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Background: For stage IV patients harboring EGFR mutations, there is a differential
response to the first-line TKI treatment. We constructed three-dimensional convolutional
neural networks (CNN) with deep transfer learning to stratify patients into subgroups with
different response and progression risks.

Materials and Methods: From 2013 to 2017, 339 patients with EGFR mutation
receiving first-line TKI treatment were included. Progression-free survival (PFS) time and
progression patterns were confirmed by routine follow-up and restaging examinations.
Patients were divided into two subgroups according to the median PFS (<=9 months, > 9
months). We developed a PFS prediction model and a progression pattern classification
model using transfer learning from a pre-trained EGFR mutation classification 3D CNN.
Clinical features were fused with the 3D CNN to build the final hybrid prediction model. The
performance was quantified using area under receiver operating characteristic curve
(AUC), and model performance was compared by AUCs with Delong test.

Results: The PFS prediction CNN showed an AUC of 0.744 (95% CI, 0.645–0.843) in the
independent validation set and the hybrid model of CNNs and clinical features showed an
AUC of 0.771 (95% CI, 0.676–0.866), which are significantly better than clinical features-
based model (AUC, 0.624, P<0.01). The progression pattern prediction model showed an
AUC of 0.762(95% CI, 0.643–0.882) and the hybrid model with clinical features showed
an AUC of 0.794 (95% CI, 0.681–0.908), which can provide compensate information for
clinical features-based model (AUC, 0.710; 95% CI, 0.582–0.839).

Conclusion: The CNN exhibits potential ability to stratify progression status in patients
with EGFR mutation treated with first-line TKI, which might help make clinical decisions.

Keywords: deep learning—convolutional neural networks, computed tomography, lung cancer, transfer learning,
epidermal growth factor receptor mutation
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INTRODUCTION

Non-small cell lung cancer (NSCLC) has the highest mortality
both in United States and China (1, 2), of which lung
adenocarcinoma accounts for about 50%. For stage IV lung
adenocarcinoma patients harboring EGFR mutations, tyrosine
kinase inhibitor (TKI) is recommended to be the first-line
treatment modality especially for Asian patients with a
relatively higher possibility of EGFR mutations (3). First-line
TKI treatment could achieve the median progression-free
survival (PFS) of approximately 10 months and a response rate
of about 70% (4, 5). However, the disease inevitably progresses
owing to acquired resistance to TKI treatment after a period of
response. Because of inter-patient and inter-lesion heterogeneity,
PFS and progression pattern of first-line TKI treatment are
heterogeneous between patients. Different PFS and progression
pattern determines different subsequent treatment strategy. For
example, it is helpful to increase the PFS and even overall survival
(OS) of TKI treatment by the addition of local ablative therapy
for patients with favorable PFS and oligoprogression (6) and the
enhancement of systematic therapy for patients with poor PFS
and systematic progression (7). Therefore, accurate prediction of
PFS and progression pattern offirst-line TKI treatment is of great
significance to the subsequent clinical decision making.

Nowadays, the prediction of PFS and progression pattern of
TKI treatment in clinical practice is mainly based on the
conventional information such as patient demographics,
pathology, and genetics. Nevertheless, these features are low-
dimensional with limited representational ability, which may
lead to unsatisfactory accuracy. Recently, medical imaging has
been widely used to help clinicians for decision making
according to some morphological features about the tumor.
However, these subjective and qualitative morphological
features often result in low inter-observer agreement and
limited accuracy. Thus, a more objective and quantitative
method to accurately predict PFS and progression patterns of
first-line TKI treatment is urgently needed.

