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A patient’s response to immune checkpoint inhibitors (ICIs) is a complex quantitative trait,
and determined by multiple intrinsic and extrinsic factors. Three currently FDA-approved
predictive biomarkers (progra1mmed cell death ligand-1 (PD-L1); microsatellite instability
(MSI); tumor mutational burden (TMB)) are routinely used for patient selection for ICI
response in clinical practice. Although clinical utility of these biomarkers has been
demonstrated in ample clinical trials, many variables involved in using these biomarkers
have poised serious challenges in daily practice. Furthermore, the predicted responders
by these three biomarkers only have a small percentage of overlap, suggesting that each
biomarker captures different contributing factors to ICI response. Optimized use of
currently FDA-approved biomarkers and development of a new generation of predictive
biomarkers are urgently needed. In this review, we will first discuss three widely used FDA-
approved predictive biomarkers and their optimal use. Secondly, we will review four novel
gene signature biomarkers: T-cell inflamed gene expression profile (GEP), T-cell
dysfunction and exclusion gene signature (TIDE), melanocytic plasticity signature (MPS)
and B-cell focused gene signature. The GEP and TIDE have shown better predictive
performance than PD-L1, and PD-L1 or TMB, respectively. The MPS is superior to PD-L1,
TMB, and TIDE. The B-cell focused gene signature represents a previously unexplored
predictive biomarker to ICI response. Thirdly, we will highlight two combined predictive
biomarkers: TMB+GEP and MPS+TIDE. These integrated biomarkers showed improved
predictive outcomes compared to a single predictor. Finally, we will present a potential
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nucleic acid biomarker signature, allowing DNA and RNA biomarkers to be analyzed in
one assay. This comprehensive signature could represent a future direction of developing
robust predictive biomarkers, particularly for the cold tumors, for ICI response.
Keywords: immune checkpoint inhibitors, predictive biomarkers, PD-1, TMB, FDA-approved biomarkers
INTRODUCTION

Immunotherapy has changed the treatment landscape of many
different cancer types in recent years. As opposed to
chemotherapy and targeted therapy, which directly target
tumor cells, immunotherapy stimulates a patient’s immune
response or enhances a patient’s ability to fight against tumor
cells. There are several different forms of immunotherapy used
clinically, including cytokines, antibodies, vaccines, and immune
checkpoint inhibitors (ICIs). Among those, ICIs are the most
widely investigated and clinically used in the treatment
of tumors.

ICIs target immune checkpoint regulators such as cytotoxic
T-lymphocyte associated protein 4 (CTLA4), programmed cell
death-1 (PD-1), or programmed death ligand 1 (PD-L1). Since
the FDA approval of CTLA-4 inhibitor (ipilimumab) in 2011, the
FDA has approved six more ICIs (1). Of those, three are PD-1
inhibitors (nivolumab, pembrolizumab and cemiplimab), and
three are PD-L1 inhibitors (atezolizumab, avelumab, and
durvalumab). These ICIs are widely utilized in around 15
tumor types (2) by oncologists in their daily practice and have
shown remarkable efficacy.

However, ICI treatments are only effective in approximately
20% to 30% of cancer patients whose tumors are generally hot
tumors with a high degree of T cell infiltration and high immune
checkpoint expression (3). The majority of patients have no
response or are resistant to the treatment, which is largely
associated with cold tumors with few or absence of T cells, low
tumor mutational burden, and poor antigen presentation (3).
Furthermore, the efficacy varies among different tumor types,
which further complicates treatment strategy. Given the
expensive nature of immunotherapy, how to efficiently identify
and select potential responders has become a clinical challenge to
the effective use of ICIs. There is an urgent need to develop and
validate more accurate biomarkers to assist in patient selection
for ICI treatment.

Several different forms of predictive biomarkers have been
developed for optimized use of immunotherapy, including
positive predictive biomarkers to predict response to ICI,
negative predictive biomarkers to predict resistance to ICI (4, 5),
and side effect biomarkers to predict immune-related toxicity (6).
Of those, the most validated and clinically used biomarkers for
ICI responses are three FDA-approved positive predictive
biomarkers: programmed death-ligand 1 (PD-L1), microsatellite
instability/defective mismatch repair (MSI/dMMR), and tumor
mutational burden (TMB). These three biomarkers have been
reviewed extensively in the literature. For the most recent review,
the readers can refer to Alessandro Rizzo et al.’s article in biliary
tract cancer (7). Here, we do not intend to further review those
2

biomarkers in general. Instead, we will focus on the challenges
and solutions for effective use of these FDA-approved biomarkers.

The use of these three FDA-approved biomarkers has played
a significant role in assisting appropriate selection of patients for
ICI treatment. However, PD-L1, MSI/dMMR, and TMB each
have different assays suitable to distinct tumor types and unique
limitations. There is a lack of well-defined best practices to
implement these biomarkers. In this article, we will review
these three widely used biomarkers in clinical practice and
discuss their strengths and weaknesses with the aim to
standardize and optimize methodology. We will also review four
promising gene signature biomarkers and two combinational gene
signature biomarkers with an aim to explore more effective and
accurate biomarkers suitable for larger tumor patient population,
including immunologically cold tumors. These new forms of
biomarkers are emerging and have shown impressive predictive
power for ICIs. Finally, we will explore a comprehensive nucleic acid
biomarker for future direction.
THREE FDA APPROVED PREDICTIVE
BIOMARKERS

PD-L1
FDA Approval and Rationale
PD-L1 was the first FDA-approved predictive biomarker for
non-small-cell lung cancer (NSCLC) in 2015. Since then, the
FDA has proved PD-L1 as a companion or complementary
diagnostic test for six additional tumor types (gastric or
gastroesophageal junction adenocarcinoma, cervical cancer,
urothelial carcinoma, head and neck squamous cell carcinoma
(HNSCC), esophageal squamous cell carcinoma (ESCC), and
triple-negative breast carcinoma (TNBC)). Today, PD-L1 is the
most investigated and clinically used predictive biomarker
for ICIs.

PD-1 and PD-L1 belong to the family of immune checkpoint
proteins. Their interaction plays a key role in regulating the
immune system to ensure that it is activated only at the
appropriate time to minimize excessive inflammation and
autoimmune reactions. PD-L1 is expressed on a variety of
normal and immune cells such as dendritic cells, activated T
and B lymphocytes, and macrophages. However, tumor cells
have also adopted this PD-1/PD-L1 interaction mechanism
through expressing PD-L1 on the tumor cell surface. Binding
of tumor PD-L1 to PD-1 on T cells results in attenuation or
inhibition of T cell activity, which helps tumor cells escape from
immune surveillance (8).

