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Renal cell carcinoma (RCC) represents the main renal tumors and are highly metastatic.
Sunitinib, a recently-approved, multi-targeted Tyrosine Kinases Inhibitor (TKi), prolongs
survival in patients with metastatic renal cell carcinoma and gastrointestinal stromal
tumors, however a dose related cardiotoxicity was well described. Polydatin (3,4’,5-
trihydroxystilbene-3-b-d-glucoside) is a monocrystalline compound isolated from
Polygonum cuspidatum with consolidated anti-oxidant and anti-inflammatory
properties, however no studies investigated on its putative cardioprotective and
chemosensitizing properties during incubation with sunitinib. We investigated on the
effects of polydatin on the oxidative stress, NLRP3 inflammasome and Myd88 expression,
highlighting on the production of cytokines and chemokines (IL-1b, IL-6, IL-8, CXCL-12
and TGF-b) during treatment with sunitinib. Exposure of cardiomyocytes and
cardiomyoblasts (AC-16 and H9C2 cell lines) and human renal adenocarcinoma cells
(769‐P and A498) to polydatin combined to plasma-relevant concentrations of sunitinib
reduces significantly iROS, MDA and LTB4 compared to only sunitinib-treated cells
(P<0.001). In renal cancer cells and cardiomyocytes polydatin reduces expression of
pro-inflammatory cytokines and chemokines involved in myocardial damages and
chemoresistance and down-regulates the signaling pathway of NLRP3 inflammasome,
MyD88 and NF-kB. Data of the present study, although in vitro, indicate that polydatin,
besides reducing oxidative stress, reduces key chemokines involved in cancer cell
survival, chemoresistance and cardiac damages of sunitinib through downregulation of
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NLRP3-MyD88 pathway, applying as a potential nutraceutical agent in preclinical studies
of preventive cardio-oncology.
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INTRODUCTION

Tyrosine kinase-targeted therapies (TKi) have revolutionized the
treatment of many cancers in the last years (1, 2). These drugs
used alone or combined to other anticancer drugs have improved
antitumor efficacy and have fewer toxic side-effects, compared to
traditional chemotherapy, however, many adverse cardiac events
have been recorded, including QT prolongation, heart failure
and cardiac fibrosis (3, 4). Sunitinib malate (Sutent; Pfizer) is a
multitargeted TKi that inhibits both tumor cell proliferation and
angiogenesis in cancer tissue (5); it is approved to treat advanced
renal cell carcinoma and gastrointestinal stromal tumors (5).
However, patients treated with sunitinib have high incidence of
hypertension, cardiac left ventricular systolic dysfunction and
congestive heart failure (6, 7). The biochemical mechanism of
sunitinib-induced cardiotoxicity is not well known but has been
broadly attributed to the lack of kinase selectivity of sunitinib and
to the intracellular targeting of mitochondrial proteins and
oxidative stress (8). Similar to other TKis, the lack of selectivity
of sunitinib makes it challenging to pinpoint whether there are
specific molecular target(s) that are the critical mediators of
cardiotoxicity (9). In addition to off-target kinase inhibition by
sunitinib, AMP-activated protein kinase (AMPK) has been
suggested to be a target of sunitinib-induced cardiotoxicity
(10–12). The rhythmic con-traction of cardiac tissues requires
a constant, stable source of energy, leaving a limited reserve of
ATP. Thus, inhibition of AMPK mediated by sunitinib could
leading to deleterious consequences including the activation of
pro-apoptotic signals, cytochrome c release in cytosol and
fibrosis (13).

Polydatin (trans-resveratrol-3-O-glucoside) is a natural
compound belonging to the stilbenes class of the polyphenols
(14). It is extracted from the roots of the Poligonum Cuspidatum
plant, native to Asia but currently very widespread also in
America and Europe (15). Polydatin is considered the “twin”
molecule of resveratrol; both bioactives differ only in one glucose
molecule, present in polydatin, a difference that makes it more
soluble, more resistant to enzymatic attacks with a better oral
bioavailability and pharmacokinetic profile compared to
resveratrol (16, 17). Several studies indicates that polydatin is
able to reduce the propagation (scavenger-scavenger effect) of
reactive oxygen species, the production of nitric oxide and pro-
inflammatory cytokines by inhibiting the NLRP3 inflammasome
and the signaling of the NF-kB, both factors involved in cancer
survival and cardiotoxic events like myocardial fibrosis,
atherosclerosis and heart failure (18–20).

Polydatin is a well-established nutraceutical with anti-
inflammatory properties (21, 22). As metabolite of resveratrol (23),
pathways involved in polydatin-mediated beneficial effects involves
also AMPK, NLRP3, MyD88 and prostaglandins homeostasis
through reduction of iROS content in target cells (23, 24).
2

Defined as complementary and alternative medicine (CAM),
polydatin could have a great potential to became a natural
cardioprotective agent in cancer patients (25). Here, we investigated
on the putative cardioprotective and chemosensitizing effects of
polydatin during incubation with sunitinib in cardiomyocytes and
human renal adenocarcinoma cells highlighting on the underling
pathways involved.
MATERIALS AND METHODS

Cell Cultures and Treatments
Human cardiomyocytes (AC-16 cells) and cardiomyoblasts
(H9C2 cells) were purchased from American Type Culture
Collection (ATCC®, LGC Standards) and cultured in Gibco®

Dulbecco’s modified Eagle’s medium: Nutrient mixture F-12
(DMEM/F12) supplemented with 10% fetal bovine serum
(FBS) (HyClone™, GE Healthcare Life Sciences) and Penicillin-
Streptomycin (100U/mL,Gibco®) inahumidified incubator at 37 °C
with 5%CO2. Cultures weremaintained in a humidified atmosphere
of 95% air and 5% CO2 at 37°C. Human renal adenocarcinoma cells
769‐P and A498 were obtained from American Type Culture
Collection (ATCC®, LGC Standards). A498 cells were cultured in
DMEM, while 769‐P cells were cultured in RPMI. All media was
supplemented with 10% fetal bovine serum (FBS) and 100 U/ml
penicillin and 0.1 mg/ml streptomycin.

