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As one of the most common malignancies in the urinary system, bladder cancer (BC)
occupies a high mortality and recurrence rate. BC carries an ominous prognosis. Thus, we
aimed to identify a novel immune-related prognostic biomarker and therapeutic target for
immunotherapy in the present study. We first constructed a co-expression network based
on immune-related genes (IRGs). Two key modules showed high association with the
clinical feature interested us most were further identified. Forty-five IRGs were screened
out and regarded as hub genes in the co-expression network. We further constructed a
protein-protein interaction (PPI) network, and five independent methods were used for
hub gene identification. Three hub genes were identified in the present study. CD86
molecule (CD86) was screened out by performing overall survival (OS) analysis.
Subsequent analyses by using some bioinformatics and experimental assays confirmed
that CD86 was an immune-related prognostic biomarker, which might be a novel target
for immunotherapy in BC. A small molecule drug named suloctidil was also identified,
which showed potential for BC treatment.

Keywords: bladder cancer, immune-related genes, weighted gene co-expression network analysis (WGCNA),
immune cell infiltration, prognosis
INTRODUCTION

Bladder cancer (BC) is the most common malignant tumor in the urinary system (1). In 2018, about
550,000 new cases were diagnosed worldwide and about 200,000 patients died according to recent
statistics from the International Agency for Research on Cancer (IARC), part of the World Health
Organization (WHO) (2). At present, transurethral resection of bladder tumor is the main method
for the treatment of BC (3). However, in all tumors, BC shows a very high recurrence rate (30–70%)
and often progresses to more aggressive forms of BC (4). The 5-year survival rate of BC is only 15%,
which means most patients with BC have to face poor prognosis (5).

In recent years, immunotherapy has been used in a variety of tumors, such as clear cell renal cell
carcinoma (6), breast cancer (7), and lung cancer (8). Clinical studies have shown that bladder
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cancer (BC) is immunogenic (9). Intravesical instillation of
bacillus Calmette-Guerin (BCG) is the most commonly used
immunotherapy for bladder cancer, but 25% of patients still do
not respond to BCG (10, 11). Checkpoint inhibition
immunotherapy has also been applied to the treatment of BC,
but only 25% advanced/metastatic bladder cancers respond to
anti-programmed cell death protein 1 (PD-1)/programmed cell
death 1 ligand 1 (PD-L1) immune checkpoint blockade (ICB)
(12). Therefore, screening out an immune-related prognostic
biomarker, which might be a more accurate and comprehensive
target for immunotherapy, is badly needed.

For the first time, we constructed a co-expression network
based on immune-related genes (IRGs) in BC by applying
Weighted Gene Co-Expression Network Analysis (WGCNA)
(13) [WGCNA is a widely used method in large gene
expression data analysis and gene module associated with
clinical feature identification in present (14, 15)]. Relying on
this method, we screened out some potential prognostic
biomarkers in clear cell renal cell carcinoma (16) and acute
myeloid leukemia (17). In this study, a total 45 IRGs were
screened out after WGCNA. Finally, CD86 molecule (CD86)
was identified by using several bioinformatics and experimental
assays and regarded as an immune-related prognostic biomarker
in BC, which had great effects for assessing prognosis of BC
patients and might be a novel target for immunotherapy.
MATERIALS AND METHODS

BC Data Collection
GSE32548 (18) performed on GPL6947 was downloaded from
Gene Expression Omnibus (GEO) database (http://www.ncbi.
nlm.nih.gov/geo/) (19, 20), which included 128 BCs with
complete clinical information. In this study, we constructed co-
expression network based on this data set. Another GEO data set
GSE13507 (21, 22) was also downloaded from this database for
validation of our findings, performed on GPL6102, which had
165 BCs with clinical information. The Cancer Genome Atlas
(TCGA) database (https://genome-cancer.ucsc.edu/) (23)
characterized over 20,000 primary cancer and matched normal
samples spanning almost all the cancer types. Thus, we retrieved
BC microarray data from this database. After excluding
unqualified samples, a total of 408 BC samples with complete
clinical information were used for validation in this study.

Data Preprocessing
For GSE32548 and GSE13507, we first downloaded the raw
expression data and then normalized and transformed the data
by using R package “affy” (24). As for TCGA-bladder urothelial
carcinoma (BLCA) data displayed as counts number,
normalization and log2 transformation were conducted by
using package “DEseq.2” (25) in R software. The flow diagram
of the present study is shown in Figure 1 in detail.