Blocking the PD-L1 and PD-1 interaction enables the
reactivation of T cells and enhancement of T cell activity to
June 2021 | Volume 11 | Article 683419

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wang et al. Predictive Biomarkers for ICI
fight tumor cells. Since the number of tumor cells that express
PD-L1 largely affects its ability to suppress immunogenicity and
further determine the effectiveness of PD-L1 and PD-1 blockage
by ICI, the expression of PD-L1 on tumor cells is a predictive
biomarker for ICI therapy.

Different Test Methods and Challenges
Four FDA-approved IHC testing methods are available today for
measuring PD-L1 expression (Table 1). These methods use
different antibodies, different scoring systems, different PD-L1
expression thresholds, and different types of cells expressing PD-
L1. These variables among four methods are reflected in FDA
approvals across seven different tumor types (Table 2).

These variabilities have posed practical challenges for
clinicians and pathologists in daily practice. There is often
confusion surrounding the different FDA-approved parameters
in the tumor type and specific ICI administered. Consequently,
although most widely used, PD-L1 has poor diagnostic accuracy
overall, with a particularly low negative predictive value. For
example, up to 20% of patients have PD-L1 negative tumors were
reported to benefit from PD-1/PD-L1 antibodies (9). In addition
to testing variables that contribute to low diagnostic accuracy,
PD-L1 itself, as a predictive biomarker, has a relatively low
predictability. Davis and Patel (2) analyzed 45 PD-L1 FDA
approvals from 2011 to April 2019, and found that PD-L1 was
only predictive in 28.9% of the approvals. Furthermore, PD-L1
expression is temporally and spatially regulated (10) and can be
altered with prior therapeutic treatment (11). The combination of
these factors limits PD-L1’s predictability in certain circumstances.

Future Directions
Although PD-L1 testing has low diagnostic accuracy overall, it
has value for certain tumor types and remains the most widely
used predictive biomarker in current clinical practice. A recent
systematic review and meta-analysis showed that PD-L1 can
effectively predict survival benefit in the patients with metastatic
Frontiers in Oncology | www.frontiersin.org 3
urothelial carcinoma (12), and soluble forms of PD-L1 and PD-1
in plasma samples can also predict sunitinib efficacy in patients
with metastatic clear cell renal cell carcinoma (13). To improve
clinical utility of PD-L1, future efforts should be directed to the
following three areas:

a) Making effort to standardize future assay in clinical trials.
Current variability of four PD-L1 assays is largely attributed
to the initial clinical trials that had evaluated different PD-1/
PD-L1 antibodies, used different scoring criteria and cut-offs
for PD-L1, and stained different cell types. The organizations
that design future clinical trials should consider possible
standardization for the areas that can be potentially
standardized in the planning stage.

b) Exploring standardization of currently-approved assays for
clinical practice. For the currently-approved four commercial
PD-L1 assays, we should explore possible standardization. A
recent multi-center study compared the performance of 4
PD-L1 assays in lung cancer (14). They found that 22C3 for
pembrolizumab, 28-8 for nivolumab, and SP263 for
durvalumab are comparable to each other in the staining of
tumor tissue. This result opens the possibility of using specific
tests interchangeably. Among 11 FDA-approved PD-L1
linked companion diagnostic tests for seven tumor types
(https://www.fda.gov/medical-devices/vitro-diagnostics/list-
cleared-or-approved-companion-diagnostic-devices-vitro-
and-imaging-tools), six tests for six tumor types used the PD-
L1 IHC 22C3 pharmDx assay, six tests for five tumor types
used tumor cells and immune cells for PD-L1 staining, and five
tests for five tumor types used Combined Positive Score (CPS) as
the scoring system. CPS is the number of PD-L1 staining cells
(tumor cells, lymphocytes, and macrophages) divided by the
total number of viable tumor cells, multiplied by 100. Therefore,
the PD-L1 IHC 22C3 pharmDx assay, tumor cells, and immune
cells for PD-L1 staining and the CPS scoring system could be
considered as bases for future standardization.
TABLE 1 | Variables for FDA Approved PD-L1 Test.

Testing Method • PD-L1 IHC 22C3 pharmaDx
• PD-L1 IHC 28–8 pharmaDx assay
• PD-L1 IHC SP 142
• PD-L1 IHC SP263

Antibody • Monoclonal mouse anti PD-L1 Clone 22C3
• Monoclonal rabbit anti PD-L1 Clone 28-8
• Monoclonal rabbit anti PD-L1 Clone SP26
• Monoclonal rabbit anti PD-L1 Clone SP142

Scoring System • TPS - Tumor Proportion Score, which is the percentage of viable tumor cells showing partial or complete membrane staining at any
intensity

• CPS- Combined Positive Score, which is the number of PD-L1 staining cells (tumor cells, lymphocytes, macrophages) divided by the
total number of viable tumor cells, multiplied by 100

• %IC - The proportion of tumor area occupied by PD-L1 expressing tumor-infiltrating immune cells of any intensity
PD-L1 Expression
Threshold

• >=1%
• >=5%
• >=10%
• >=50%

Type of Cells
Expressing PD-L1

• Tumor cells for NSCLC
• Tumor-infiltrating immune cells for the triple-negative breast cancer
• Tumor and immune cells for the cervical cancer
June 2021 | Volume 11 | Article 683419
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c) Standardizing routinely used PD-L1 test may face a practical
challenge and will take time. Currently, the most reliable and
effective approach is to follow FDA-approved parameters for
PD-L1 assays in seven tumor types. Pathologists and
oncologists should use specific ICIs, scoring systems,
stained cells, thresholds, assay platforms, and tumor types
according to the approved PD-L1 test, and must be cautious
in using ICIs beyond the approved assays.
MSI/dMMR
FDA Approval and Rationale
MSI/dMMR was the second FDA-approved predictive biomarker
for the pembrolizumab treatment of adult and pediatric patients
with unresectable or metastatic solid tumors in 2017. The approval
of pembrolizumab for MSI-H (MSI-high)/dMMR cancer treatment
was based on the evidence of efficacy (ORR of 39.6%, complete
response rate of 7%, and duration of response of six months or
longer in 78% of responding patients) from five clinical trials (15).
This approval represents the first drug that has been approved for
solid tumors in general based on a common biomarker rather than
for a specific tumor type (e.g. PD-L1).

