6, 7). Regulation of these kinases and phosphatases at different
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subcellular locations can lead to organelle specific PPIns profiles
which in combination with their ability to interact with specific
downstream signalling proteins enables the conversion of the
chemical PPIns profiles into diverse function outputs (8) (Figure 1).

For instance, PtdIns(4,5)P2 is mainly concentrated at the
plasma membrane and it is involved in the regulation of
integral membrane proteins such as ion channels which
contain arginine lysine patches that bind to PtdIns(4,5)P2 and
induce a change in conformation and channel activity. PtdIns
(3,4,5)P3, which is synthesised by the phosphorylation of PtdIns
(4,5)P2 is also predominantly localised to the plasma membrane
and can initiate many different signal cascades. In contrast
PtdIns(4)P is predominantly found in the Golgi complex (9),
where it modulates Golgi structure and function, whilst PtdIns
(3)P and PtdIns(3,5)P2 are found predominantly within early
and late endosomes or lysosomes (10) (Figure 1). PtdIns(3,4)P2
is another key molecule, when localized at the plasma membrane
it can assist cytoskeletal rearrangements important for clathrin
mediated endocytosis, macropinocytosis and lysosomal
catabolism, cell migration and, in cancer cells, invasion (11).
Moreover PtdIns(3,4)P2 can mediate glucose uptake and insulin
signalling and become a key second messenger (11).

After binding PPIn, proteins can change their localisation,
conformation, interaction partners and also activity so that these
interactions control various cellular processes (8): here we will
describe some of them, relevant for AML.
PHOSPHOINOSITIDE 3-KINASES AND AML

Phosphoinositide 3-kinases are lipid kinases that phosphorylate one
or more inositol phospholipids on the 3-position of the inositol ring
(Figure 2). There are eight PI3Ks in mammalian cells that are sub
grouped into three unique classes based on structural and enzyme-
kinetic differences; four Class I isoforms (PI3K -a, -b, -g, -d), three
Class II isoforms (PI3K-C2a,-C2b and -C2g) and a single Class III
isoform, known as vacuolar protein sorting 34 (Vps34) (12). In
particular, PI3Kg and PI3Kd isoforms are abundant in
hematopoietic cells, such as leukocytes (13, 14), whilst PI3Ka and
PI3Kb are mainly ubiquitously expressed. Class I PI3K can
phosphorylate PtdIns(4,5)P2 into PtdIns(3,4,5)P3 and increased
levels of PtdIns(3,4,5)P3 are sensed by specific Plekstrin
Homology (PH) domain containing proteins such as the serine
threonine kinase AKT/PKB. PtdIns(3,4,5)P3 can be degraded by a
number of phosphatases such as PTEN, SHIP1 or INPP5D which
are essential to maintain long term hematopoietic stem cells (15).
Interaction with PtdIns(3,4,5)P3 leads to activation of kinases and
phosphatase that exert a wide spectrum of effects on downstream
pathways which include cell proliferation, differentiation, apoptosis
and metabolism (16). Class II isoforms have distinctive, non
overlapping functions that regulate cell migration, proliferation
and survival (17). PI3K-C2a is also involved in PtdIns(3,4)P2
-mediated vesicular trafficking, membrane remodelling important
for platelet formation and can be a scaffold protein important
during mitosis. PI3K-C2b is an activator of Ca2+ flux and regulates
many signalling pathways, whilst PI3K-C2g is mainly involved
in vesicular trafficking and in glucose homeostasis (17).
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The ubiquitous utilization of PI3K signalling by diverse
receptor families together with the identification of mutations in
multiple components of the PI3K signalling pathway in various
cancers, has led to the development of compounds targeting this
pathway. Many of these are under clinical investigation for cancer
treatment showing varied levels of success (18).

In AML, the PI3K pathway dysregulation is a frequent event
and correlates with poor prognosis (19). Constitutive activation
of PI3K signalling is associated with hematologic malignancy
and is probably triggered by abnormal activations of KIT, FLT3
and RAS, which are frequently muted in AML (20, 21).