Assessment of Cell Survival, Lactate
Dehydrogenase, and Cytochrome C
Release During Exposure to Sunitinib,
Polydatin, or Both in Combination
To test the effects of sunitinib and polydatin on cellular
mitochondrial viability, human cardiomyocytes and renal
adenocarcinoma cells were plated in 96-well flat-bottom plates
at the density of 150000 cells/well for 16 h. After three washes in
PBS, cardiomyocytes and human renal cancer cells were
untreated (control) or treated for 48 h with polydatin (Sig-ma
Aldrich, Milan, Italy) at 50,100,200 and 400 µM or Sunitinib
(sunitinib malate; SU11248; SUTENT; Pfizer Inc, New York, NY,
USA) at 5,10,25 and 50 µM alone or combined to polydatin.
After treatments, adherent cells were washed three times with
PBS at pH 7.4 and incubated with 100 mL of anMTS solution (0.5
mg/mL in cell culture medium) for 4 h at 37°C, as described in
literature (26). Absorbance readings were acquired at a
wavelength of 450 nm with the Tecan Infinite M200 plate-
reader (Tecan Life Sciences Home, Männedorf, Switzerland)
using I-control software. Relative cell viability (%) was
calculated with the following formula (A)test/(A)control × 100,
where “(A)test” is the absorbance of the test sample, and “(A)
control” is the absorbance of the control cells incubated solely
in culture medium. After the evaluation of cell cytotoxicity,
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we measured the total protein content using the Pierce Micro
BCA protein assay kit (Thermo Fisher, Milan, Italy) (27). Briefly,
the cells were washed with ice-cold PBS, and incubated for
15 min in 150 mL cell lysis buffer (0.5% v/v Triton X-100 in
PBS) that included 150 mL of the Micro BCA protein assay kit
reagent (prepared according to the manufacturer’s instructions).
Absorbance at 562 nm was measured on a plate reader.
Cytotoxicity measurements were normalized by the amount of
total protein content in each well. LDH release by damaged cells
into the supernatant was determined by the Cytotoxicity Detection
Kit (LDH) (Roche Applied Science) (28). Signals were quantified
using a microplate spectrofluorometer at 490 nm for LDH
quantification. For cytochrome c quantification in cell cytosol of
cells, we incubated cells (5x107 cells/well) with cell media
(control), sunitinib (10, 25µM), polydatin (100 and 200 µM)
and both in combination for 48h. For cytochrome c extraction,
cells were harvested and collected by centrifugation. After washing
twice with ice-cold PBS, the cell pellet was treated according to the
manufacturer’s protocol with the Cell Fractionation Kit (Clontech,
Palo Alto, CA) (29). The cells were disrupted by douncing 60 times
using a tissue grinder with a type A pestle on ice. After
centrifugation at 700 g for 10 minutes, this supernatant was
centrifuged at 10,000 g for 25 minutes to obtain the cytosol
fraction. For cytochrome c quantification in cytosol fraction of
the cells we throughHuman Cytochrome C ELISA Kit (BioTechne
SRL, Milan, Italy) that provides an effective means for detecting
cytochrome c translocation from mitochondria into cytosol
(Sensitivity:0.31 ng/mL; Assay Range: 0.6 - 20 ng/mL)

Measurement of Intracellular ATP Levels
Intracellular ATP contents were measured using ENLITEN®

ATP Assay System (Promega Italia S.r.l, Milan, Italy)
according to the manufacturer’s instructions. Briefly,
cardiomyocytes and renal cancer cells were untreated (control)
or treated for 48 h with polydatin (100 and 200 µM) or Sunitinib
(10 µM) alone or combined to polydatin. After treatments, 100 ml
of lysis/assay solution provided by the manufacturer was added
to confluent cell cultures in 96-well plates. After the plates were
shaken for 1 min and incubated for 10 min at 23°C, luminescence
was measured in a microplate luminometer (Thermo Fisher,
Milan, Italy). Data were expressed as relative units (r.u)
according to literature (30).

Apoptosis Through Caspase−3/7
Activity Analysis
For the measurement of apoptosis, cardiomyocytes and renal
cancer cells were untreated (control) or treated for 48 h with
polydatin (100 and 200 µM) or Sunitinib (10 µM) alone or
combined to polydatin and cultured with CaspaseGlo 3/7 reagent
(Promega, Madison, USA) for half an hour at 37°C, according to
literature (31). Caspase-3/7 activity was then determined by
using a microplate spectrofluorometer.

Expression of Leukotrienes B4
Cardiomyocytes and renal cancer cells were untreated (control)
or treated for 12 h with polydatin (100 and 200 µM) or Sunitinib
(10 µM) alone or combined to polydatin. After treatments, cells
Frontiers in Oncology | www.frontiersin.org 3
were lysed through triton X-100 (0,1% in PB) and leukotriene B4
[(5S,12R)-dihydroxy-6,14Z-8,10E-eicosatetraenoic acid]
expression in cell lysates was determined through ELISA
(Cayman Chemical) following the supplier’s instructions (32);
data were expressed as pg of leukotriene B4/mg of cell proteins
calculated by QuantiPro Assay (Biorad, Milan, Italy).