Tumors with a defective DNA mismatch repair (dMMR)
system accumulate thousands of mutations across the genome.
Since short tandem repeats are particularly prone to mismatch
errors, dMMR-induced hypermutations are most frequently
located in microsatellite regions (1–6 nucleotides short
Frontiers in Oncology | www.frontiersin.org 4
stretches of DNA). This condition is defined as microsatellite
instability (MSI). MSI results from and is a marker of dMMR.

Tumors with dMMR will also have more mutations in non-
MSI regions throughout the genome and expectedly have more
neoantigens compared to those with intact MMR. This
assumption has been demonstrated by experimental data. Le
et al. (16) reported that an average of 1782 mutations were present
in colorectal cancers with dMMR compared with 73 mutations in
the same tumors with intact MMR; consistently, 578 and 21
predicted neoantigens were found, respectively. The increased
neoantigens in dMMR tumors are positively associated with
overall lymphocytic infiltration, tumor-infiltrating lymphocytes, T
helper 1 cells, and memory T cells (17, 18), which will render more
effective antitumor immune response and a higher likelihood of
response to immunotherapy. Thus, MSI/dMMR is a rational
predictive biomarker for the treatment response to ICIs targeting
PD-1, PD-L1, and CTLA-4 checkpoint receptor in such tumors.

Different Test Methods and Challenges
The FDA has approved pembrolizumab to be used in advanced
MSI-H/dMMR solid tumors, but has not specified which assay
should be used to measure MSI-H/dMMR. There are three
different assays available for determining MSI-H/dMMR status
in clinical practice: IHC for detecting dMMR, and PCR and NGS
for detecting MSI-H (19–21).

IHC test for determining dMMR involves four proteins:
MLH1, MSH2, MSH6, and PMS2. Loss of expression of one or
TABLE 2 | Key Parameters for Use of FDA Approved PD-L1 Testing for Immune Checkpoint Inhibitors.

Test Name PMA# Tumor Type ICI Approval
Year

Scoring
System

PD-L1-Threshold PD-L1 Staining

PD-L1 IHC 22C3
pharmDx

P150013 NSCLC Pembrolizumab 2015 TPS >=50% tumor cells

PD-L1 IHC 22C3
pharmDx

P150013/
S006

gastric or GEJ
adenocarcinoma

Pembrolizumab 2017 CPS >=1 tumor cells,
lymphocytes,
macrophages

PD-L1 IHC 22C3
pharmDx

P150013/
S009

Cervical Cancer Pembrolizumab 2018 CPS >=1 tumor cells,
lymphocytes,
macrophages

PD-L1 IHC 22C3
pharmDx

P150013/
S011

urothelial carcinoma Pembrolizumab 2018 CPS >=10 tumor cells,
lymphocytes,
macrophages

PD-L1 IHC 22C3
pharmDx

P150013/
S014

head and neck
squamous cell
carcinoma

Pembrolizumab 2019 CPS >=1 tumor cells,
lymphocytes,
macrophages

PD-L1 IHC 22C3
pharmDx

P150013/
S016

esophageal squamous
cell carcinoma

Pembrolizumab 2019 CPS >=10 tumor cells,
lymphocytes,
macrophages

VENTANA PD-L1
(SP142) Assay

P160002/
S006

urothelial carcinoma/
NSCLC

atezolizumab 2018 IC%/IC%
or TPS

>=5%/>=10% or >=50% tumor area/tumor
area, tumor ells

VENTANA PD-L1
(SP142) Assay

P160002/
S009

Triple-Negative Breast
Carcinoma

atezolizumab 2019 IC% >=1% tumor area

VENTANA PD-L1
(SP142) Assay

P160002/
S012

NSCLC atezolizumab 2020 IC%/TPS >=10%/>=50% tumor area
Tumor cells

PD-L1 IHC 28-8
pharmDx

P150025/
S013

NSCLC/SCCHN/UC Nivolumab in
combination with
ipilimumab

2020 TPS >=1% tumor cells

PD-L1 IHC
SP263

P160046 urothelial carcinoma Durvalumab 2017 TPS/ICP/
IC+

>=25%/ICP > 1% and IC+
>=25%/ICP = 1% and IC+ =

100%.

tumor cells
Immune cells
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more MMR proteins is considered as dMMR. MLH1 and MSH2
are obligatory proteins, and PMS2 and MSH6 are secondary
proteins. PMS2 and MSH6 can form a heterodimer only with
MLH1 and MSH2, respectively, while MLH1 and MHS2 can
form heterodimers with other MMR proteins in addition to
PMS2 and MSH6, respectively. The mutations in obligatory
proteins result in functional loss of both obligatory and
secondary binding partners, but the reverse is not true because
secondary proteins can be substituted in the heterodimer by
other MMR proteins. Consequently, antibodies against the
secondary proteins detect mutations in both obligatory and
secondary proteins, but antibodies for obligatory proteins alone
do not detect mutations in PMS2 or MSH6 abnormalities. For
this reason, some of the IHC assays only test PMS2 and MSH6.

IHC is a simple, cost-effective and widely available laboratory
test that can be easily performed in all hospitals, clinics, and testing
labs. The downside of IHC is a relatively low analytic sensitivity and
accuracy due to technical or biological reasons. Technical reasons
resulting in false negative staining can include pre-analytical issues,
such as tissue fixation (22). Biologically, missense mutations in any
MMR gene that can result in functional inactivation of a protein
without affecting its antigenicity and expression levels (23).

PCR test is the second established method for determining
MSI-H. Several PCR panels have been proposed, but two are
most widely used in clinical practice: (i) a panel with two
mononucleotide (BAT-25 and BAT-26) and three dinucleotide
(D5S346, D2S123 and D17S250) repeats, which was proposed in
1997 by an international consensus group, also known as the
Bethesda panel (24). Both tumor and paired normal tissue are
required for using this panel; (ii) a panel with five poly-A
mononucleotide repeats (BAT-25, BAT-26, NR-21, NR-24,
NR-27). This five poly-A panel has a higher sensitivity and
specificity compared to the Bethesda panel (25) and also does not
need corresponding normal tissue for the test. If two of these five
biomarkers in either panel lose stability, the tumor is diagnosed
as having MSI-H. Recently, Thermo Fisher released a new
TrueMark MSI Assay with a panel of 13 microsatellite
biomarkers. In addition to expanded content from the five
poly-A panel discussed above, this panel has a faster and
simpler workflow, requires only 2ng FFPE tumor DNA and
does not require the use of a tumor-normal match.