Co-Expression Network Construction
We first downloaded a comprehensive list of immune-related
genes (IRGs) from the ImmPort database (https://immport.
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niaid.nih.gov) (26), which included 2,498 IRGs. Then 1,333
genes overlapped between IRGs, and genes in GSE32548 were
included for the WGCNA. Two independent methods, including
gsg (goodSamplesGenes) method and sample network method,
were used for outlying sample identification of the expression
profile of the 1333 genes. Only samples with Z.Ku ≥ −2.5 were
used to construct a co-expression network by using R package
“WGCNA” (samples were regarded as outliers when Z.Ku < −2.5,
which were removed from the expression profile). Soft threshold
power beta (b) was chosen by using the scale-free topology criterion
(27, 28). In this study, genes were classified into gene modules by
using the dynamic hybrid branch cutting method. Parameters for
branch splitting were set as follows: minClusterSize = 30, and
deepSplit = 2. In this study, we created a cluster tree of module
eigengenes (MEs) to merge some highly related modules. Modules
will be merged if their pairwise correlation was larger than 0.75.
Moreover, a multidimensional scaling (MDS) plot was plotted to
estimate the bio-similarity of the modules.

Key Module Screening
After gene module identification, we further screen out key
module related to the trait (pathological stage), which
interested us most. The correlation between genes and trait
was quantified by calculating gene significance (GS). Module
significance (MS) was further defined based on GS. Moreover,
the relationship between ME and gene expression matrix was
quantified by calculating module membership (MM). Finally, the
module most positively correlated with pathological stage and
the module most negatively related to pathological stage were
considered as key modules in the present study.

Function and Pathway
Enrichment Analysis
First, we screened hub genes in key modules by measuring
cor.geneModuleMembership and cor.geneTraitSignificance. In
this study, only genes with |cor.geneModuleMembership| >
0.80 and |cor.geneTraitSignificance| > 0.20 were regarded as
hub genes in the modules. By conducting Gene Ontology (GO)
(29) enrichment analysis and Kyoto encyclopedia of Genes and
Genomes (KEGG) (30) pathway analysis, we could understand
biological meaning behind hub genes in key modules. Both the
two analyses were identified based on R package “clusterProfiler”
(31). Gene sets were regarded as significantly enriched gene sets
when P < 0.05, as well as KEGG signaling pathways.