Intracellular Reactive Oxygen Species
and Lipid Peroxidation
Intracellular reactive oxygen species (iROS) and lipid
peroxidation are key mediators of several cardiac dysfunctions
induced by TKi and doxorubicin (33). Cardiomyocytes and renal
cancer cells were untreated (control) or treated for 12 h with
polydatin (100 and 200 µM) or Sunitinib (10 µM) alone or
combined to polydatin. After treatments, cells were washed three
times with cold PBS, harvested with 0.25% v/v Trypsin and
centrifuged at 1000 ×g for 10 min. The supernatant was
discarded and the cell pellet sonicated in cold PBS. After a
centrifugation step at 800 ×g for 5 min, we quantified iROS
and a marker of lipid peroxidation called malondialdehyde
(MDA) by using a commercial kit with a spectrophotometer
according to the manufacturer’s protocols (Sigma Aldrich,
Milan, Italy) (34). We measured the protein content of the cell
homogenates using the Micro BCA protein assay kit (Pierce,
Thermo Fisher, Milan, Italy) according to kit instructions.
Considering that sunitinib presents a green autofluorescence
which can overlap with commercial probes used to measure
iROS, data were normalized against sunitinib autofluorescence
(control samples were constituted only by 0.25% v/v Trypsin in
PBS + Sunitinib at 10 µM).

Assessment of Protein Levels of NLRP3
Inflammasome, Myd88 (Myddosome)
and NF-kB
Cardiomyocytes and renal cancer cells were untreated (control)
or treated with polydatin (100 and 200 µM) or Sunitinib (10 µM)
or both in combination for 12 h. After treatments, cells were
harvested and lysed in lyses buffer (50 mM Tris-HCl, pH 7.4,
1 mM EDTA, 100 mM NaCl, 20 mM NaF, 3mM Na3VO4,
1mMPMSF, and protease inhibitor cocktail). Lysates were then
centrifuged, the supernatants were collected and analyzed for
quantification of NLRP3 inflammasome, Myd88 (myddosome)
and NF-Kb. Quantification of MyD88 myddosome was
performed through human and rat MyD88 ELISA Kit
(ab171341), Abcam, Milan, Italy; NLRP3 inflammasome was
quantified through Human and rat NLRP3 ELISA Kit
(OKEH03368), Aviva Systems Biology, San Diego, CA, USA)
(35–37). Briefly, an antibody against NLRP3 or MyD88 was pre-
coated onto a 96-wellplate (12 × 8 Well Strips) and blocked.
Standards or test samples were added to the wells and incubated
for 1h. After washing, a biotinylated detector antibody specific to
NLRP3 or MyD88 was added, incubated and followed by washing
for 30 s. Avidin-Peroxidase Conjugate was then added, incubated,
and unbound conjugate was washed away. An enzymatic reaction
was produced through the addition of TMB substrate which is
catalyzed by HRP generating a blue color product that changes
yellow after adding acidic stop solution. The density of yellow
June 2021 | Volume 11 | Article 680758
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coloration read by absorbance at 450 nm was quantitatively
proportion-al to the amount of sample NLRP3 or MYD88
captured in well. For human MyD88 ELISA, the sensitivity was
<10 pg/mL and range of detection was 156 pg/mL–10,000 pg/mL;
for human NLRP3 ELISA assay, the sensitivity was <0.078 ng/mL
and range of detection was 0.156–10 ng/mL. Analysis of NF-kB
was performed through the use of TransAM NF-kB p65
transcription factor assay kit (Active Motif, Carlsbad, CA),
according to the manufacturer’s recommendations (38). NF-kB
complexes were captured by binding to a consensus 5′-
GGGACTTTCC-3′ oligonucleotide immobilized on a 96-well
plate. Bound NF-kB was quantified by incubating with anti-p65
primary antibody followed by horseradish peroxidase (HRP)-
conjugated goat anti-rabbit IgG and spectrophotometric
detection at a wavelength of 450 nm using a microplate
spectrofluorometer. Data were expressed as the percentage of
p65/NF-kB DNA binding relative to control (untreated) cells.

Cytokines and Growth Factors Assay
The expression of IL-1b, IL-6, IL-8, CXCL-2, TGF-b and IL-18 in
cardiomyocytes and human renal cancer cells was performed
through ELISA method, as described elsewhere (39). Briefly, cells
were exposed to polydatin (100 and 200 µM) or Sunitinib (10
µM) alone or combined to polydatin for 12 h. Culture
supernatants were centrifuged to pellet any detached cells and
measured using the appropriate ELISA kits according to the
manufacturer’s instructions (Sigma Aldrich, Milan, Italy). The
sensitivity of this method was below 10 (pg/mL), and the assay
accurately detected cytokines in the range of 1–32000 pg/mL.

NLRP3-IL-1b-IL-18 Pathways After
Incubation With Resveratrol, the Natural
Precursor of Polydatin
Polydatin is the natural bio derivate of resveratrol therefore, as
control cardiomyocytes and renal cancer cells were unexposed
(control) or exposed to resveratrol (Sigma Aldrich, Milan, Italy)
(100 and 200 µM) or Sunitinib (10 µM) alone or combined to
resveratrol for 12 h. After incubation period, expression of
NLRP3 inflammasome, IL-1b and IL-18 were determined
through ELISA method described before.