Several preclinical trials using PI3K inhibitors have progressed
to clinical trials but even though PI3K-related inhibitionmay target
AML cells, including Leukemic Stem Cells (LSCs), they have met
with a very limited success as monotherapies, probably as a
consequence of compensatory activation of other survival
pathways (22). For this reason, novel combinations and
alternative pathway inhibitions may result in more efficacious and
tolerable pharmacological regimens for AML treatment.

Firstly, PI3K/mTORC1/2 inhibition reached higher apoptosis
rates than single inhibition or combined AKT/mTORC1
inhibition. Primary patient samples and cell lines carrying
MLL rearrangements show higher sensitivity to PI3K/mTOR
Frontiers in Oncology | www.frontiersin.org 3
inhibition. In a larger cohort of MLL-AF9+ AML patients, a high
incidence of additional mutations in genes involved in growth
factor signalling pathways was identified, which could explain
their preferential sensitivity (23). In THP-1 cells and patient-
derived xenografted (PDX) cells, a combination treatment of the
dual PI3K/mTORC1/2 inhibitor BEZ-235 with a MEK inhibitor
showed highly synergistic effects on apoptosis. Using the MLL-
AF9+ xenograft mouse model, Sandhöfer et al. highlighted the
efficacy of PI3K/mTORC1/2 inhibition in vivo. Altogether, these
data show a possible benefit of PI3K/AKT/mTOR inhibition as a
therapeutic approach for MLL-rearranged leukaemia.

In the battle against AML, the effect of PI3K/AKT/mTOR
inhibition can be augmented by BCL-2, which is an anti-
apoptotic protein often overexpressed in several blood disorders,
including AML. Increased expression of BCL-2 enhances survival
by blocking apoptosis and is associated with increased
chemoresistance and poor patient outcome (24).

The selective BCL-2 inhibitor Venetoclax has shown strong
cytotoxic effects combined with a safe patient profile in AML
(25) and Venetoclax has recently been approved by the FDA for
CLL patients with the 17p deletion (26). Furthermore, it entered
phase II clinical trials as a monotherapy in patients with
refractory and relapsed AML (27).
FIGURE 1 | PPIns may be phosphorylated on the 3, 4 and 5 positions to generate seven possible PPIns, each with a different spatial occupancy, that is recognized
by different effector proteins. Recruitment of the necessary effector protein is guaranteed by the different accumulation of PPIns in the subcellular compartments.
Here are some examples of how different PPIns interact with different effector proteins to convert chemical diversity into diverse functional functions.
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Complete responses to BCL-2 are only observed in
approximately 20% of patients suggesting that monotherapy does
not reach durable responses. Thus, Venetoclax combined with
inhibitors of survival pathways or classical chemotherapeutic
drugs have been assessed for the treatment of AML, to increase
the cytotoxic effects. Among these, the combined treatment of BCL-
2 and PI3K inhibition enhanced leukemia cell death in AML cell
lines, patient-derived blasts and xenograft models (28). The anti-
leukemic effects of this drug combination can be further increased
by ERK inhibition (29) although how toxicity profiles are affected is
yet to be assessed. Downregulation of Mcl-1, a BCL-2 related
antiapoptotic protein with PI3K/mTOR inhibitors may underlie
the potentiation of the effect of Venetoclax, in leukemia cells (30).
PHOSPHOLIPASE AND AML

Phospholipases C (PLCs) hydrolyse PtdIns(4,5)P2 into DAG and
Ins(1,4,5)P3: DAG can be bound by many proteins, i.e. protein
kinase C (PKC) that transduce changes in DAG levels into
phosphorylation and regulation of downstream targets, whilst
Ins(1,4,5)P3 can be bound by its cognate receptor on the
endoplasmic reticulum and regulate Ca2+ efflux (Figure 2).
Phospholipases are localized mainly at the plasma membrane
Frontiers in Oncology | www.frontiersin.org 4
but also in cell organelles: for example PLCb1 is present in the
nucleus where it is involved in transcriptional regulation (31–35).