Protein-Protein Interaction (PPI)
Network Construction
Based on the Search Tool for the Retrieval of Interacting Genes
(STRING) database (https://string-db.org/) (32, 33), a PPI
network of hub genes in the modules was constructed with a
confidence > 0.4, maximum number of interactors = 0. Based on
a tool called network analyzer in Cytoscape (34), the degree of
connectivity of each hub gene was further calculated. Nodes in
the PPI network represented proteins and edges represented
protein-protein associations. Node color and node size were
changed with degree of hub gene. Edge color and width were
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changed with combined score. Genes with the top 10 degree of
connectivity were selected for further analysis. In addition, we
used the MCODE plug-in in Cytoscape software to screen out
hub modules in the PPI network, by using the following criteria:
degree cutoff = 2, haircut on, node score cutoff = 0.2, k-core = 2,
and max. depth = 100. Gene with the top 10 MCODE score were
selected for further analysis. Furthermore, we used the
cytoHubba plug-in in Cytoscape software to identify hub genes
in the PPI network, the top 10 hub genes were screened out by
using the Betweenness algorithm, maximum clique centrality
(MCC) algorithm, and stress algorithm, respectively. After
finishing these steps, genes that overlapped in the five methods
were regarded as hub genes in the PPI network.
Identification of Immune-Related
Prognostic Biomarkers
To explore the prognostic value of hub genes in the PPI network,
we further performed overall survival (OS) analysis by using
GEPIA (http://gepia.cancer-pku.cn/) (35), an online tool based
on TCGA data. Hub genes with significant P value in this
analysis were considered as immune-related prognostic
biomarkers in the present study. In addition, disease-free
Frontiers in Oncology | www.frontiersin.org 3
survival (DFS) analysis was also performed. Furthermore, a
stage plot (I, II, III, and IV) was also drawn, the statistical
significance of which was measured by one-way analysis of
variance (ANOVA) test.
Patients and Preparation of Specimens
After the surgery, a total of 20 samples, including 10 human BC
tissues and 10 adjacent normal bladder tissues, were gathered
from patients at Zhongnan Hospital of Wuhan University. The
samples were histopathologically confirmed by two pathologists
independently. The inclusion criteria are as follows (1): the
histopathological type is confirmed as bladder urothelial
carcinoma (BLCA) (2), not received anti-cancer treatment
before cystectomy (3), underwent radical cystectomy or partial
nephrectomy (4), no history of other malignant tumors.
Exclusion criteria are as follows (1): other pathological types of
BC (2), metastatic BLCA or other merge tumors (3), patients
who did not undergo surgery, and (4) clinical pathological data
are incomplete. Each patient signed an informed consent form,
and the medical ethics committee in this hospital approved the
utilization of tumor tissues for the present study. The approval
number for this study was 2020174 (Kelun).
FIGURE 1 | Flow diagram of data preparation, processing, analysis, and validation in this study.
August 2021 | Volume 11 | Article 679851
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Immune-Related Prognostic
Biomarker Validation
To validate the prognostic value of immune-related prognostic
biomarker, we performed survival analysis for hub gene based on
GSE13507 and GSE32548 by R package “survival” (36). BC
samples were divided into low-expression group and high-
expression group in the two data sets, respectively. Then, OS
using GSE32548 and cancer-specific survival (CSS) analysis
using GSE13507 were performed. A P value less than 0.05 was
considered significant. Furthermore, we assessed the mRNA
expression levels of hub genes in BC and normal tissue by
Oncomine database (https://www.oncomine.org/) (37). Two
independent data sets were used in the present study. In
addition, we performed quantitative real-time PCR (qRT-PCR)
analysis. The expression patterns of the CD86 genes were
evaluated in BCs and adjacent normal bladder tissues. The
HiPure Total RNA Mini Kit and RNAiso-Plus (TAKARA,
China) were used to extract total RNA from the cells and 10
pairs of bladder cancer tissue and adjacent normal bladder
tissues, which collected from the Zhongnan Hospital of
Wuhan University, and we used NanoDrop to quantify the
RNA, which was then reverse transcribed into cDNA by
ReverTra Ace qPCR RT Kit (Toyobo, China). Finally, we
performed qRT-PCR analysis of cDNA with iQTM SYBR®

Green Supermix (Bio-Rad) in a final volume of 20 ml. Relative
gene expression was quantified via the 2−△△Ct approach and
normalized to glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) expression. The primer sequences for CD86
molecule (CD86) and GAPDH were listed in Table 1. We
measured the statistical significance by conducting Student t
test. Finally, we validated the translation-level expression of hub
gene between normal urinary bladder tissue and bladder
urothelial carcinoma tissue by using The Human Protein Atlas
(HPA) database (https://www.proteinatlas.org/) (38).

Association Between Immune-Related
Prognostic Biomarker Expression and
Immunocytes Exploring
Immunocytes have been proven to be independent predictors of
survival in cancers, thus, in this study, we investigated the
relationship between expression levels of selected IRGS and
immunocytes based on tumor immune estimation resource
(TIMER) (https://cistrome.shinyapps.io/timer/). TIMER was a
webtool, which could estimate the abundance of immune
infiltrates for six tumor-infiltrating immune cell types. We
thought an immune-related prognostic biomarker is strongly
related to an infiltrating level of an immune cell type when
|correlation coefficient (cor) |is 0.2 or greater and a P value is less
than 0.05.
Frontiers in Oncology | www.frontiersin.org 4
Exploration of Immune Cell Infiltration
In this part, we first calculated tumor purity, immune score, and
stromal score for each BC sample collected from TCGA-BLCA
data (n = 408) by applying estimation of stromal and immune
cells in malignant tumors using expression data (ESTIMATE)
algorithm (by using “estimate” package in R software) (39).
Considering that immune cells played important roles in the
tumor microenvironment (TME) (40, 41). Relying on ssGSEA (a
R package in R software) (42, 43), the relative infiltration of 28
kinds of immunocytes was quantified. A gene list of metagenes,
which contained feature genes symbolizing for each immunocyte
type, was retrieved from an article in Cell Reports (44). In
ssGSEA, we calculated enrichment score for each immunocyte
type, which represented the relative abundance of immunocyte.
Zero was the minimal meanwhile one was the maximal score. A
heatmap was further composed for visualization of the relative
abundance of all kinds of immune cell types. Finally, we plotted
an MDS plot and constructed a Gaussian fitting model for
estimation of the bio-similarity of the immune cell filtration.