Statistical Analysis
All cell-based assays were performed in triplicates and results are
presented as mean ± Standard Deviation (SD). Statistical
significance was analyzed by Student’s t test using Sigmaplot
software (Systat Software Inc., San Jose, CA). p-value < 0.05
indicates a significant difference between two data values.
RESULTS

Polydatin Enhances Survival of
Cardiomyocytes and Increases
Cytotoxicity in Renal Cancer Cells
Exposed to Sunitinib
MTT assay was performed to investigate the effects of polydatin
against the cytotoxic properties induced by sunitinib in
Frontiers in Oncology | www.frontiersin.org 4
cardiomyocytes and renal cancer cells (27, 28). The results
showed that sunitinib decreased significantly the survival of
cardiomyocytes in a concentration-dependent manner; for
example, for AC16 cells the IC50 value was 11,5 ± 2,2 µM, in
agree with other in vitro studies (Figure 1A). For this reason, the
subsequent experiments (described from paragraph 2.1 to 2.5)
were performed with a sunitinib concentration near to its IC50

value (10 µM). However, cytotoxicity results are slightly different
from the literature (40, 41) where, as example, sunitinib reduces
of 70% viability of H9c2 cells compared to control at 10 µM
(difference of viability with previous reports should be due to the
different origin of sunitinib). Similarly, LDH release was
significantly increased after incubation with sunitinib
(Figures 1C, D). When co-incubated with polydatin, cell
viability was significantly increased in a concentration-
dependent manner. Also in this case, cell death was determined
by measuring the LDH released into the supernatant of sunitinib-
treated cardiomyocytes cultures (29). The data showed that LDH
release from cardiomyocytes decreased with increasing polydatin
dose concentration up to 200 µM (P < 0,001) compared to
sunitinib-treated cells (Figures 1C, D). Moreover, ATP content
was significantly enhanced in cardiac cells (Figures 1E, F) co-
exposed to sunitinib and polydatin compared to sunitinib group,
confirming the cytoprotective properties of the natural compound.
Notably, sunitinib exerts mitochondrial damages thereby
increasing cytochrome c release, as reported in literature (29)
(Figures 1G, H); polydatin significantly reduced its release from
mitochondria, so improving mitochondrial homeostasis during
exposure to sunitinib, reducing cell death (Figures 1A, B).
Moreover, we studied apoptosis of cardiomyocytes through
cellular quantification of Caspase3/7 expression (Figures 1I, J);
as control, sunitinib induced apoptosis in cardiac cells by
increasing Caspase 3/7 expression of around 45 and 57% (for 10
and 25 µM, respectively) compared to untreated cells (p<0.001 for
both); polydatin reduces the magnitude of the effects confirming
anti-apoptotic effects. These results indicated that polydatin
significantly influenced the cytotoxicity of sunitinib in
cardiomyocytes, reducing cell death.

In contrast, 769-P and A498 cells (Figure 2) showed a
different behavior when co-exposed to polydatin and sunitinib
compared to monotherapies. Firstly, polydatin slightly increased
cell death in both renal cancer cells exposed to sunitinib alone
(Figures 2A, B) increasing significantly both LDH (Figures 2C, D),
ATP content (Figures 2E, F) and Cytochrome c release
(Figures 2G, H) in a concentration dependent manner. Pro-
apoptotic effects of polydatin against cancer cells were seen, with
increased caspase3/7 expressions in combination therapies against
sunitinib group (Figures 2I, J).

Polydatin Reduces Leukotrienes B4 Levels
During Exposure to Sunitinib
To evaluate the effects of polydatin on lipid metabolism
transduction signal pathways during treatment with sunitinib,
we quantified the production of leukotrienes B4 (LTB4)
(Figure 3), convalidated as key players of 6-series prostaglandins
involved in atherosclerosis, heart failure and cancer cell survival
(32). Cardiomyocytes exposed to sunitinib increased the
June 2021 | Volume 11 | Article 680758
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FIGURE 1 | Cell viability (A, B), cell death determined through LDH releases (C, D), ATP content (E, F), cytochrome c release (G, H) ad apoptosis assay thorough
quantification od Caspase3/7 expression (I, J) in cardiac cells (AC16 and H9C2 cell lines) after 48h of incubation with sunitinib, polydatin or both in combination.
Error bars depict means ± SD. p-values for the indicated compounds relative to untreated cells are: ***p<0.001. **p<0.01. *p<0.05. ns, not significant.
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FIGURE 2 | Cell viability (A, B), cell death determined through LDH releases (C, D), ATP content (E, F), cytochrome c release (G, H) ad apoptosis assay thorough
quantification od Caspase3/7 expression (I, J) in renal adenocarcinoma cells (769-P and A498 cell lines) after 48h of incubation with sunitinib, polydatin or both in
combination. Error bars depict means ± SD. p-values for the indicated compounds relative to untreated cells are: ***p<0.001. **p<0.01. *p<0.05. ns, not significant.
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production of leukotrienes (For AC-16 cells, 54.6 ± 3.4 vs 26.7 ±
4.6pg/mg of protein, p<0.001) compared to untreated cells
(Figure 3A); these effects were partially reduced in combination
treatment with polydatin at 100 µM (For AC16 cells: 43.4 ± 2.3 pg/
mg of protein) and 200µM (For AC16 cells: 26.7 ± 4.1 pg/mg of
protein) (Figure 3A). A similar behavior was seen for renal
adenocarcinoma cells (Figure 3B); cancer cells exposed to
sunitinib increased the production of leukotrienes (For 769-P
cells, 76.8 ± 4.4 vs 45.3 ± 4.2 pg/mg of protein, p<0.001)
compared to untreated cells (Figure 3B); these effects were
partially reduced in combination treatment with polydatin at
100 µM (For 769-P cells: 64.5 ± 2.1 pg/mg of protein) and
200µM (769-P cells: 44.6 ± 5.2 pg/mg of protein) (Figure 3B).