Interestingly, PLCb1 is involved inhaematologicalmalignancies
by regulating haematopoiesis, especially in Myelodysplastic
Syndromes (MDS), where it acts on both erythropoiesis and
myelopoiesis (36–38), with possible implications in
transformation into AML. PLCb1 modulation is clinically
relevant in leukemogenesis of MDS, as its mono-allelic deletion is
associated with increased risk of AML progression and its
expression is inversely correlated with AKT/ mTOR activation in
higher-riskMDS (39–42).Moreover, specificmutations in inositide
regulating enzymes including PLCg2, AKT3 and PIK3CD were
associated with Azacytidine and Lenalidomide therapy failure in
MDS leading to a higher risk of AML progression (43). In addition
to PLCb1, also PLCb3 plays a crucial role in haematopoiesis, since
PLCb3-deficient mice develop myeloproliferative disease,
lymphoma, and other tumors (44): these mutant mice have
increased numbers of hematopoietic stem cells with increased
proliferative, survival and myeloid-differentiative abilities.
Particularly, PLCb3 exerts this function, not by its lipase activity,
but by being a scaffold protein that hold together SHIP1 and the
transcription factor Stat5, that in turn regulates the above processes.

Recent studies have observed also that survival of Leukemic
StemCells from the bonemarrow ofAMLpatients is dependent on
ORP4L, a protein that acts to scaffold PLCb3 into a complex at the
plasmamembrane.ORP4L is able to extract PtdIns(4,5)P2 from the
plasma membrane and presents it as a substrate to PLCb3 for
hydrolysis, mediating Ins(1,4,5)P3-induced endoplasmic reticulum
Ca2+ release (45, 46). Importantly, genetic or pharmacological
inhibition of ORP4L leads to LSCs death in AML and to defective
bioenergetics, autophagic death and abrogation of T-ALL
engraftment in vivo (47).

Finally, by a peptide microarray profiling array, in a t (8, 21)
AML, PLCg1 was found hyper-expressed and PLCg1 KD showed
a decreased in AML cell growth, increase of apoptosis and a higher
chemosensitivity to the chemotherapeutic drug treatments upon
hypoxic stress (48).
PHOSPHATIDYLINOSITOL-5-PHOSPHATE
4-KINASE AND AML

In a recent study a sh-RNA library targeting modulators of PPIns
was used to identify novel targets essential in AML proliferation in
at least three different AML cell lines. From the screen common
modulators emerged as essential for proliferation and included three
PPIns phosphatases (INPP5J, INPP5B, SYNJ), subunits of the PI3K
pathway (PI3K-C2a, PI3K-R3, PI3K-R6), PLCb2 and PIP4K2A
(49). PIP4K2A is a kinase that phosphorylate PIns or Pins5P on the
4-position of the inositol ring, thus regulating the levels of both
PtdIns(4,5)P2 and PtdIns5P. Silencing PIP4K2A attenuated growth
of primary human AML cells, while sparing healthy Hematopoietic
Stem Cells HSCs (49). In AML cells, PIP4K2A regulates cell cycle
progression and apoptosis dependent on the activation of mTOR
and represents a novel potentially druggable target for the treatment
of AML. The pro-leukemic role played by PIP4K2A was also
FIGURE 2 | Schematic representation (on the left side) of PLC activation which
hydrolyses PIP2 into DAG and IP3. These last two are intermediate second
messengers that can regulate many cell functions such as proliferation,
differentiation, signal transduction and gene expression. On the right side, ligand
binding to membrane receptor drives PI3K activation and consequent
phosphorylation of PIP2 into PIP3 and subsequent activation of the AKT/mTOR
pathway. These activated players can as well regulate many cell functions such
as proliferation, differentiation, signal transduction and gene expression. PIP3

can be dephosphorylated to PIP2 by phosphatases such as PTEN and SHIP1.
Many intermediate players are omitted for figure clarity.
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demonstrated in paediatric acute lymphoblastic leukaemia, where
its expression correlated with chemoresistance (50). Moreover,
susceptibility for development of acute lymphoblastic lymphoma
has been associated with SNPs in both intronic and exonic regions
of the PIP4K2A gene (51, 52).