Convolutional neural network (CNN) is an artificial
intelligence algorithm with the capability to excavate the
underlying biological information from medical imaging.
Compared with the traditional feature engineering, CNN has
great advantages in automatically extracting the latent deep
representative features and developing robust end-to-end
prediction models. It has been recently utilized in various
medical domains with satisfactory results (8). In thoracic
oncology, CNN could distinguish malignant pulmonary
nodules (9), identify pathological types of lung cancer (10, 11),
detect driven oncogene status, and other tasks (12–14) using
chest CT images. Therefore, we decided to develop a CNNmodel
to predict PFS and progression patterns of first-line TKI
treatment of lung adenocarcinoma patients based on chest
CT images.
Abbreviations: 3D CNN, three-dimensional convolutional neural network; CI,
confidence interval; PFS, progression free survival; TKI, tyrosine kinase inhibitor;
ROI, region of interest.
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For the training of CNN, the weights of network are often
randomly initialized and then updated under the supervision of
image labels, which is called “training from scratch.” This
method requires large amounts of data to learn the huge
number of CNN parameters. However, in this study, as the
number of patients harboring EGFR mutations and treated with
first-line TKI is limited, this training strategy may cause
overfitting of the CNN model and lead to poor generalization
performance. Thus, how to train the CNN network with limited
data is the major concern of this study.

Transfer learning is a technique that can help overcome the
problem of insufficient training data. Researches have shown that
the pre-trained weights and features from one domain are
transferable to another domain with similar characteristics (15,
16). In this study, considering the available data are limited, we
decided to train the CNN network with deep transfer learning
using pretrained CNN models. The basic pretrained CNN model
has been developed to distinguish benign and malignant
pulmonary nodules in a large data set (with 8472 samples).
Then, in light of the large dissimilarity between distinguishing
pulmonary nodules (in early-stage patients) and predicting PFS
and progression patterns (in stage IV patients), we added the
domain of detecting EGFR mutations of stage IV patients for
fine-tuning of the basic model. Afterward, this fine-tuned model
for EGFR mutation prediction was further utilized to help train
the progression prediction models.

Overall, this study aims to develop and validate a CNNmodel
with model-based deep transfer learning to predict the PFS and
progression patterns of first-line TKI treatment of lung
adenocarcinoma patients based on pretherapy CT images. The
pretrained model in source domain based on large data set would
help the CNN model in target domain be better trained with
limited data.
MATERIALS AND METHODS

Study Design
This study was approved by Shanghai Chest Hospital, Shanghai
Jiaotong University. Ethical approval (ID: KS 1716) was obtained
for the use of the CT images and clinical information of patients.
Informed consent was waived for the respective nature of the
study. The study design was illustrated in Figure 1. The basic
CNN model was previously constructed by the domain of
distinguishing malignant and benign pulmonary nodules.
Then, this basic model was fine-tuned by the domain of
detecting EGFR mutation of lung adenocarcinoma, and then
transferred to predict the PFS and progression patterns of
TKI treatment.

Patients
We retrospectively analyzed patients receiving first-line TKI
treatment from 2013 to 2017 in Shanghai Chest Hospital. The
inclusion criteria: a. Patients were diagnosed with stage IIIB and
IV lung adenocarcinoma harboring EGFR mutations; b. Patients
received first-line TKI treatment. c. The smoking history should
be clear. d. Patients should undertake completed staging
July 2021 | Volume 11 | Article 679764
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examination to confirm the clinical stage. e. The pulmonary
nodules should be solid with the max diameter over 0.8 cm. f.
Patients should receive completed follow-up every 3 months to
confirm the accurate PFS and restaging examination for judging
progression patterns. The exclusion criteria: a. Patients with non-
adenocarcinoma; b. Patients without completed staging
examinations to confirm the clinical stages of IIIB and IV. c.
Patients did not undertake routine follow-up and restaging
examinations to confirm the accurate PFS and progression
patterns. PFS was defined from the start of TKI treatment to
first progression or last follow-up date. For metastatic pattern at
initial diagnosis, systemic metastasis was defined as over five
metastatic sites or over three organs, and oligometastasis was less
than five metastatic sites within three or fewer organs. The
progression pattern was classified into oligoprogression and
systematic progression. The systematic progression was defined
as multi-sites progression, which may include both new
metastatic sites, as well as regrowth in previously responsive
sites of disease. The oligoprogression was defined to CNS
Frontiers in Oncology | www.frontiersin.org 3
progression without leptomeningeal progression and extra-
cerebral progression four or less sites. All the enrolled patients
were assigned into training set and validation set randomly.