Gene Set Enrichment Analysis (GSEA)
In this study, we performed GSEA (45) based on TCGA-BLCA
data from TCGA database to explore the potential functions of
immune-related prognostic biomarkers. First, 408 BCs were
divided into low expression group (n = 204), and high
expression group (n = 204) by setting the median of CD86
expression as a cut line. “c2.cp.kegg.v7.0.symbols.gmt” was set as
the reference gene set. In this study, we thought KEGG signaling
pathways were significantly enriched when nominal P value is
less than 0.05, |enrichment score (ES)| is greater than 0.6, gene
size is 100 or greater, and false discovery rate (FDR) is less
than 25%.
RESULTS

1,333 IRGs Were Included for Co-
Expression Network Construction
A comprehensive list of 2,498 IRGs was first downloaded from
ImmPort database. Then, 1,333 genes overlapped between IRGs
and genes in GSE32548 were analyzed and further included for
WGCNA, the information of the 1,333 genes is shown in detail in
Table S1.

Two Key Modules Related to Pathological
Stage Were Screened Out
Six outliers were first removed from the expression profile of the
1,333 IRGs by using two independent methods (Figures S1A, B),
only 122 samples (with complete clinical information) from
TABLE 1 | List of primers for qRT-PCR.

Gene Symbol Forward primer (5′-3′) Reverse primer (5′-3′) Annealing temperature, C°)

CD86 molecule CD86 5′-AGCCTTATCGGAAATGATCCAGT-3′ 5′-GGCCTTGTAGACACCTTGGT-3′ 60
Glyceraldehyde-3-phosphate dehydrogenase GAPDH 5′-ACAACTTTGGTATCGTGGAAGG-3′ 5′-GCCATCACGCCACAGTTTC-3′ 60
August 2021
CD86, CD86 molecule; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; qRT-PCR, quantitative real time-polymerase chain reaction.
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GSE32548, which reached the standards, were included for
subsequent analysis. As shown in Figures S1C–F, beta (b) = 2
(scale free R2 = 0.95) was further chosen for adjacency
calculation. Then, we classified genes into gene modules.
Moreover, we merged modules highly correlated to each other
(pairwise correlation of modules > 0.75). In total, four modules
including turquoise (n = 372), yellow (n =52), blue (n = 170), and
brown (n = 55) were screened out (Figure 2A). The rest of the
IRGs, including 684 genes, showed weak correlation with other
genes, which were excluded for next-step analysis (these genes
were discarded to gray module). Then, we noticed that the
turquoise module showed the most positive association with
pathological stage (P = 5E-10, R2 = 0.53), meanwhile the blue
module was the most negatively associated module with
pathological stage compared with others (P = 8E-10,
R2 = −0.52), as suggested in Figure 2B. The association
between MM and GS in the two modules is shown in
Figures 2C, D , separately. MM in blue module was
significantly associated with GS in blue module (cor = 0.64,
P = 5.7E-21), a similar trend also existed in turquoise module
(cor = 0.59, P = 2.9E-36). Moreover, the MS of the two modules
was significantly higher than that of any other modules
(Figure 2E). Therefore, blue module and turquoise module were
screened out and regarded as key modules in the present study. As
Frontiers in Oncology | www.frontiersin.org 5
shown in Figure 2F, theMDS plot demonstrated that eachmodule
was isolated from each other, especially the key modules.

Identification of 45 Hub Genes in
Key Modules
In this study, 43 genes with |cor.geneModuleMembership| > 0.80
and |cor.geneTraitSignificance| > 0.20 were considered as hub
genes in the turquoise module, meanwhile two genes that
reached the same standards were regarded as hub genes in the
blue module. The detailed information of these hub genes are
shown in Table S4.