Polydatin Reduces Intracellular Reactive
Oxygen Species and MDA Production
During Exposure to Sunitinib
Intracellular reactive oxygen species (iROS) are involved in
chemoresistance to TKi and in cardiotoxicity mediated by
several anticancer drugs like daunorubicin, cisplatin,
doxorubicin, 5-fluorouracil and alkylating agents (34, 35). A
recent cellular study indicated that TKi (including sunitinib)
induced cardiomyocyte cell death through production of iROS
(34). In cardiac cells, treatment with sunitinib increased iROS
production (Figure 4A); polydatin drastically reduced the
magnitude of the effects in a concentration-dependent manner
(For AC16 cells, 20.3% and 45,2% for 100 and 200 µM,
respectively compared to only sunitinib treated cells; p>0,001).
These effects were confirmed through the quantification of
malondialdeyde (MDA) as marker of lipid peroxidation (34)
Frontiers in Oncology | www.frontiersin.org 7
that was increased significantly during incubation with sunitinib
(For AC16 cells, 1.17 ± 0.11 mmol/ml vs 0.51 ± 0.09 mmol/ml for
untreated cells, p<0.001) (Figure 4B) and reduced in
combination treatment with polydatin (For AC-16 cells 0.96 ±
0.08 mmol/ml and 0.65 ± 0.06 mmol/ml for polydatin 100 and
200 µM, respectively). In renal adenocarcinoma cells, treatment
with sunitinib increased iROS production (Figure 4C); polydatin
drastically reduced the magnitude of the effects in a
concentration-dependent manner (For 769-P cells, 13.7% and
38,7% for 100 and 200 µM, respectively compared to only
sunitinib treated cells; p> 0,001). Also malondialdeyde (MDA)
was increased significantly during incubation with sunitinib (For
769-P cells, 1.83 ± 0.13 mmol/ml vs 0.93 ± 0.18 mmol/ml for
untreated cells, p<0.001) (Figure 4D) and reduced in
combination treatment with polydatin (For 769-P cells 1.2 ±
0.13 mmol/ml and 0.72 ± 0.09 mmol/ml for polydatin 100 and
200 µM, respectively).

Polydatin Reduces NLRP3 Inflammasome,
Myd88 Myddosome, and NF-kB
Expression During Treatment With
Sunitinib
NLRP3 inflammasome is the key player of cytokine storm
involved in cancerogenesis, heart failure and atherosclerosis (37,
38). Recently, our group investigated on the role of NLRP3 in
cardiotoxicity of immune check-point inhibitors (39). Effectively,
as example, in AC16 cells (Figure 5A). NLRP3 is also involved in
sunitinib-mediated cell death; in fact, its expression is clearly
enhanced after exposure to sunitinib compared to untreated
cells (2.2 ± 0.21 vs 1 ± 0.07 (fold of control) p<0.001); lower
A B

FIGURE 3 | Leukotrienes type B4 production by AC-16 and H9C2 cells (A) or 769-P and A498 cells (B), untreated (control) or treated with polydatin (100 and 200
µM) or sunitinib (10 µM) alone or combined to polydatin at 100 or 200 µM for 12h. Error bars depict means ± SD. p-values for the indicated compounds relative to
untreated cells are: ***p<0.001. **p<0.01. *p<0.05. ns, not significant.
June 2021 | Volume 11 | Article 680758
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levels of NLRP3 after co-incubation with polydatin were seen
(1.8 ± 0.24 and 0.86 ± 0.3 for 100 and 200 µM, as fold of control)
p<0.001 (Figure 5A). A similar behavior was seen for MyD88
myddosome, another macromolecular complex involved in heart
failure and cardiac fibrosis after exposure to viral and chemical
agents with cardiotoxic properties. In fact, Myd88 expression is
clearly enhanced after exposure to sunitinib compared to
untreated cells (1.89 ± 0.25 vs 1 ± 0.08, (fold of control)
p<0.001); lower levels of Myd88 after co-incubation with
polydatin were also seen (1.52 ± 0.21 and 1.12 ± 0.2 for 100 and
200 µM, as fold of control) p<0.001 (Figure 5B). A similar
behavior was seen in renal adenocarcinoma cells (Figures 5D, E);
NLRP3 was overexpressed after exposure to sunitinib compared to
Frontiers in Oncology | www.frontiersin.org 8
untreated cells (3.3 ± 0.26 vs 1 ± 0.23, (fold of control) p<0.001);
lower levels of NLRP3 after co-incubation with polydatin were
seen (2.4 ± 0.16 and 1.6 ± 0.21 for 100 and 200 µM, as fold of
control) p<0.001 (Figure 5D). Similarly, Myd88 expression was
enhanced after exposure to sunitinib compared to untreated
cancer cells (2.33 ± 0.16 vs 1 ± 0.14, (fold of control) p<0.001);
lower levels of Myd88 after co-incubation with polydatin were also
seen (1.91 ± 0.27 and 1.86 ± 0.27 for 100 and 200 µM, as fold of
control) p<0.001 vs sunitinib-exposed cells (Figure 5E).
Considering that NLRP3 inflammasome and myddosome are
the most important activators of NF-kB in human cells, we
investigated on its expression during exposure to sunitinib and
polydatin. As shown in Figures 5C, F, NF-kB expression was
A B