Since MSI testing by PCR is based on a specific and limited
number of microsatellites analyses, the test cannot capture full
MSI profiles and thus misses around 0.3% to 10% of cases (26).
Furthermore, although MSI can be present in almost all solid
tumor types, its prevalence and type of MSI are widely variable
across the different tumor types. Several major cancer types, like
NSCLC, breast cancer and prostate cancer have only 1-2%
prevalence while other cancer types, such as melanoma and
kidney cancer, have no data available (27, 28). The majority of
clinical data for predictive ability for ICIs were largely from CRC.
These factors limit its use as an effective and reliable predictive
biomarker for ICIs in a broad scale, despite being approved for
all solid tumors.

NGS-based MSI-H/dMMR testing is a relatively new assay
and can overcome the limitations of MSI testing by PCR to a
Frontiers in Oncology | www.frontiersin.org 5
certain degree. NGS test uses either cancer gene panels or whole
exome sequencing. For cancer gene panels, the number of genes
varies from focused cancer gene panes with around 500 genes to
comprehensive cancer exomes with >5000 genes (29). A
bioinformatics method, MSIsensor, has also been developed to
predict MSI status using whole exome data (30). The MSIsensor
prediction showed 100% agreement with gold standard methods
of IHC and PCR for MSI testing in 130 CRC patients.

The main advantage of NGS is its ability to evaluate a large
number and different types of microsatellites including two- to
six-base repeats, and to discover additional microsatellites with
better predictive power. As opposed to PD-L1 and MSI testing,
which are primarily suitable for metastatic colorectal cancer and
other cancers belonging to the spectrum of Lynch syndrome,
NGS method can be used for all tumor types, including non-
Lynch syndrome rare cancers for multiple ICIs. Because NGS is
the primary method to evaluate TMB, which will be discussed
later, another advantage of NGS-based MSI-H/dMMR testing is
the ability to integrate MSI with TMB data for the prediction of
ICIs. The main challenges of NGS testing are its high cost,
technical demands and lack of wide availability. Once these
hurdles are overcome, NGS-based MSI testing will be a more
accurate and sensitive assay than PCR or IHC for determining
MSI status (21).

Future Directions
IHC-dMMR, PCR-MSI-H, and NGS-MSI-H each have strengths
and weaknesses (Table 3). Although agreement has been found
among the three methods, especially in CRC, differences exist
across cancer types. The FDA has granted approval for the use of
Pembrolizumab, nivolumab, and nivolumab–ipilimumab
combination in metastatic solid cancers with MSI-H or
dMMR, but did not specify which assay should be used to
measure MSI status. A clear guideline is needed to help
pathologists make informed decisions about which method to
use in a given clinical situation. The CAP and three collaborating
societies are developing a clinical guideline for testing MSI in
patients with a range of cancer types. The groups opened the
public comment period for the guideline in February, which
ended on March 13, 2020. Formal guidelines are expected to be
re leased soon. The European Socie ty for Medica l
Oncology (ESMO) has already published its recommendations
as of 2020 (28). Taken together, three general considerations can
improve effective utilization of these assays:

a) The first and most important consideration is the prevalence
of MSI in different tumor types. Although MSI-H can be
present in almost all solid tumor types, its prevalence is widely
variable across the different tumor types. MSI testing should
be performed using IHC, PCR, or NGS method for the tumor
types with high frequency of MSI, generally belonging to the
spectrum of Lynch syndrome, including colorectal cancer
(31), endometrial cancer (32), gastric cancer (33), ovarian
cancer (34), and small Intestinal cancer (35). For other tumor
types that do not belong to the spectrum of Lynch syndrome
with low prevalence of MSI or no MSI data available on the
June 2021 | Volume 11 | Article 683419
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reliability of IHC and the PCR method, such as NSCLC,
breast cancer, melanoma, and kidney cancer, NGS-MSI
should be considered because the NGS method can scan all
types of MSI and also couple analyses of MSI with TMB.

b) The second consideration is the order of testing methods. In
consideration of availability, cost and ease of testing, ESMO
recommends IHC-dMMR as the first choice, and then PCR-
MSI when IHC results are indeterminate. However, previous
studies showed that the expression of MMR proteins,
commonly MSH6, can change after neoadjuvant therapy
(36, 37) and that dMMR tumors are more common in
early-stage disease of different cancer types (defined as
stage <IV) compared to advanced and metastatic settings
(38). Given these two variables, the PCR-MSI should be a
preferred testing method over IHC after neoadjuvant therapy
or in advanced tumors. The last choice is NGS-MSI. The
primary reason for recommending NGS-MSI last is due to the
assay complexity, high cost and lower accessibility. Another
complication of the NGS method is the determination of the
appropriate threshold for calling MSI-H. Different NGS
panels with different numbers of genes and different tumor
types with different MSI frequency each impact threshold
determination. It is practically difficult to reach a consensus
threshold, which needs to be determined empirically and
validated clinically for a specific NGS panel.

c) The third consideration is panel selection. For IHC-dMMR,
antibodies for four MMR proteins (MLH1, MSH2, PMS2 and
MSH6) should be used instead of MSH6 and PMS2 only. The
mutations in MLH1 and MSH2 lead to loss of MLH1 and
PMS2, and MSH2 and MSH6, respectively. However, there
are isolated losses of PMS2, MSH2, or MSH6, which supports
the notion of using all four antibodies to improve testing
certainty and accuracy. For PCR-MSI, a panel with five poly-
A mononucleotide repeats (BAT-25, BAT-26, NR-21, NR-24,
NR-27) is recommended over a panel with two
mononucleotides (BAT-25 and BAT-26) and three
dinucleotides (D5S346, D2S123 and D17S250) for higher
sensitivity and specificity. For NGS-MSI, the number of
genes in the panel should be at least >300. A panel of 2000-
5000 genes may be a good compromise between cost and
coverage.
Frontiers in Oncology | www.frontiersin.org 6
TMB
FDA Approval and Rationale
TMB is a measure of the number of gene mutations in cancer
cells and can be reported as the total number of nonsynonymous
somatic mutations in the tumor exome (39) or per megabase
DNA (40). TMB was recently approved for pembrolizumab for
the treatment of adult and pediatric patients with unresectable or
metastatic solid tumors in June 2020. Foundation One CDx assay
(Foundation Medicine, Inc.) was also approved as a companion
diagnostic test.