Exploration of Function and
Pathway of Hub Genes
As Table S2 shows, the 45 hub genes were significantly enriched
in 361 biological processes (BPs). The top 10 enriched BPs were
positive regulation of leukocyte activation, positive regulation of
cell activation, T cell activation, positive regulation of cell-cell
adhesion, positive regulation of lymphocyte activation, positive
regulation of leukocyte cell-cell adhesion, regulation of leukocyte
activation, leukocyte cell-cell adhesion, positive regulation of T
cell activation, and regulation of leukocyte cell-cell adhesion
(Figure 3A). Furthermore, these hub genes were significantly
related to 38 KEGG signaling pathways (Table S3). The top 10
A B

D E FC

FIGURE 2 | WGCNA analysis. (A) The cluster dendrogram of genes in GSE32548. Each branch in the figure represents one gene, and every color below represents
one co-expression module. (B) Heatmap of the correlation between module eigengenes (MEs) and different clinical information of BC (age, gender, pathological
stage, grade, DOD (death of disease), follow-up time, and progression). (C) Scatter plot of module eigengenes in the blue module. (D) Scatter plot of module
eigengenes in the turquoise module. (E) Distribution of average gene significances and errors in the modules associated with the pathological stage of BC.
(F) Classical MDS plot whose input is the TOM dissimilarity. Each dot (gene) is colored by the module assignment.
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KEGG pathways were rheumatoid arthritis, hematopoietic cell
lineage, Th17 cell differentiation, cytokine-cytokine receptor
interaction, Th1 and Th2 cell differentiation, cell adhesion
molecules (CAMs), primary immunodeficiency, viral protein
interaction with cytokine and cytokine receptor, T cell receptor
signaling pathway, and intestinal immune network for IgA
production (Figure 3B).

PPI Network Construction and
Immune-Related Prognostic
Biomarker Identification
Then, we constructed a PPI network for the 45 hub genes
identified before (Figure 4A). The degree of connectivity of
each gene was calculated, which is shown in detail in Table S4.
Genes with the top 10 degree of connectivity were selected,
including CD86, PTPRC, CTLA4, IL10RA, ITGB2, CCL5,
TYROBP, CCL2, GZMB, and TLR8. Moreover, the MCODE
plug-in revealed one important functional module in the PPI
network (Figure 4B). Genes with the top 10 MCODE score were
identified, including CD86, IL10RA, ITGB2, PTPRC, IL2RA,
GZMB, IL7R, BTK, FCER1G, and TLR8. Then, 10 genes,
including CD86, PTPRC, CCL5, IFI30, CTLA4, CCL2, ITGB2,
TYROBP, IL10RA, and FCER1G, were screened out by using
betweenness algorithm applied by cytoHubba plug-in
Frontiers in Oncology | www.frontiersin.org 6
(Figure 4C). Meanwhile, 10 genes, including CD86, PTPRC,
IL10RA, CTLA4, CCL2, ITGAL, CCL5, IL2RB, GZMB, and
IL2RA, were identified by MCC algorithm (Figure 4D). In
addition, 10 genes, including CD86, PTPRC, CCL5, CCL2,
CTLA4, ITGB2, IL10RA, TYROBP, and IFI30, were screened
out by applying stress algorithm (Figure 4E). Finally, three
genes, including CD86 molecule (CD86), IL10RA (interleukin
10 receptor subunit alpha), and protein tyrosine phosphatase
receptor type C (PTPRC), overlapped among genes selected by
the five methods were picked out (Figure 4F). We regarded the
three genes as hub genes in the PPI network. We immediately
performed OS analysis for the three genes, the result
demonstrated that expression of CD86 could impact the
survival and prognosis of patients with BC. Patients with high
CD86 expression had worse OS (Figure 5A, P = 0.049),
meanwhile there was a trend that high expression of CD86
caused worse DFS compared with low expression (Figure 5B,
P = 0.2). A stage plot was shown in Figure 5C, and CD86
presented different expression levels in different stage (II, III, and
IV). As for IL10RA (Figures 5D, E) and PTPRC (Figures 5G,
H), there was no obvious association between their expressions
and survival. Stage plots were also plotted as shown in
Figures 5F, I. Thus, only CD86 was considered as immune-
related prognostic biomarker in the present study.
A

B

FIGURE 3 | Function enrichment analysis, PPI network, and GEPIA. (A) GO analysis of hub genes in key modules. (B) KEGG pathway enrichment of hub genes
in key modules.
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Validation of CD86
Based on GSE32548 and GSE13507, we validated the prognostic
value of CD86. The result demonstrated that BC patients with
high expression of CD86 had worse OS compared with these
with low expression of CD86 (Figure 6A, P = 0.05). Also, high
expression of CD86 in BC patients was significantly associated
with worse CSS, as shown in Figure 6B. These results were
consistent with what we found by using GEPIA. Then based on
BC data from Oncomine database, we compared the expression
of CD86 between BC tissues and normal bladder tissues. The
result suggested that the CD86 mRNA expression was higher in
BCs compared to normal tissues (P = 0.013, Figure 6C). We
further validated the mRNA expression of CD86 by using qRT-
PCR analysis again. As shown in Figure 6D, CD86 was
significantly up-regulated in BC tissue compared with adjacent
normal bladder tissue (P = 0.0382), which was consistent with
the findings based on Oncomine database. By using HPA
database, we also explored the translational-level expression of
CD86, but not as we imagined, there was no significant difference
between the expression in normal bladder tissue and bladder
cancer tissue (Figure 6E).