The revelation that many different PPIns modulators are
essential for AML cell growth suggest that understanding their
individual mechanism of action might lead to the development
of patient specific therapies that could be generated through
combinations of molecules that deregulate these pathways.
Importantly the enzymes that modulate PPIns are highly
druggable and many inhibitors are already available. Given
that many of these enzymes are also found in the nucleus
where they regulate a specific pool of PPIns, which impact on
transcriptional output we next describe their potential roles as
epigenetic regulators in AML.
THE POTENTIAL FOR TARGETING
NUCLEAR PHOSPHOINOSITIDES AS
EPIGENETIC REGULATORS IN AML

PPIns and in particular PtdIns, PtdIns4P, PtdIns5P, PtdIns(4,5)P2
and PtdIns(3,4,5)P3 are localized in the nucleus (53), in the nuclear
envelope and in the nucleoplasm. Within the nucleoplasm PtdIns
(4,5)P2 and PtdIns4P have been localised by immunostaining to
splicing speckles, nucleoli and to nuclear lipid islets (54). In the
nucleus, the levels of PPIns respond to specific stimuli, such as cell
stress, DNA damage, cell cycle progression or cell differentiation
(55). These changes occur distinctly and independently of changes
in the cytoplasmic profile of PPIns. Changes in nuclear PPIns
appear to be particularly prevalent during control of differentiation
or proliferation. The levels of nuclear PLCb1 decrease during
hematopoietic differentiation and increase during liver
regeneration (34, 56). Surprisingly, increased nuclear PLCb1 is
required during myogenic differentiation which may be related to
the initial phase of differentiation.

How exactly nuclear PPIns control differentiation is not
completely clear. Nuclear PPIns can be bound by specific nuclear
protein domains found in enzymes that control epigenetic signalling.
For example the PHD finger domain is a nuclear receptor for PPIns,
foundmainly in nuclear proteins which are involved in all aspects of
epigenetic signalling (57, 58).Thesedomains alsomediate interaction
with modified and unmodified histone tails and act as protein
dimerization domains which are likely modified by PPIns
interaction. For example, the PHD fingers of ING2 (INhibitor of
Growth protein 2) and TAF3 (TATA-Box Binding Protein
Associated Factor 3) both act as sensors for H3K4me3 and for
nuclear PPIns. ING2 regulates p53 acetylation and transcriptional
output and TAF3 is a component of the basal transcription complex.
In both cases, loss of PPIns interaction through mutation of the
PHD finger, leads to protein loss of function, even if the interaction
with H3K4me3 is unchanged. In the case of ING2 this leads to
decreased acetylation of p53 and aberrant transcriptional output
(57) while in the case of TAF3, which is involved in myogenic
Frontiers in Oncology | www.frontiersin.org 5
differentiation, there is a decrease in myogenic gene transcription
and differentiation (59). Nuclear PPIns actually interact with a
much wider variety of nuclear proteins involved in transcriptional
output (60). For example, nuclear PPIns interact and allosterically
regulate the Ubiquitin-like PHD and RING finger domain-
containing protein 1 (UHRF1) (61). UHRF1 is a multidomain
protein that regulates DNA methylation in response to changes in
histone modification through its ability to interact with the DNA
methylase DNMT1 and bind modified histones. The interaction
between UHRF1 and PPIns occurs through a polybasic region
(PBR) which are abundant in nuclear proteins. In fact, mass
spectrometry revealed that PBRs were the most highly enriched
domain after affinity purification of nuclear proteins onPtdIns(4,5)
P2 beads (62). Moreover nuclear PtdIns(4,5)P2 also regulates the
activity of the histone lysine demethylase PHF8 to control
ribosomal RNA transcription (63) and the activity of chromatin
remodeling complexes (64, 65). These data suggest that targeting
nuclear PPIns signalling could be specifically used to control
epigenetic signalling to impact on transcriptional output.

Despite having a low mutation burden, AML is highly
heterogenous due to deregulation of the epigenetic landscape
suggesting that epigenetic modulators could be leveraged to target
and treat AML (66). On average 70% of patients have mutations in
genes encoding epigenetic regulators including chromatin
modifying genes or genes involved with the regulation of DNA
methylation (67, 68). In Myelodysplastic syndromes (MDS),
mutations are often associated with increased DNA methylation
and demethylation therapies, such as azacytidine and more recently
decitabine (DNA methylation inhibitors) are used to treat this
disease. Interestingly, expression of nuclear PLCb1 is increased
during demethylation therapy in MDS patients and is associated
with a good response to the drug (69) while monoallelic deletion of
PLCb1 is associated with poor prognosis of MDS patients (70).
Other broad-based epigenetic therapies include inhibition of
Histone deacetylases (HDAC). Newer more specific targets
include IDH1 (isocitrate dehydrogenase 1) (71–75), DOT1, (a
H3K79 methylase) and KDM1A (LSD1) a nuclear amine
oxidase homolog that demethylates mono- and dimethylated Lys
4 and Lys 9 of histone H3 (76–82).