CT Image Acquisition and Preprocessing
Chest CT scans were taken with voltage from 120 kV to 140 kV,
current 170 mA, scan layer thickness 5 mm, and spatial
resolution about 1 mm using Brilliance 64 CT from PHILIPS.
Tumors were manually segmented by an experienced radiologist
(window level -400 and window width 1600) on the platform
Pinnalce2 for Varian®. The radiologist was asked to only
delineate a rough region of interest covering nodules. Linear
interpolation was applied to the original CT images to get
isotropic images (1 mm × 1 mm × 1 mm). Image patches were
cropped from the interpolated images centered as the tumor.

Model Development and Evaluation
We established binary classifiers using three dimensional CNN (3D
CNN) to distinguish patients with different PFS and progression
FIGURE 1 | Workflow of our work. First, transfer and finetune the basic pulmonary nodule recognition model to EGFR prediction. Then, transfer the EGFR
recognition model to PFS prediction and progression patterns prediction.
July 2021 | Volume 11 | Article 679764
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patterns. Model-based deep transfer learning was utilized to train
the CNN more effectively. The 3D CNN was pre-trained on a
source task and then the weights of some layers or features were
transferred to the target domain task. Moreover, parameter fine-
tuning was used to retrain the network on the task of PFS
prediction. The workflow of our work was shown in Figure 1.
Based on the basic model for benign and malignant pulmonary
nodules recognition, we use transfer learning and fine-tuning to
develop the EGFR classification model, then further transferred
this EGFR classification model to PFS and progression
patterns prediction.

Establishment and Fine-Tuning of the
Basic Models
The structure of the basic model for nodule recognition
(CNNBM) was based on a 3D residual network with prior
attention. The residual network can effectively tackle the
vanishing gradient problem in deep neural networks. The
inputs of the network include both the CT image patch and
corresponding mask, which cover the region of interest (ROI), to
make the network focusing on image pixels within the ROI. As
the sample size was large for training (8,472 samples), the basic
model was trained from scratch. The details of the basic CNN
architecture can be found in Supplementary Table S1.

An EGFR classification model (CNNEGFR) was constructed
through fine-tuning of the pre-trained basic model. The fine-
tuning process makes the network more applicable for the IV
stage patients, and some latent EGFR mutation-related features
can be learned, which may be helpful for the PFS prediction after
TKI treatment.

Establishment of PFS Prediction by
Transfer Learning
For PFS prediction, patients with favorable PFS (>9 months) were
regarded as positive samples with label 1, and those with poorer PFS
(<=9 months) were negative samples with label 0. To develop the
PFS prediction model, we transfer and fine-tune the pre-trained 3D
CNNmodel in two steps. First, we freeze the top- layers’ parameters
and only train the fully connected layers with a larger initial learning
rate of 1e-2. After 10 epochs training, we unfreeze the frozen layers
and fine-tune the whole network with a smaller initial learning rate
of 1e-4. The CNNEGFR was also trained in this way based on the
CNNBM. To evaluate the effect of transfer learning and the influence
of domain difference, we compare different 3D CNN PFS prediction
models respectively fine-tuned from the CNNEGFR, CNNBM, and
trained from scratch. Furthermore, clinical features, such as age, sex,
smoking, clinical stages, and molecular pathology status, were fused
with 3D CNN model by logistic regression for better prediction.
Tensorflow (tensorflow.org) was used for network training.

Establishment of Progression Pattern
Prediction by Transfer Learning
For progression patterns prediction, patients with systematic
progression were regarded as positive samples, and patients with
oligoprogression were negative samples. To develop the progression
patterns prediction model, we use the pre-trained CNNEGFR as
Frontiers in Oncology | www.frontiersin.org 4
feature extractor and then construct classifiers. The deep features
(dimensional feature vectors, 128) were extracted from the last layer
before the outputs. After feature extraction, univariate feature
selection and recursive feature elimination were used to select
features, then decision tree, random forest, and K-Nearest
Neighbor classifiers were constructed to realize the final
prediction. Furthermore, because T stage and metastasis status are
significant factors related to patients’ progression patterns, we used
the two factors to build a logistic regression model as the baseline.
Finally, this basic model and the image-based model were fused to
develop the hybrid prediction model. The algorithms were
implemented with scikit-learn (scikit-learn.org) in python.