Correlation of CD86 Expression With
Immune Infiltration Level in BC
Immune infiltration was reported to be associated with survival
and progression of cancers. Thus, by using TIMER (a webtool),
the association between CD86 and immune infiltration level was
obtained. As shown in Figure 7, CD86 was positively associated
with CD8+ T cells (cor = 0.374, P = 1.38E-13), CD4+ T cells
(cor = 0.358, P = 1.76E-12), macrophages (cor = 0.258,
P = 5.84E-07), neutrophils (cor = 0.713, P = 1.57E-57), and
dendritic cells (cor = 0.701, P = 3.67E-55).
Frontiers in Oncology | www.frontiersin.org 7
Immune Cell Infiltration
After calculating immune score and stromal score of each BC
from TCGA-BLCA data, immune scores ranged from −1900.04
to 2903.20 meanwhile stomal scores ranged from −2496.63 to
2148.31 as the result suggested (Table S5). As shown in
Figure 8A, the heatmap demonstrated that CD86 expression
was significantly associated with ESTIMATE score, immune
score, and stromal score, positively; meanwhile, it negatively
correlated to tumor purity, which was consistent with the
TIMER analysis. Furthermore, CD86 high-expression samples
were associated with a higher abundance of immune cell
infi l t rat ion. The ssGSEA enrichment scores (af ter
normalization) for each immune cell type in 408 BC patients
are shown in detail in Table S6. More concretely, high CD86
expression of patients was related to a higher abundance of
immune cells executing anti-tumor reactivity, including
activated CD4+ T cells, activated CD8+ T cells, activated
dendritic cells, central memory CD4+ T cells, central memory
CD8+ T cells, effector memory CD4+ T cells, effector memory
CD8+ T cells, natural killer cells, natural killer T cells, and type 1
T helper cells. The abundances of immune cells, which delivered
pro-tumor suppression (including macrophages, myeloid-
derived suppressor cells (MDSCs), and regulatory T cells),
were positively associated with CD86 expressions in patients
with BC. Further analysis suggested that immune cells executing
anti-tumor reactivity were positively related to immune cells
delivering pro-tumor suppression within a local environment,
significantly (Figure 8B, cor = 0.9204, P < 0.001). Interestingly,
these results were consistent with what we got by TIMER, which
reflected that anti-tumor inflammation might facilitated the
recruitment or differentiation of cells specialized for immune
suppression in BC.
A B

D E F

C

FIGURE 4 | Identification of hub genes. (A) Protein-protein interaction (PPI) network of hub genes in key modules. (B) Top 1 module via MCODE. (C) The network
of top 10 hub genes screened by CytoHubba Betweenness algorithm. (D) The network of top 10 hub genes screened by CytoHubba MCC algorithm. (E) The
network of top 10 hub genes screened by CytoHubba Stress algorithm. (F) Venn diagram to screen out overlapped hub genes.
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CD86-Related KEGG Signaling Pathways
To explore the potential function of CD86, we performed GSEA.
As shown in Table 2, the result suggested that the high
expression of CD86 was significantly correlated to nine KEGG
signaling pathways, including systemic lupus erythematosus,
cytokine-cytokine receptor interaction, cell adhesion molecules
(CAMs), toll-like receptor signaling pathway, chemokine
signaling pathway, natural killer cell-mediated cytotoxicity, T-
cell receptor signaling pathway, focal adhesion, and leukocyte
transendothelial migration.