Several key factors can contribute to elevated TMB, including
cigarette smoke, ultraviolet radiation, and defective damage
response (DDR) genes (40). Among those factors, mutations in
the DNA damage response (DDR) genes are particularly
important, and emerging as independent predictors for ICI
response. Teo et al. (41) observed that mutations in DDR
genes are significantly associated with clinical benefit in
patients receiving immunotherapy. Similar results were also
reported in colorectal cancer (42), urothelial cancer (43), and
serval other cancers (44). For a most recent review in this topic,
please reference Minlin Jiang et al. (45). A high number of
mutations in somatic exonic regions will lead to an increase in
neoantigen production, some of which are immunogenic, and
could then be recognized by T cells, resulting in improved
antitumor immune responses. Consequently, patients with
high TMB likely produce more intensified immune responses
and are more sensitive to ICI treatments.

Different Test Methods and Challenges
There are 2 primary methods for evaluating TMB: WES and
NGS panels. WES-TMB was first demonstrated to have an
association with ICI response and proposed as a predictive
marker for ICI by Snyder et al. (46) and Rizvi et al. (47),
followed by many others (48, 49). These early WES-TMB
studies count only nonsynonymous somatic mutations. TMB-
H (TMB high) was called using different cutoffs varying from
≥7.4 in Esophagogastric cancer and ≥23.1 in NSCLC when the
number of nonsynonymous somatic mutations was reported as
per megabase DNA, and from ≥158 mutations in Advanced
NSCLC to ≥248 mutations in advanced SCLC when whole tumor
exome bases were counted. These different reporting formats and
TABLE 3 | Strengths, weaknesses and recommendations for three predictive MSI-H/dMMR biomarkers for ICI response.

Assays Strengths Weaknesses Recommendations

IHC for
dMMR

• Simple
• Fast
• Cost-effective
• Widely available

• Too many variables
• Hard to determine cut-off
• Relatively low analytic sensitivity

and accuracy

• First choice in general
• Use of all four antibodies
• Use for colorectal cancer and other spectrum of Lynch

syndrome when suitable
PCR for
MSI-H

• Widely available
• Ease of use
• Accurate for colorectal cancer and other

spectrum of Lynch syndrome

• Capture partial MSI profiles
• Low prevalence in some tumor

types

• Use of five poly-A panel
• Use after neoadjuvant therapy or in advanced tumors

NGS for
MSI-H

• Capture full MSI profile
• Suitable for all tumor type
• More accurate and sensitive
• Simultaneous detection of other potential

predictors

• High cost
• Technical demands
• Lack of wide availability
• Need tumor-type specific cut-

off

• The last choice
• >300 genes in the panel
• Standardize technical parameters wherever possible
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cutoff values complicate clinical practice. In addition, the clinical
utility of WES-TMB was limited by high cost, long turn-around
time, technical complication, and availability (40).

To address the WES-TMB limitations, researchers developed
NGS panels with a sufficiently large number of cancer-targeted
genes to predict TMB (50, 51). Early pioneer studies
demonstrated that properly designed and sufficiently large
NGS panels can accurately recapitulate WES-TMB and be
effectively used as an independent predictor of ICI treatment.
Further analyses provided addit ional evidence on
reproducibility, repeatability, and the limit of detection
compared with WES, and demonstrated good agreement
between NGS panels-derived and WES-derived TMB data (52,
53). Importantly, these targeted NGS panels with fewer DNA
bases and relatively simpler assays have improved utility in
clinical settings.

The calculation of TMB has different methods, depending on
the assay adopted. The WES-TMB assays typically consider
nonsynonymous somatic mutations in the analysis, while NGS
panels have generally taken a more comprehensive approach,
such as FundationOne CDx, which includes synonymous and
non-synonymous single-nucleotide variants (SNVs) for
improved assay sensitivity (54), and insertions and deletions
(indels) per area of coding genome sampled, but excludes known
and likely oncogenic driver events and germline SNPs. There is
currently no standard of TMB calculation. The TMB
Harmonization Project is aimed to standardize TMB
calculation and reporting (55–57).

There are two NGS panels commercially available that have
been approved by regulatory bodies: (i) MSK-IMPACT with 468
cancer genes was cleared by the 510K pathway for mutation
profiling in November 2017, and (ii) the FoundationOne CDx
assay with 324 cancer genes was approved by the FDA as a
companion diagnosis for the evaluation of TMB in 2020. These
targeted gene panels can analyze and identify single nucleotide
substitutions, indels, CNAs, and selected gene rearrangements, as
well as genomic signatures including microsatellite instability
(MSI) and loss of heterozygosity in a single assay.

Overall, TMB as a predictive marker for ICI treatment is more
technically challenging than PD-1 and MSI. Many variable
factors can impact TMB estimation and output, including
tumor type (different tumor types biologically have different
TMB (39)), tissue type (FFPE tissue will artificially have more
mutations than fresh frozen tissue), sequencing parameters
(NGS panel content, size and sequencing depth, bioinformatics
pipeline), and the reporting cutoff (55). The wide variation in
TMB estimation and reporting methods across studies have
limited effective adoption of TMB and stressed the need to
standardize assays for determining TMB.

Future Directions
TMB-H is generally predictive of response to multiple forms of
ICIs, but the predictive ability can vary across tumor types and
mutation types. Since the affinity of neoantigen binding to
MHC1 and T cell receptor recognition of neoantigen as foreign
are two determinants of immune response, distinct qualities of
Frontiers in Oncology | www.frontiersin.org 7
neoantigens contribute to ICI response differently. Generally, the
lack of similarity of neoantigen to self-antigens results in an
increased ability to activate T-cells, and thus, predicts response to
ICIs. For example, Merkel cell carcinoma (MCC), renal cell
cancers (RCC), and mesothelioma all have higher response
rates to ICIs than would be anticipated from their TMBs (58)
due to the higher quality of antigens in these tumor types.
Elevated antigen quality results from viral antigens (in MCC),
a high number of indel mutations (in RCC), and complex
chromosomal rearrangements (in mesothelioma) (59). Keeping
these in mind, the below 3 points should be considered in TMB
estimation and reporting:

a) A clinically validated, sufficiently large NGS panel is preferred
over WES. In consideration of clinical utility (low cost,
shorter turn-around time, use of smaller biopsy samples,
higher assay sensitivity, lower technical complexity and
bioinformatics demand), a standardized, commercially
available NGS panel, such as FDA-approved FoundationOne
CDx, is recommended for TMB determination. When
FoundationOne CDx panel is used, ones should follow
approved method for TMB calculation (Douglas B et al.,
2016). The panel should be sufficiently large, including ≥300
targeted genes. These genes should be carefully selected by
including the following: (i) other TMB-related marker genes,
such as POLE whose mutations are associated with TMB-H in
multiple solid tumor types like endometrial, CRC, gastric,
melanoma, lung, and pediatric cancers (60–62), or BRAF and
MET whose alterations are associated with longer duration of
ICI treatment; (ii) other immunotherapy response-related genes,
such as genes for MSI estimate, immune resistant gene, IDO1,
and JAK (4, 5); (iii) multiple types of alterations, such as
mutations, indels, amplifications, CNAs, and structure
variations. Such a panel will be small enough for broader
clinical application, but informative enough to allow
performing multiomic analyses to provide a more
comprehensive, complete, and robust patient biomarker profile
for independent or joint ICI treatment decisions.