Statistical Analysis
Statistical analysis was conducted in R software (Rproject.org).
Fisher’s exact test, Wilcoxon test, and chi-square test were used
to compare the differences of clinical features between training
and validation groups. For model evaluation, the receiver
operating characteristic (ROC) curve and AUC were used to
describe model performance, and DeLong (17) test was used to
pairwise compare the difference of two ROCs. Kaplan-Meier
survival curves of the subgroups stratified by our model
(favorable/poor PFS) were plotted, and log-rank test was used
to compare difference of two KM curves. P value less than 0.05
was considered as significant.
RESULTS

Patient Characteristics
We retrospectively analyzed 339 patients for the creation of PFS
prediction model. Patients were randomly divided into training
group (70.5%) and validation group (29.5%). No significant
difference was found between the two groups in terms of all
clinical characteristic (Table 1). The median PFS of total patients
was 9 months. There were 169, 160, and 10 patients harboring
EGFR exon 19, exon 21, and double site mutation, respectively. At
Cox proportional hazard regression, all the clinical characteristics,
including age, gender, smoking status, clinical stage, and EGFR
mutation site, were not prognostic for PFS. After excluding patients
without confirmed progression pattern, totally 255 patients were
enrolled for the establishment of progression pattern prediction
model. The detailed characteristics of patients were shown in
Table 2. For the metastatic pattern in the initial diagnosis, there
were 186 (72.9%) and 55 (21.6%) patients demonstrating systematic
metastasis and oligometastasis, respectively. While at acquired
resistance to TKI, 153 (60%) and 102 (40%) displayed systematic
progression and oligoprogression, respectively. At multivariate
logistic regression, T stage (OR=1.70, p<0.001) and metastatic
pattern (OR=3.29, p=0.006) were recognized to be related with
progression pattern.

Structure and Performance of
Basic Models
The basic model we developed to distinguish malignant
pulmonary nodules achieved good performance with a high
July 2021 | Volume 11 | Article 679764
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AUC value of 0.932 (95% CI, 0.924–0.947). When utilizing the
domain of detecting EGFR mutation for fine-tuning, the AUC
value of the model was 0.863 (95% CI, 0.763–0.897)
(Supplementary Figures S2, S3).
Frontiers in Oncology | www.frontiersin.org 5
PFS Prediction
The 3D-CNN model trained from scratch (CNNScratch),
transferred directly from the basic model (CNNTL-BM) and
from the EGFR mutation fine-tuned model (CNNTL-EGFR)
showed AUCs of 0.668 (95% CI, 0.559–0.776), 0.701 (95% CI,
0.598–0.805), and 0.744 (95% CI, 0.645–0.843) in the validation
group, respectively (Figures 2, 3A). The 3D CNN model with
EGFR classification fine-tuning achieved better performance than
the model directly transferred from the basic model, mainly
because the domain difference between EGFR classification and
PFS stratification is smaller than the difference between nodule
classification and PFS stratification. Moreover, after adding the
clinical features, the corresponding fusion model’s performance
improved to 0.715 (95% CI, 0.614–0.816), 0.756 (95% CI, 0.659–
0.854), and 0.771 (95% CI, 0.676–0.866), respectively (Figure 2
and Table 3). As shown in Figure 3B, the best 3D CNN model
(CNNTL-EGFR) performed better than clinical features-based
model (AUC, 0.744 vs 0.624). Furthermore, the fusion model
(CNNTL-EGFR and Clinical) achieved significantly better
performance than the clinical model alone (P=0.008).

Then, according to the prediction results of different 3D CNN
models, we divided the validation group into high-risk and low-
risk subgroups. The optimal cutoff threshold was confirmed by
X-tile (18). Based on this, Kaplan-Meier survival curves were
plotted respectively in the two subgroups. As shown in Figure 4,
the CNNTL-EGFR and clinical fusion model achieved the best
performance and can significantly distinguish the difference in
PFS between the stratified progression subgroups (log-rank
test, P<0.001).

Progression Pattern Prediction
As above-mentioned, the addition of EGFR recognition fine-
tuning achieved the highest prediction efficacy among all the
TABLE 2 | Comparison of clinical features in patients with progression patterns
information.