Suloctidil Might Be a Novel Drug
to Treat BC
Also, based on GSEA, we downloaded “DSigDBv1.0.gmt” from
Drug SIGnatures Database (http://tanlab.ucdenver.edu/DSigDB/
Frontiers in Oncology | www.frontiersin.org 8
DSigDBv1.0/download.html) (46) and attempted to screen out
some novel drugs for BC treatment. The result demonstrated that
CD86 was associated with various drugs (Table S7). Among
them, suloctidil with the highest |ES| was further screened out
(nominal P = 0.000, |ES| = 0.824, gene size = 137, and FDR =
6.345%), which showed powerful potential to treat BC.
DISCUSSION

As the most common urinary malignancy of the urinary system,
most patients with BC have to face poor prognosis. Nowadays,
immunotherapy has become a novel approach for tumor
treatment, which mainly uses the immune effects of autoimmune
or alloimmune cells in patients to improve the symptoms, prolong
A B

D E F

G IH

C

FIGURE 5 | (A) Survival analysis of the association between the CD86 expression level and overall survival time in BC (based on GEPIA). (B) Survival analysis of the
association between the CD86 expression level and disease-free survival time in BC (based on GEPIA). (C) stage plot of CD86 by using GEPIA. (D) Survival analysis
of the association between the IL10RA expression level and overall survival time in BC (based on GEPIA). (E) Survival analysis of the association between the IL10RA
expression level and disease-free survival time in BC (based on GEPIA). (F) stage plot of IL10RA by using GEPIA. (G) Survival analysis of the association between the
PTPRC expression level and overall survival time in BC (based on GEPIA). (H) Survival analysis of the association between the PTPRC expression level and disease-
free survival time in BC (based on GEPIA). (I) stage plot of PTPRC by using GEPIA.
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A B
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FIGURE 6 | Validation of CD86. (A) Survival analysis of the association between the CD86 expression level and overall survival time in BC (based on GSE32548).
(B) Survival analysis of the association between the CD86 expression level and cancer-specific survival time in BC (based on GSE32548). (C) Comparison of CD86
mRNA expression across 2 analyses of BC. (D) qRT-PCR analysis exhibited the expression of CD86 in bladder cancer tissues compared with the paired
paracancerous tissues. (E) Validation of CD86 in translational level by The Human Protein Atlas database (IHC).
FIGURE 7 | Correlation of CD86 expression with immune infiltration level in BC.
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the survival, and improve the prognosis (47, 48). Therefore, we
aimed to identify some novel prognostic biomarkers, which were
associated with immune microenvironment in BC.

In the present study, some bioinformatics methods were used
to explore immune-related prognostic biomarker of BC. After
conducting WGCNA, a total of 45 potential hub genes were
identified. Lu et al. used CytoHubba MCC method in their study
to screen out hub genes, whereas Huang et al. identified serpin
family E member 1 (SERPINE1) as a novel biomarker for diffuse
lower-grade gliomas via CytoHubba stress algorithm and
CytoHubba betweenness algorithm (49, 50). Considering that
all these algorithms were effective methods to screen out hub
genes, we screened out three hub genes among the 45 genes by
using all the algorithms in the present study to make our results
credible. CD86 molecule (CD86) was further determined to show
a strong association with the prognosis of BC by performing
survival analysis via three independent data sets. Thus, CD86
was regarded as an immune-related prognostic biomarker of BC.
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There were also some previous studies showing the association of
CD86 with bladder cancer. Recent studies demonstrated that
direct augmentation of BC immunogenicity offered a potential
therapeutic strategy for BC (51). The clinical response to bacille
Calmette-Guerin (BCG) therapy might be improved by
concurrent enhancement of tumor immunogenicity (51). Pettit
et al. demonstrated that BC line J82 could be transfected to
functionally express the costimulatory molecules CD80 and
CD86 (51). After IFN-g stimulation, J82 cells also express
levels of MHC antigens and adhesion molecules, which can
activate antigen-specific T cells efficiently (51). These results
demonstrated that CD86 might be essential for BC therapy (51).
In addition, Goux et al. found that low overexpression of CD86
in non–muscle-invasive bladder cancer (NMIBC) tissue, with no
significant difference in mRNA expression as compared with
normal bladder tissue, which suggested a minor role for the
immune checkpoints in the early stages of bladder carcinogenesis
(52). Further analysis suggested that CD86 was overexpressed in
A B

FIGURE 8 | Correlation between CD86 expression and immune cell infiltration heterogeneity. Differentially expressed genes (DEGs) analysis in ccRCC. (A) Single-
sample gene set enrichment analysis identifying the relative infiltration of immune cell populations for 408 BC tumor samples with available RNA-sequencing data.
The relative infiltration of each cell type is normalized into a z-score. (B) Correlation between infiltration of cell types executing anti-tumor immunity (ActCD4, ActCD8,
TcmCD4, TcmCD8, TemCD4, TemCD8, Th1, Th17, ActDC, CD56briNK, NK, NKT) and cell types executing pro-tumor, immune suppressive functions (Treg, Th2,
CD56dimNK, imDC, TAM, MDSC, neutrophil, and pDC). R coefficient of Pearson’s correlation.
TABLE 2 | Genet set enrichment analysis (GSEA) in CD86 high-expression phenotype.