b) Weighted calculation for TMB score. Since different types of
alterations have variable immunogenicity, one should not
only focus on the number of mutations, but also consider the
types of mutations when evaluating TMB. Generally, patients
with frameshift indels, transversions, and clonal mutations
are more immunogenic than those with nonsynonymous
mutations (63), transitions (47), and branching or subclonal
mutations (64), respectively. In calculating TMB status, the
index may be expressed as a TMB score. The more
immunogenic types of mutations should be preferably
weighted. By using a TMB score, other factors that also
affect TMB predictive value can also be considered, such as
age (65).

c) Tumor-type specific reporting cutoffs. TMB estimation and
reporting methods are widely variable in scientific
publications. Like PD-L1, there is an urgent need to
standardize current TMB assessment methods, which is
essential for reliable use of TMB as a clinical biomarker for
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ICI response. However, among these variables, some
technically related variations can be addressed by
standardization, such as sequencing depth and gene panel,
while others related to biological variations can be addressed
according to biology. The variation in reporting cutoff is a
typical example of biological variation. Some tumor types
have naturally higher TMB than others (66), and thus require
a different cutoff for reliable and reproducible ICI response
prediction. For example, >16 mutations/Mb is appropriate for
atezolizumab in urothelial carcinoma (67), while >23.1
mutations/Mb is needed for pembrolizumab in NSCLC
(68). In fact, the TMB cutoff varied markedly across the top
20% of each cancer type (66), suggesting that it is unlikely to
be able to use a universal cutoff. The optimal cutoff should be
developed and validated in different tumor types.
NON-FDA APPROVED EMERGING
BIOMARKERS

Promising Mutation Predictive Biomarkers
Inactivation of PTEN
PTEN is ubiquitously expressed protein phosphatase that is one
of the major human tumor suppressors (69). For example, it
dephosphorylates PIP3 to PIP2 and thus inhibits PI3K/mTOR/
Akt signaling axis (70) and serves as the potent regulator of DNA
repair (71). Even a single-allele mutation of PTEN can
irreversibly repress molecular functions of this gene, thus
making a cell susceptible to carcinogenesis (72). Decreased
expression of PTEN is also connected with the sensitivity to
ICIs which can be mediated by lower infiltration of such cells by
T-lymphocytes (73). In lung cancer, mutations of PTEN were
shown to be associated with poor response to ICI therapy (74).

Mutations of POLE
POLE is a subunit of DNA polymerase epsilon that has polymerase
and proofreading activities, and participates in both DNA
replication and repair (75). Mutations in proofreading domain of
POLE are present in 1-12% of all tumors (76, 77) and result in
approximately two orders greater mutation rate, thus directly
influencing TMB (78). Tumors with POLE mutation have more
neoantigens and more infiltrating lymphocytes (79).

Linked Mutations of KRAS and STK11
Somatic activating mutations in 12 and 13 codons of KRAS can
be detected in 5-35% of the patients in different cancer types (80)
and most frequently are associated with poor survival prognosis
(81). These mutations are statistically significantly linked with
the mutations in the STK11 gene (82) that encodes LKB1 kinase
which phosphorylates and activates AMPK, a potent metabolic
regulator (83) that controls mTOR signaling (84). In lung cancer,
up to 30% of tumors may have mutated STK11 (85), and
presence of both STK11 and KRAS mutations is a factor of
poor survival prognosis (86). Inactivation of STK11 is also a
factor of more inert tumor microenvironment and lower
expression of PD-L1 (87).
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In lung cancer patients with mutant KRAS, ICI therapy
showed lack of benefit, in contrast to the wild-type group of
tumors (88). In KRASmutant tumors, less patients responded on
ICI therapy in a STK11-mutated subgroup compared to a TP53-
mutated subgroup (7.4% versus 35.7%, respectively). The same
was observed in clinical trials CheckMate057 (0% vs. 57,1%),
CheckMate-012 (0% vs. 78%) (89), and GEMINI (0% vs. 53%)
(87). This also reflected statistically lower time to progression
(TTP) in patients having both mutations in KRAS and STK11
genes compared to the tumor with only KRAS mutations (90).

In agreement with that, KRAS/STK11 double mutant lung
cancers showed worse survival compared to only STK11
mutants: TTP of ~two months vs. five months, and overall
survival of ~seven months vs 16 months (91). Bad prognosis of
double mutant tumors was relatively independent on PD-L1
expression and was also true for the PD-L1-positive group of
double mutants (90). Interestingly, these mutations can likely
synergistically promote tumor infiltration by T cell suppressing
neutrophils (92).

Gene Signature Predictive Biomarkers
Three FDA-approved predictive biomarkers, PD-L1, MSI/
dMMR, and TMB have played a critical role in guiding ICI
treatment selection. However, each has its limitations. PD-L1 has
limited positive and negative predictive values, MSI-H/dMMR
has a low prevalence in many common metastatic cancers (<5%),
and TMB is hindered by high cost and technical complications.
Additionally, a wide range of response rates have been reported,
such as patients with low TMB, absence of MSI or without PD-1/
PD-L1 expression showing good response, or vice versa. This
unpredictability clearly indicates that immunotherapy response
is also driven by other biomarkers. The identification and
validation of additional predictive biomarkers are needed.
Recently, gene expression-based signatures have emerged as a
new generation of predictive biomarkers for ICI response. Here,
we will discuss four different gene signature biomarkers: T cell-
inflamed gene expression profile (GEP), T cell dysfunction and
exclusion gene signature (TIDE), melanocytic plasticity signature
(MPS), and B cell-focused gene signature.