Clinical Features Training
group (n = 195)

Validation
group (n = 60)

p value

Age
Median (range) 61 (26–81) 59 (35–84) t-test p=0.777

Gender (n%)
Male 77 (39.5) 20 (33.3) Pearson c2 test p=0.737
Female 118 (60.5) 40 (66.7)

Smoking history
Yes 156 (80.0) 49 (81.7) Pearson c2 test p=0.776
No 39 (20.0) 11 (18.3)

PFS (months)
Median 8 11 Log-rank test p=0.131

T Stage
T1 38 (19.5%) 11 (18.3%) Mann-Whitney test

p=0.865T2 41 (21.0%) 12 (20%)
T3 16 (8.2%) 6 (10.0%)
T4 100 (51.3%) 31 (51.7%)

Metastasis pattern at initial diagnosis
Oligometastasis 26 (13.3%) 13 (21.7%) Pearson c2 test p=0.117
Systematic
metastasis

169 (86.7) 47 (78.3)

Progression pattern
Oligoprogression 77 (39.5) 25 (41.7) Pearson c2 test p=0.763
Systematic
progression

118 (60.5) 35 (58.3)

EGFR mutation site
19del 105 (53.8%) 33 (55%) Pearson c2 test p=0.756
21L858R 83 (42.6%) 26 (43.3%)
Double site 7 (3.6%) 1 (1.7%)
FIGURE 2 | AUCs of each PFS prediction models in the validation group.
The blue ones correspond to the clinical alone model. The orange, green, and
red ones correspond to CNN model trained from scratch, transferred from
nodule, and transferred from EGFR classification models, receptively.
TABLE 1 | Comparison of clinical features in patients with PFS information.

Clinical Features Training
group (n = 239)

Validation
group (n = 100)

p value

Age
Median (Range) 61 (33-84) 61 (26-82) t-test p=0.217

Gender (n%)
Male 97 (40.6) 32 (32.0) Pearson c2 Test

p=0.143Female 142 (59.4) 68 (68.0)
Smoking History
Yes 55 (23.0) 17 (17.0) Pearson c2 Test

p=0.265No 184 (77.0) 83 (83.0)
PFS (months)
Median 9 9 Log-rank Test p=0.265
≤9 months 138 (57.7) 56 (56.0) Pearson c2 Test

p=0.810>9 months 101 (42.3) 44 (44.0)
Clinical Staging
IIIA 8 (3.3) 3 (3.0) Mann-Whitney Test

p=0.989IIIB 22 (9.2) 7 (7.0)
IV 209 (87.5) 90 (90.0)

EGFR mutation site
19del 121 (50.6%) 48 (48%) Pearson c2 Test

p=0.34621L858R 113 (47.3%) 47 (47%)
Double Site 5 (2.1%) 5 (5%)
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3D-CNN models. Therefore, in the prediction of progression
pattern, we utilized transfer learning from the EGFR
classification to develop the progression pattern model.

The progression patterns prediction model transferred from
EGFR classification achieved an AUC of 0.762 (95% CI, 0.643–
0.882; sensi, 0.92; speci, 0.571). Clinical features-based model
achieved an AUC of 0.710 (95% CI, 0.582–0.839; sensi, 0.686;
speci, 0.760), and the hybrid model achieved an AUC of 0.794
(95% CI, 0.681–0.908; sensi, 0.92; speci, 0.66). The ROCs of the
models in the validation group were shown in Figure 5.
DISCUSSION

In this study, we developed a PFS prediction and a progression
pattern prediction model using model-based deep transfer
Frontiers in Oncology | www.frontiersin.org 6
learning based on a pre-trained EGFR classification CNN
model. Results show that the hybrid model combining transfer
learning-based and clinical features-based model finally achieved
satisfactory performance for PFS prediction (AUC = 0.771) and
progression pattern prediction (AUC = 0.794). Also, the PFS
prediction model can significantly stratify patients with different
progression risk after first-line TKI treatment (P < 0.001).
Utilization of the established CNN model could instruct
clinical practice to individually modify TKI treatment for a
better prognosis.