Epigenetic reprogramming can also be used to unlock the
potential of well-established AML therapies such as All Trans
Retinoic Acid (ATRA) for its broader use as a therapeutic in
AML. ATRA is highly successful in treating Acute Promyelocytic
Leukaemia (APL) but has little effect in other AML subtypes.
Recent studies have shown that treatment with either KDM1A or
GCN5 (a histone h3K9 acetylase) inhibitors reprogram non-APL
AML cells to become sensitive to ATRA induced differentiation
(83, 84). Identifying novel small molecules that can induce
differentiation is a difficult, lengthy and stochastic process
which can be assisted by predictive computational algorithms,
such as Mogrify, that combine data from RNA expression and
epigenetic landscape to predict perturbations necessary to
change cell state (85). Given that nuclear PPIns metabolism is
intimately linked with control of epigenetic signalling and the
enzymes that regulate PPIns are highly druggable it might be
possible to identify combinations of inhibitors aimed at targeting
May 2021 | Volume 11 | Article 678824
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PPIns metabolism to establish a particular quiescent cell state
(Figure 3) given a deep understanding of how perturbing PPIns
metabolism impact on gene expression.

Targeting epigenetic signalling enzymes, such as methylases or
demethylases, may turn out to have toxicity issues and uncovering
how they are controlled would allow for further fine tuning.
Remarkably it appears that nuclear PPIns interaction with
downstream targets regulates selective output signalling. For
example, mutations that attenuate the interaction of the PHD
finger of either ING2 or TAF3 with PPIns do not completely
inhibit their function but rather lead to a more selective inhibition
that impacts on the transcriptional output of a subset of gene
targets (59, 86). PPIns interact with many different PHD and PBR
containing proteins that span epigenetic writers, erasers and
readers and the demonstration that therapeutically useful small
molecules can be generated to block interactions between lipids
and their cognate interaction domains (87) suggest that highly
specific allosteric regulators that modulate the interaction of
nuclear PPIns with specific proteins could be generated. These
molecules are likely to selectively modulate the function of nuclear
PPIns binding proteins enabling more specific targeting compared
to inhibition of the PPIns modulating enzymes or of the epigenetic
signalling activity itself. Combining this understanding with
bioinformatic analysis as described above might enable the
development of combination therapies that can subtly tune
transcriptional output to drive AML tumour cells to express
differentiation specific genes to attenuate proliferation.
CONCLUSION AND PERSPECTIVES

PPIns regulate a vast array of cellular process impacting on
nearly every aspect of biology. They are controlled by a panel of
kinases, phosphatases and phospholipases which generate
Frontiers in Oncology | www.frontiersin.org 6
distinct sub-cellular PPIns profiles that impact on downstream
signalling through interaction with specific target proteins. Key
to the possibility of targeting PPIns in AML is that many of the
enzymes that modulate PPIns are essential for growth and
proliferation of AML cells but have much less impact on the
growth and differentiation of normal hematopoietic stem cells.
Interestingly the level of expression of many PPIns modulating
enzymes also stratify AML patients in terms of overall survival.
We interrogated the TCGA data base for AML patients with all
PPIns modulating enzymes and found twenty-two modulators
that significantly (<0.05) stratify patient overall survival. For
example and in accordance with our previous studies (49), high
expression levels of PIP4K2A associate with poor survival
(Figure 4A). PIP4K2A is one of three isoforms of PIP4K that
phosphorylate PtdIns5P to generate PtdIns(4,5)P2. Interestingly,
the other two isoforms, 2B and 2C also stratify patient survival
with 2C showing similar characteristics as 2A. However,
PIP4K2B, which is predominantly localised in the nucleus,
shows an inverse correlation with survival compared to 2A and
2C, such that low levels of 2B associate with poorer survival. This
is in accord with our previous studies in breast cancer patients
which revealed that low PIP4K2B is associated with poor survival
(88). Similar stratification differences between PPIns modulating
enzymes from the same enzymatic family are also observed in the
MTMR family, which dephosphorylate PtdIns3P and PtdIns(3,5)
P2 to generate PtdIns and PtdIns5P respectively (Figure 4A).
While these data are difficult to interpret, they suggest the
presence of exploitable complexity within the system.