DC

FIGURE 4 | (A, C) Intracellular Reactive Oxygen Species (iROS) and (B, D) Malondialdeyde (MDA) quantification in cardiac cells (AC-16 and H9C2 cell lines) or
human adenocarcinoma cells (769-P and A498 cell lines) untreated (control) or treated with polydatin (100 and 200 µM) or sunitinib (10 µM) alone or combined to
polydatin at 100 or 200 µM for 12h. Error bars depict means ± SD. p-values for the indicated compounds relative to untreated cells are: ***p<0.001. **p<0.01.
*p<0.05. ns, not significant.
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significantly increase of 2.6 and 3.46 times in AC-16 and 769-P
cells, respectively, exposed to sunitinib at 10 µM, in agree with
other in vitro studies recently published (40, 41). Additionally,
cardiomyocytes and renal cancer cells exposed to sunitinib and
polydatin partially reduced expression of NF-kB (Figures 5C, F).
These effects indicate anti-inflammatory properties of polydatin
during treatment with sunitinib in cardiac and renal
adenocarcinoma cells.

Polydatin Reduces Cytokines and Growth
Factors Involved in Cardiac Dysfunction
and Chemoresistance to Sunitinib
As well know, hyper activation of NF-kB, NLRP3 and MyD88
increases the production of cytokines involved in antiviral and
anticancer response as well as in cardiotoxic events (42–47). We
investigated on the production of cytokines and growth factors by
cardiac cells and renal cancer cells during exposure to sunitinib
alone or combined to polydatin. Firstly, AC-16 cells exposed to
Frontiers in Oncology | www.frontiersin.org 9
sunitinib (Figures 6A, B) overexpressed IL-1b (186.5 ± 8.8 vs
100.2 ± 12.3 pg/mg of protein, p<0.001), IL-6 (98.7 ± 8.6 vs 45.5 ±
9.9 pg/mg of protein, p<0.001), IL-8 (72.1 ± 7.7 vs 44.5 ± 9.8 pg/
mg of protein, p<0.001), CXCL-12 (135.5 ± 5.5 vs 87.6 ± 12.2
pg/mg of protein, p<0.001) and TGF-b (166.5 ± 10.2 vs 75.5 ± 8.9
pg/mg of protein, p<0.001), than untreated cells. After co-
incubation with polydatin, the rates of increase of cytokines and
growth factors were significantly reduced, indicating anti-
inflammatory effects of the nutraceutical compound, in agree
with other published works (48, 49). For example, co-incubation
with sunitinib and polydatin at 100 µM decreased significantly the
expression of all cytokines involved in cell death and cardiac
fibrosis compared to sunitinib-treated cells: IL-1b (186.5 ± 8.8 vs
155.6 ± 6.5 pg/mg of protein, p<0.05), IL-6 (77.6 ± 7.2 vs 98.7 ± 8.6
pg/mg of protein, p<0.01), IL-8 (60.5 ± 5.6 vs 72.1 ± 7.7 pg/mg of
protein, p<0.05), CXCL-12 (95.5 ± 7.3 vs 135.5 ± 5.5 pg/mg
of protein, p<0.01), TGF-b (121.2 ± 10.5 vs 166.5 ± 10.2 pg/mg of
protein, p<0.001) and IL-18 (16.3 ± 0.8 vs 24.6 ± 1.1 pg/mg of
A B

D E F

C

FIGURE 5 | (A, D) NLRP3 inflammasome (B, E) Myd88 myddosome (C, F) and p65/NF-kB (fold of control) expression in cardiac cells (AC-16 and H9C2 cell lines)
and renal adenocarcinoma cells (769-P and A498 cell lines) untreated (control) or treated with polydatin (100 and 200 µM) or sunitinib (10 µM) alone or combined to
polydatin at 100 or 200 µM. Error bars depict means ± SD. p-values for the indicated compounds relative to untreated cells are: ***p<0.001. **p<0.01. *p<0.05. ns,
not significant.
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protein, p<0.05). A similar behavior was seen for cardiomyoblasts
H9C2 cells (Figure 6B). Renal adenocarcinoma cells (Figures 6C,
D) exposed to sunitinib increased the production of all cytokines
involved in cancer cell survival and chemo resistance. For
example, 769-P cells (Figure 6C) exposed to sunitinib
overproduced IL-1b (289.4 ± 9.6 vs 183.2 ± 8.5 pg/mg of
protein, p<0.001), IL-6 (132.1 ± 8.3 vs 76.5 ± 9.4 pg/mg
of protein, p<0.001), IL-8 (117.4 ± 8.9 vs 67.4 ± 11.2 pg/mg of
protein, p<0.001), CXCL-12 (163.2 ± 15.1 vs 113.2 ± 8.7 pg/mg of
protein, p<0.001), TGF-b (125.3 ± 9.6 vs 88.9 ± 11.3 pg/mg
of protein, p<0.001) and IL-18 (66.3 ± 2.7 vs 84.5 ± 4.3 pg/mg of
protein, p<0.05) than untreated cells. Co-incubation with
polydatin reduced the magnitude of the effects in a significant
manner. These results indicated that polydatin change cardiac
and renal cancer microenvironment through a significant
reduction of IL-1b, IL-6, IL-8, CXCL-12, TGF-b and IL-18.
Frontiers in Oncology | www.frontiersin.org 10
Resveratrol, the Natural Precursor of
Polydatin, Reduces NLRP3
Inflammasome-IL-1b-IL-18 Pathways
During Exposure to Sunitinib
Resveratrol is the natural precursor of polydatin (50). As control
we investigated on the NLRP3 expression and production of IL-
1b and IL-18 by cardiac cells and renal cancer cells during
exposure to sunitinib alone or combined to resveratrol. As show
in Figure 7, resveratrol was able to reduce significantly the
expression of pro-inflammatory biomarkers both in cancer
cells and cardiomyocytes exposed to Sunitinib. Specifically,
resveratrol at 100 µM associated to sunitinib reduces of 15.4%
the expression of NLRP3 inflammasome compared to sunitinib
group (p<0.05) in AC-16 cells; IL-1b and IL-18 expressions were
also reduced compared to sunitinib alone (182.3 ± 7.4 vs 198.8 ±
7.7 pg/mg of protein, p<0.05; 16.3 ± 0.26 vs 24.6 ± 0.4 pg/mg of
A