NAME SIZE ES NES NOM p value FDR

KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS 130 −0.76619 −1.75486 0 0.057827
KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION 257 −0.76283 −1.71835 0 0.048408
KEGG_CELL_ADHESION_MOLECULES_CAMS 128 −0.75899 −1.66159 0 0.058227
KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY 101 −0.74039 −1.8011 0 0.143614
KEGG_CHEMOKINE_SIGNALING_PATHWAY 185 −0.73645 −1.77893 0 0.089826
KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY 131 −0.71724 −1.75548 0 0.065954
KEGG_T_CELL_RECEPTOR_SIGNALING_PATHWAY 108 −0.6936 −1.77886 0.002024 0.071861
KEGG_FOCAL_ADHESION 194 −0.6713 −1.69605 0.001988 0.05191
KEGG_LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION 113 −0.65567 −1.72305 0.001927 0.049928
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muscle-invasive bladder cancer (MIBC) compared with normal
bladder tissue, which indicated that CD86 might be a marker of
aggressiveness during urothelial carcinogenesis (52). As a
limitation, both the studies did not explore the association of
CD86 with BC prognosis. In our study, after using
bioinformatics methods to screen out CD86 via strict
thresholds for each step, we focused on exploring the
prognostic value of CD86 in bladder cancer. We first
performed overall survival analysis via GEPIA, the result
indicated that BC patients with high expression of CD86 had
worse OS compared with those with low expression of CD86. To
improve the credibility of the result and avoid the contingency of
the result, we performed survival analysis via two independent
data sets, the results demonstrated that CD86 was a powerful
prognostic biomarker for patients with BC. In addition, we also
validated CD86 expression in mRNA-level (Oncomine database,
qRT-PCR) and translational-level (HPA database), the result
demonstrated that CD86 was overexpressed in BC, which was
consistent with what Goux et al. did in their study.

Because of the important effect of immune infiltration level in
survival in tumors, we explored the association between CD86
expression and immune infiltration of 28 immune cell types.
High expression of CD86 was significantly correlated to higher
abundances of various immune cells, including two major types,
cells that executed anti-tumor reactivity: activated CD4+ T cells,
activated CD8+ T cells and cells that delivered pro-tumor
suppression: macrophages, myeloid-derived suppressor cells
(MDSCs), and regulatory T cells. In summary, we found that
anti-tumor inflammation might facilitate the recruitment or
differentiation of cells specialized for immune suppression in BC.

Moreover, we found that a drug named suloctidil might be a
novel choice for BC treatment. Suloctidil was a vasodilator and
anti-platelet agent. Zeniou et al. indicated that suloctidilmight be
considered as a cytotoxic agent in a glioblastoma stem-like cells,
with no specificity toward cancer cells at concentrations in the
low micromolar range (53). Thus, more ambitious in-depth
study must be done to explore the relationship of suloctidil
with bladder cancer treatment.

Some limitations of the present study should be discussed.
Although we designed this bioinformatic and experiment study
well, some negative results existed. First, when we performed the
DFS analysis based on GEPIA, the P value was more than 0.05,
perhaps, because of the particularity of survival cutoff point (DFS
rather than OS). Thus, we will perform DFS analysis by using
larger data sets from public database or clinical collection.
Second, the result of translation-level expression validation of
CD86 based on HPA database was not as well as we expected.
Thus, we will performWestern blotting (WB) analysis to validate
the CD86 translation-level expression in our further research.

In conclusion, for the first time, we constructed co-expression
network for IRGs in BC. CD86 was screened out and validated by
Frontiers in Oncology | www.frontiersin.org 11
using some bioinformatics methods and experimental assays
based on the data sets from public databases and Zhongnan
Hospital of Wuhan University, which were regarded as an
immune-related prognostic biomarkers in BC. Moreover, a
small drug named suloctidil might be a novel choice for
clinicians to treat BC.
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