Another key aspect in targeting PPIns pathways, is that the
enzymes that modulate them are highly druggable and many of
them have already been under intense development for the
identification of small molecular weight inhibitors. For example,
there aremultiple inhibitors targeting the PI3K pathway which are in
various stages of clinical development. In many respects the PI3K
FIGURE 3 | In transdifferentiation a somatic cell can pass from a somatic differentiated change to: this process can be achieved by knowing the transcription
factors and the epigenetic regulators that can drive this transition. We propose that PPIns, by being able to regulate epigenetic and transcription factors, could
help this transition.
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pathway holds a special place in PPIns metabolism as flux through
the pathway is generally very low but is strongly stimulated by
oncogenic pathways. While this imparts a therapeutic potential, the
involvement of the PI3K pathway in normal cellular processes
ultimately leads to potential for on target toxicities. For example
the PI3K pathway is intimately involved in insulin signalling and on
target issues with glucose homeostasis are often seen in therapeutic
treatments (89). As signalling through one PPIns can impact on
multiple downstream events, there are several points within a
particular PPIns pathway that could be the focus for intervention,
all of which likely would yield different outcomes (Figure 4B). We
illustrate this using a specific nuclear PPIns modulator which
changes the levels of its PPIns product to impact on epigenetic
signalling proteins PHD1-PHD5. Each of these then can impact on
the transcription of at least two genes. The system behaves similarly
to what was observed with nuclear PIP4K2B, PtdIns5P and the
downstream PHD finger containing proteins ING2 (57, 58, 86) and
TAF3 (59). We envisage three points for therapeutic intervention.
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Inhibition of the PPIns modulating enzyme attenuates signalling
through all the downstream PHD finger proteins effecting
transcriptional output of all genes A-L. Inhibition instead at the
level of the PHD finger protein attenuates only output of gene A and
B. Finally, targeting the interaction site specifically between a PHD
finger and the PPIns has the potential to attenuate selective
transcriptional output. In this instance two different PHD finger/
PPIns interactions are targeted to selectively block the transcriptional
output of only gene A and F. Similar selective outputs were observed
using mutants of ING2 and TAF3 that are unable to interact with
PPIns but still interact with H3k4me3 (59, 86).

Exploiting PPIns signalling complexity, however, requires deep
level understanding of how these interventions impact output, the
gathering of which has become much more feasible with the
advent of CRISPR gene editing tools. Combining this knowledge
with bioinformatic network analysis using tools such as Mogrify
and knowledge of patient specific transcriptional landscapes might
allow the complexity within PPIns signalling pathways to be
A

B

FIGURE 4 | (A) The TGCA AML patient data base was used to assess survival outcomes with respect to low or high expression of various PPIns modulating enzymes
to demonstrate complex signalling and outcomes within enzymes from the same family. As examples we shown that low expression of PIP4K2A, PIP4K2C or MTMR1 is
associated with increased survival. Surprisingly however the expression of PIP4K2B, a family member with PIP4K2A and 2C shows survival outcomes that are opposite
with respect to its expression. Similar data are observed MTMR4 and 7 where high expression is associated with increased survival in AML. These data suggest that the
complexity in PPIns signalling could be exploited to generate modulatory pathways that could be beneficial for AML treatment. (B) A schematic diagram illustrating that
PPIns inhibitors could act at 3 points within a PPIns signalling unit: (i) inhibition of the PPIns modulating enzyme will impair all downstream targets and associated gene
expression programs (A:L) (ii) inhibition of the activity of a PHD containing protein will likely impair all the genes that the protein regulates (gene A and gene B) or
(iii) allosteric inhibition of in the interaction of PPIns with a specific interacting domain will impair selected output which might be tuned to specific pathways and therefore
engender less toxic outcomes. In this example inhibition of two PHD domain interactions is shown which impair expression of gene A and gene F.
May 2021 | Volume 11 | Article 678824
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exploited by intervening at various levels to convert an AML cell to
a differentiated and non-proliferative cell state.
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