a) T cell-inflamed gene expression profile (GEP) is one of the
early reported and clinically validated gene signatures for
predicting response to pembrolizumab across multiple solid
tumors (93). Through stepwise validation of several
populations, an 18-gene pan-tumor signature was identified
in 220 patients of nine different tumor types. This signature is
represented by the genes related to IFN-g signaling, cytotoxic
effector molecules, antigen presentation, and T cell active
cytokines, which is a common characteristic of a T cell-
inflamed tumor microenvironment responsive to ICIs.
Across multiple tumor types, data showed that responders
have high level of signature gene expression (a T cell inflamed
phenotype) while non-responders have low expression level
across the signature genes (a non-T cell-inflamed phenotype).
Its predictive value was demonstrated independently in a 96-
patient population with head and neck squamous cell
carcinoma. ROC analysis showed that the 10-gene signature
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has a larger area under the ROC curve than that of PD-L1,
demonstrating that the T cell-inflamed multigene signature
has a better predictive value compared to the commonly used
single gene biomarker, PD-L1.

b) The second promising gene expression panel is the T cell
dysfunction and exclusion gene signature, termed TIDE for
Tumor Immune Dysfunction and Exclusion. Different from T
cell-inflamed gene signature, which captures a favorable
tumor environment for ICI response (a high level of gene
expression in the panel is indicative of response), TIDE
focuses on the loss of T cell functionality, which reflects an
unfavorable tumor environment for ICI response (a high level
of gene expression in the panel is indicative of non-response).
TIDE was developed based on two key mechanisms of tumor
immune evasion (94, 95): dysfunctional infiltrated T cells in
the tumor, and prevention of T cell infiltration into the tumor.
Using large data sets and computational modeling method,
Peng Jiang et al. (96) identified gene signatures that underlie
these two mechanisms of tumor immune escape separately
and integratively.

Using publicly available transcriptome profiles of non-treated
tumors with patient survival outcomes, the authors first used
Cox proportional hazard (Cox-PH) model to test the interaction
of the expression of each gene in tumors with the level of T cell
infiltration (defined as average gene expression of known
regulators of T cell dysfunction) to influence patient survival.
This systematic, statistical interaction test identified signature
genes that affect T cell function and patient survival. The profiles
of these genes are enriched by inflammatory and interferon
response-related pathways and lack of pathways that promote
T cell activation, reflective of T cell dysfunctional phenotype.
Similarly, the authors used the expression profiles of three cell
lines, MDSCs, TAMs, and CAFs that restrict T cell infiltration in
tumors, to model T cell exclusion, and developed a gene
signature of T cell exclusion. Finally, TIDE, an integrated
signature, was developed to predict ICI response. ROC analysis
showed that TIDE has better predictive performance than TMB
and PD-L1 for both anti-PD1 and anti-CTLA4 therapies. In
addition, a lower TIDE score is predictive of longer patient
overall survival.

c) Melanocytic plasticity signature (MPS) was developed by
studying four mouse immunocompetent melanoma models
(M1-M4), which represent major subtypes of human
cutaneous melanoma, and the diversity of clinical responses
to ICIs. M1 and M2 mice had no response to anti-PD-L1 and
sustained tumor growth, M3 mice had modest response
and delayed tumor growth, and M4 had the best response
and significantly longer survival time. By comparing RNA-
seq data of ICI-resistant M1 and M2 and the sensitive M3 and
M4, and subsequent evaluation of response prediction in the
Van Allen dataset, Eva Pérez-Guijarro et al. (97) identified a
45-gene signature predictive to ICI response. Low MPS scores
were significantly associated with responders. In the Van
Allen dataset, 81% of responsive patients can be correctly
predicted by using MPS score. Furthermore, the patients with
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low MPS had longer progression-free survival and overall
survival.
Further analyses showed that the 45-gene signature reflects

the multipotency and differentiation of the melanocytic lineage.
A highMPS score represents undifferentiation and multipotency,
and a low MPS score indicates later stages of melanocytic
differentiation. These data suggest multipotency and
differentiation status of melanoma can predict ICI response,
which represents a novel discovery. In a comparison of predictive
performance among MPS, TIDE, TMB, and PD-L1, ROC
analysis showed that MPS had the best ROC area under the
curve (AUC) value followed by TIDE in the Van Allen and
Hugo–Riaz data sets (97).

d) The B cell gene signature is a recently reported new biomarker
for ICI response. Since current ICI treatments reinvigorate T
cells against tumors, research of predictive biomarkers to ICI
response in the past was largely focused on T cells. Several
recent studies showed that the B cell rich immune cell
population in tertiary lymphoid structures (TLS) of tumors
is a critical discriminative feature of ICI responsiveness and
patient overall survival (97–99). TLS are aggregates of
immune cells and have been associated with increased
patient survival in several cancer types. These recent studies
further demonstrated that significantly enriched B cells
localized in TLS, specifically switched memory B cells (99),
are key predictors of ICI response. Helmink et al. also showed
the presence of high diversity of B cell receptors in responders
compared with non-responders. All these data demonstrated
an active role of B cells and tertiary lymphoid structures
in ICI response, and highlighted a possibility to develop
predictive gene signatures for ICI response focused on
B cells within TLS.

Cabrita et al. (98) constructed a TLS gene signature in
metastatic melanoma. This signature is dominated by B cell-
specific genes and is predictive of ICI response as well as patient
overall survival. Cox regression analysis using several immune
signatures across the four cohorts demonstrated that the TLS
signature has the best predictive performance in the cohorts
treated with anti-PD1. The predictive performance of TLS
signature is independent of TMB. A similar B cell dominated
gene signature was also developed in soft tissue sarcoma (100).
Using the microenvironment cell populations (MCP-counter)
method (101), the authors classified 608 tumors from different
subtypes of soft-tissue sarcoma into five groups (A, B, C, D, and
E) based on the composition of the tumor microenvironment.
An immune-high group E was characterized by the high density
of B cells and TLS. The key determinant of group E was the high
expression of the B cell signature. Once again, the B cell signature
was significantly associated with better ICI response and
improved overall survival.

Of the above 4 gene signatures, the T cell-inflamed, GEP, and
TIDE have superior predictive performance for ICI response
compared to PD-L1, and PD-L1 or TMB, respectively. MPS has
better predictive performance than PD-L1, TMB, and TIDE. The
B cell focused gene signature is a new predictive biomarker, and
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its predictive value has yet to be thoroughly evaluated in relation
to other established biomarkers. Based on currently available
data, the gene expression-based signatures are generally more
robust with enhanced predictive value compared to single gene
or protein markers.