B

D

C

FIGURE 6 | Expression of IL-1b, IL-6, IL-8, CXCL-12, TGF-b and IL-18 in cardiac cells (A, B) (AC-16 and H9C2 cells) and renal adenocarcinoma cells (C, D) (769-P
and A498 cell lines); cells were untreated (control) or treated with polydatin (100 and 200 µM) or sunitinib (10 µM) alone or combined to polydatin at 100 or 200 µM.
Error bars depict means ± SD. p-values for the indicated compounds relative to untreated cells are: ***p<0.001. **p<0.01. *p<0.05. ns, not significant.
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FIGURE 7 | Expression of NLRP3 (A, B), IL-1b (C, D) and IL-18 (E, F) in cardiac cells (AC-16 and H9C2 cells) and renal adenocarcinoma cells (769-P and A498
cell lines); cells were untreated (control) or treated with resveratrol (100 and 200 µM) or sunitinib (10 µM) alone or combined to resveratrol at 100 or 200 µM. Error
bars depict means ± SD. p-values for the indicated compounds relative to untreated cells are: ***p<0.001. **p<0.01. *p<0.05. ns, not significant.
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protein, p<0.05; respectively). A similar behavior was seen for
renal adenocarcinoma cells. These results confirms that
resveratrol was able to reduce NLRP3 inflammasome, IL-1b
and IL-18 expression similarly to polydatin during exposure to
sunitinib indicating anti-inflammatory effects (Figure 7).
DISCUSSION

In this study we demonstrated that polydatin reduced
cardiotoxicity and increases anticancer properties of Sunitinib
in cellular models through the involvement of iROS,
leukotrienes, MyD88 and NLRP3 signaling pathways. More
specifically, our findings provide a proof of principle that
polydatin reduced cytokine storm in cardiomyocytes and renal
cancer cells thereby modulating their survival during exposure to
sunitinib. Sunitinib is a tyrosine kinase inhibitor used in the
treatment of renal cell carcinoma, gastrointestinal stromal and
colorectal cancers (51–53). Sunitinib blocks cell signaling by
targeting the adenosine-5′-triphosphate (ATP) binding sites of
multiple receptor tyrosine kinases (54), overexpressed in cancer
cells but normally expressed in non-cancer tissues like
endothelial cells and heart (55). Tyrosin kinases play important
roles in angiogenesis and tumor cell proliferation and are
receptors for platelet-derived growth factor (PDGF) and
vascular endothelial growth factor (VEGF) (56, 57). The
attenuation of vascularization leads to apoptosis (58).
However, Sunitinib lacks tyrosine kinase selectivity and results
cardiotoxicity (59). Specifically, Sunitinib is a potent inhibitor of
VEGF-1, VEGF-2, fetal liver tyrosine kinase receptor 3 (FLT3),
KIT (stem-cell factor (SCF) receptor), PDGF-a, and PDGF-b
(55). Patients treated with Sunitinib experienced asymptomatic
QT prolongation, acute coronary syndrome, myocardial
infarction, and symptomatic congestive heart failure (60).
Recent real-world experiences and pivotal trials reports the
lethality of sunitinib based on the adverse events data between
2-4%, indicating a clinically relevant toxicity that requires
innovative cardioprotection strategies aimed to improve overall
survival (61, 62). Interestingly, several circulating biomarkers like
cytokines, are investigated in RCC patients (63), including IL-6,
IL-1 and others; in fact, in RCC, pretreatment concentrations of
plasma biomarkers (e.g., cytokines and angiogenic factors) have
previously been studied in order to predict the outcome of VEGF
or mTOR blocking agents (64).

Known mechanisms of sunitinib-induced cardiotoxicity
involves the inhibition of cAMP-activated protein kinase (PK)
which is crucial for post-hypoxia cell survival. Thus, sunitinib
may induce cardiomyocyte hypertrophy and death (65, 66).
Therefore, Sunitinib is an useful antineoplastic agent but may
cause cardiomyopathy, left ventricular dysfunction, and heart
failure. The adverse effects of Sunitinib may be attributed to its
initiation of mitochondrial dysfunction (67). Mitochondrial
dysfunction and redox imbalance may contribute to
pathological states known as “free radical diseases” (68). The
findings of the present study align with those of earlier reports.
Frontiers in Oncology | www.frontiersin.org 12
The administration of Sunitinib significantly decreased GSH and
GR activity and a significant increased MDA content in cardiac
tissues (69). Sunitinib is toxic against cardiac fibroblasts due to
iROS generation (70). Earlier research demonstrated that
sunitinib is cardiotoxic and may induce iROS in cardiac cells
(71); in fact, it directly affects various cell membranes and may
upregulate the gene encoding iNOS (72). Other reports
established that sunitinib-induced toxicity is associated with
the mRNA expressions of the TGF-b and smad-2/3 signaling
molecules (73, 74). Moreover, with upcoming improved imaging
technologies more and more cardiac metastases are seen in RCC
patients (75, 76), therefore, a strictly prevention, diagnosis and
management of cardiovascular complications in these patients
should be performed, especially in combination therapies
involving different TKi or association of TKi and ICIs (77, 78);
moreover, cardioprotective and anticancer strategies aimed to
target cardiac tissues should be investigated in preclinical trials.