The above results indicate that image-based deep learning can
mine more informative features for the prediction of tumor’s
biological behavior. Also, the results indicate that 3D CNN
trained with model-based deep transfer learning performs
better than model training from scratch (AUC, 0.668–0.744),
and the smaller the difference between source domain and target
domain, the better performance can transfer learning achieve
(AUC, 0.701–0.744). Compared with the most widely used
transfer learning pretrained on 2D natural image data set
(ImageNet) (14, 19), our 3D transfer learning is based on 3D
medical image data set, which can not only mine more spatial
information but also effectively reduce the domain difference.

A recent study about predicting EGFR-TKI treatment
response using CT images (20) used a self-supervised learning-
based model called BigBiGAN as a feature extractor, then utilize
the extracted features to construct a Cox regression model for
distinguishing patients with different progression risk. In
comparison, we used a supervised learning based pre-trained
model for transfer learning, then utilize the progression label to
finetune the model and update the extracted deep features.
Compared with the BigBiGAN model trained in self-
supervised ways, our pre-trained model trained with EGFR
status can learn not only the inherent grayscale-based features
but also some implicit biologically related image features.
Moreover, because of the small difference between the source
A B

FIGURE 3 | ROCs of 3D CNN models for the prediction of PFS in the validation group. (A) The ROCs of 3D CNN model trained from scratch, using transfer learning
based on nodule or EGFR classification models. The corresponding AUCs were 0.668, 0.701, and 0.744, receptively. (B) The ROCs of only using clinical features,
3D CNN (using transfer learning based on EGFR classification model), and the combination of 3D CNN and clinical features, and the corresponding AUCs were
0.624, 0.744, and 0.771.
TABLE 3 | Performance of different PFS prediction models in the validation group.

Models CNNTL-EGFR CNNTL-BM CNNScratch

AUC 0.744 0.701 0.668
95% CI 0.645 to 0.843 0.598 to 0.805 0.559 to 0.776
Threshold 0.449 0.379 0.490
Accuracy 72.0% 68.0% 68.0%
Sensitivity 75.0% 77.3% 54.5%
Specificity 69.6% 60.7% 78.6%
Models CNNTL-EGFR and

Clinical
CNNTL-BM and

Clinical
CNNScratch and

Clinical
AUC 0.771 0.756 0.715
95% CI 0.676 to 0.866 0.659 to 0.854 0.614 to 0.816
Threshold 0.575 0.615 0.496
Accuracy 74.0% 75.0% 70.0%
Sensitivity 56.8% 52.3% 56.8%
Specificity 87.5% 92.9% 80.4%
CNN, convolutional neural network; AUC, area under receiver operating characteristic
curve; threshold, threshold at the optimal decision point; CI, confidence interval.
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domain (classification of EGFR mutation) and target domain
(prediction of EGFR-TKI therapy response) of our proposed
method, the network can make fully use of the pre-learned
features effectively, which can better help the prediction of
disease progression.

This research also has several limitations. First, because of the
limitation of sample size, this study only realized the simple
binary classification of patients’ PFS with the median survival as
the cutoff threshold. In the future, we will collect more samples,
and further attempt deep Cox regression to realize the end-to-
end survival prediction. Second, our hypothesis of the
relationship between EGFR mutation and patient’s PFS is that
the mutation abundance is thought to be related with the
patient’s survival (21). Therefore, we thought the CNN
classifying EGFR mutation status will also be able to learn
Frontiers in Oncology | www.frontiersin.org 7
information about the mutation abundance, which may be
useful for PFS prediction. However, this mutation abundance
information learning was clearly insufficient. In the future,
if the mutation abundance information of the EGFR mutation
patients can be collected, a more efficient network can be
built and further correlate with the patient’s PFS. Finally, the
model should be validated in a prospective cohort to confirm
its efficacy.
CONCLUSION

We developed a deep transfer learning-based PFS prediction
and progression pattern prediction model in EGFR mutation
A B

C

FIGURE 4 | Survival analysis of PFS in low and high risk patients in the validation group. (A–C) The CNNScratch and clinical, CNNTL-BM and clinical, and CNNTL-EGFR

and clinical model’s KM curves, respectively.
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patients treated with TKIs. The results showed that the
prediction model transferred from EGFR classification can
significantly stratify patients with different progression risk
after TKI treatment, which may be able to further help the
clinical decision making.
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