In addition, a proof of concept has been recently reported that
next-generation expression signatures based on molecular
pathway activation profiles (102, 103) using RNA sequencing
data (104) can guide personalized ICI prescription in treatment
refractory tumors (105).
Combinational Predictive Biomarkers
Currently FDA-approved and recently developed gene signature
biomarkers for ICI response fall into two broad categories: one
category is related to tumor intrinsic factors, such as TMB, MSI
and MPS, and the other category is related to tumor extrinsic
factors, including PD-L1, T cell, and B cell gene signatures
(Figure 1). These biomarkers have independent predictive
values for ICI response, but predicted responders across those
biomarkers have a generally low percentage of overlapping,
particularly between these two categories. This lack of
correlation, together with the demonstrated individual
predictive values, indicates that these biomarkers measure
different aspects of complex tumor immunobiology and
capture unique features of ICI response phenotypes. This
suggests that the combination of different biomarkers may
provide complementary or additive effects and lead to an
improved predictive performance. Here, we will review two
combined predictive biomarkers, GEP+TMB and MPS+TIDE,
to demonstrate their improved predictive performance.

1) GEP+TMB. T cell-inflamed GEP and TMB measure T cell
activation (tumor microenvironment) and tumor
Frontiers in Oncology | www.frontiersin.org 10
antigenicity, respectively, representing unique aspects of
tumor immunobiology. To understand the interplay
between these two distinct categories of biomarkers,
Cristescu et al. (106) explored the joint predictive response
to pembrolizumab across 22 tumor types from four
KEYNOTE clinical trials. The individual biomarker
prediction was first performed, followed by classification of
patients into four individual biomarker-defined response
groups (GEPloTMBlo, GEPloTMBhi, GEPhiTMBlo, and
GEPhiTMBhi) using predefined cutoffs for TMB and
GEP. The highest response rate was observed among
patients in the group of GEPhiTMBhi in all four cohorts. No
response was seen in the group of GEPloTMBlo in the pan-
tumor and HNSCC cohorts, and intermediate response rate was
observed in the group of either TMBloGEPhi or TMBhiGEPlo.
These data demonstrated that the combination of two
biomarkers offers higher sensitivity and greater predictive
value compared to a single biomarker. Additionally, the
patients in the GEPhiTMBhi group had longer progression-free
survival time.

The joint utility of the GEP+TMB in predicting ICI response
was further tested in TCGA database using 6384 patients of
matched transcriptome and WES data across a wide range of
tumor types. Consistent with the data derived from KEYNOTE
clinical trials, the patients with GEPhiTMBhi had the strongest
response, and GEPloTMBlo group had no or poorest response to
pembrolizumab, demonstrating that the improved response rate
by joint prediction of GEP+TMB can be generalized across
cancer types.

2) MSP+TIDE. As discussed above, MSP reflects cancer cell
intrinsic factor (multipotency and differentiation), which is not
associated with immune response, while TIDE represents
extrinsic factor (immune phenotype) reflective of the tumor
FIGURE 1 | Intrinsic and extrinsic biomarkers predictive of ICI response. Intrinsic biomarkers are tumor cell-related, extrinsic biomarkers are tumor
microenvironment-related.
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microenvironment. Given these different features, Guijarro et al.
(97) hypothesized that the combination ofMPS and TIDE scores
will increase predictive value. Indeed, ROC analysis showed a
noticeable improvement of the AUC values by MPS+TIDE
compared to any of the single methods in the Van Allen cohort.

The improved ICI response by combining MPS and TIDE
signatures translated into patient survival. Similar to the GEP+TMB
analysis described above, melanoma patients were classified into
three groups based on their MPS and TIDE scores. The low-MPS
and low-TIDE group showed significantly longer PFS and OS,
whereas the high-MPS and high-TIDE group exhibited the poorest
survival in Kaplan–Meier analysis.

Altogether, the results demonstrated that combining cancer
cell intrinsic and extrinsic factor-related gene signatures can
improve the predictability of not only ICI response, but also
patient survival. This integrated predictive biomarker may
represent a future direction for additional biomarker discovery.
FUTURE DIRECTION OF PREDICTIVE
BIOMARKER DISCOVERY

The above analyses cover different predictive biomarkers from
single to complex, DNA to RNA, and neoantigenic to TME-
related. All data suggest that patient response to ICIs is a
complex quantitative trait determined by multiple factors
(Figure 2). Current biomarkers tend to capture a unique
contributing factor of ICI response. Thus, a combination of
biomarkers should offer improved predictive performance to
ICI response. Because of ICI-related toxicities and the high cost
of these agents, current predictive biomarkers with a highly
variable response to ICIs cannot fully meet clinical need. There
is an urgent need to develop a new generation of biomarkers that
can reliably predict ICI response. Based on current knowledge
and available data, an optimal ICI predictive biomarker is an
integrated nucleic acid biomarker signature. This signature can
combine information from different DNA and RNA biomarkers
Frontiers in Oncology | www.frontiersin.org 11
in one single assay to retrieve as many ICI response-related
contributors as possible, from the upstream to downstream of
immune response, from intrinsic to extrinsic factors, and from
TME to neoantigenic aspects. A final combined index score will
be used to predict ICI response, which will overcome potential
conflicting results from different biomarkers in the same assay.
Broadly, this integrated nucleic acid biomarker signature may
include at least the following four categories:

1) TME-related RNA biomarker genes, including key T cell-
inflamed signature genes, T cell dysfunction & exclusion
signature genes, and B cell signature genes.

2) Tumor multipotency and differentiation related RNA
biomarker genes, such as MSP signature genes.

3) Tumor neoantigenicity-related DNA biomarker genes
including frequently mutated core cancer genes for TMB,
DNA mismatch repair genes, and MSI panel.

4) Other high impact genes, such as TGFB1 with a known role in
promoting tumor immune escape and ICI resistance (107–
109), SOX10 with known function in promoting T cell-
mediated tumor cell attacking (110, 111), SERPINB9 with a
demonstrated role in regulating ICI resistance, and POLE/
POLD1 with an established role in contributing to high TMB
in some cancers (54). These high impact genes can come from
both tumor cells and tumor infiltrating immune cells.

To ensure its clinical utility and economic feasibility, this
integrated nucleic acid signature panel should be large enough to
capture all key ICI responsive features and allow calculation of a
reliable TMB, and small enough to be economically and technically
feasible for broad application in daily clinical practice using next
generation sequencing platforms. Because this integrated nucleic
acid biomarker panel can comprehensively analyze DNA and RNA
markers in one assay instead of two, it will have enhanced cost
efficiency, reduced assay time, and require less biological material
(total nucleic acids as input). This integrated assay includes multiple
contributing factors to ICI response, and will likely be more
predictive for immunologically cold tumors or advanced tumors.
FIGURE 2 | Patient response to ICIs is a quantitative trait. Each biomarker only captures a unique feature of the contributing factor (s).
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