Complementary and alternative medicines (CAM) are natural
bioactives with anti-inflammatory, anticancer and chemo
preventive properties. Several clinical trials demonstrated the
safe and useful of CAM in cancer patients (79–82). Polydatin,
also called piceide, is a metabolite of trans-resveratrol, a natural
bioactive isolated from the perennial herb Polygonum
cuspidatum (83), with interesting properties in the field of
cancer, cardiovascular diseases, neurodegenerative disorders
(84, 85). A recent study demonstrated that polydatin reduces
tissue damages induced by hyperglycemia and hyperlipidemia,
increasing cardiovascular functions during diabetes (86, 87). In
another preclinical trial, 8-weeks polydatin treatment
significantly improved the diastolic and systolic dysfunction,
attenuated hypertrophy and interstitial fibrosis in mice with
diabetes (88). Other similar studies suggested that polydatin
protects cardiomyocytes heart failure also in non-diabetic
models through reduction of iROS, pro-inflammatory
prostaglandins and cytokines (89, 90).

As summarized in Figure 8, in the present study, sunitinib
upregulated TGF-b, IL-1, IL6, IL-8 and CXCL12 both in cardiac
cells and human renal adenocarcinoma cells that are involved in
cell death and heart failure as well as in cancer cell survival and
resistance to apoptosis (91, 92). Cytokine storm involved in heart
failure, myocardial fibrosis, atherosclerosis and cardiotoxicity
induced by anticancer drugs is induced by overexpression of
MyD88 and NLRP3 inflammasome (93, 94). Myd88 is a
molecular complex involved in regulation of cardiovascular
and cancer metabolism as well as in cancer cell survival and
chemo resistance (95, 96). Patients with myocarditis have high
heart expression of MyD88, CD3+ lymphocytes and collagen
fibers and these phenomena was recently seen in patients with
SARS-CoV-2 infection (97). Inflammasomes are molecular
complexes regulating pro-inflammatory factors, including IL-
1b and IL-6 (98). IL-6 induces programmed cell death protein 1-
dependent immunosuppression in cancer (99), and IL-1b is one
of the most important pro-inflammatory mediators involved in
chemo-resistance (100). NOD-like receptor family pyrin
domain–containing 3 (NLRP3) is the most widely studied
inflammasome (26). A recent study demonstrated that
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activated NLRP3 significantly promoted the plasma levels of
cytokines in patients with cancer (101). Notably, NLRP3
inflammasome represents a novel potential target for the
treatment of breast cancer (102). A recent preclinical study has
clearly shown that inhibition of NLRP3 by miRNA is able to
block tumor growth and the immune-resistance of breast cancer
through ASC/IL-1/IL-18 pathways; this inhibition provides new
clinical insights for the therapy of breast cancer (103). Notably,
NLRP3 is associated to myocardial injuries, atherosclerosis and
diabetes mellitus (104); Sunitinib, through the induction of iROS
and lipid peroxidation, activated MyD88 and NLRP3 increasing
inflammation and pro-fibrotic state in cultured cells; notably,
treatment with polydatin combined to sunitinib reduced the
magnitude of these effects as well as the expression of MyD88
and NLRP3 in a concentration dependent fashion. Myddosome
and inflammasome activates expression and release of cytokines,
chemokines and growth factors involved in cell death, fibrosis,
chemoresistance and apoptosis (105). IL-1b, IL-6, IL-8 and IL-18
reduces mitochondrial metabolism, calcium homeostasis and
viability of cardiomyocytes, fibroblasts and pericardial cells
(106, 107). Recently, selective inhibitors of IL-1b, IL-6 and IL-
8 are proposed in cancer patients aimed to improve anticancer
effects of selective inhibitors of kinases and immune check-point
inhibitors, reducing their toxicity (108, 109).

We demonstrated that sunitinib increased IL-1b, IL-6,IL-8 and
IL-18 expression in cardiomyocytes and renal adenocarcinoma
cells and that polydatin is able to significantly reduce their
expression. In conclusion, previous studies have investigated the
mechanisms of cardiotoxicity mediated by sunitinib indicating
that it might promotes endothelial dysfunction, myocytes death
and apoptosis through the disruption of mitochondrial
homeostasis (110). However, its effects on NLRP3, Myd88 and
pro-inflammatory cytokines involved in cardiotoxicity was never
Frontiers in Oncology | www.frontiersin.org 13
completely demonstrated. The present study, with all potential
limitations derived from an ‘‘in vitro’’ investigation, points out for
the first time that polydatin reduces iROS production and lipid
peroxidation as well as the expression of pro-inflammatory
chemokines through MyD88 and NLRP3 mediated pathways;
based on the results obtained, further in vivo studies in renal
cancer-bearing mice treated with sunitinib are suggested.
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FIGURE 8 | Mechanistic illustration of chemosensitizing and cardioprotective properties of polydatin during exposure to the TKi sunitinib.
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