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Objective: To evaluate the performance of 2D and 3D radiomics features with different
machine learning approaches to classify SPLs based on magnetic resonance(MR) T2
weighted imaging (T2WI).

Material and Methods: A total of 132 patients with pathologically confirmed SPLs were
examined and randomly divided into training (n = 92) and test datasets (n = 40). A total of
1692 3D and 1231 2D radiomics features per patient were extracted. Both radiomics
features and clinical data were evaluated. A total of 1260 classification models, comprising
3 normalization methods, 2 dimension reduction algorithms, 3 feature selection methods,
and 10 classifiers with 7 different feature numbers (confined to 3–9), were compared. The
ten-fold cross-validation on the training dataset was applied to choose the candidate final
model. The area under the receiver operating characteristic curve (AUC), precision-recall
plot, and Matthews Correlation Coefficient were used to evaluate the performance of
machine learning approaches.

Results: The 3D features were significantly superior to 2D features, showing much more
machine learning combinations with AUC greater than 0.7 in both validation and test
groups (129 vs. 11). The feature selection method Analysis of Variance(ANOVA),
Recursive Feature Elimination(RFE) and the classifier Logistic Regression(LR), Linear
Discriminant Analysis(LDA), Support Vector Machine(SVM), Gaussian Process(GP) had
relatively better performance. The best performance of 3D radiomics features in the test
dataset (AUC = 0.824, AUC-PR = 0.927, MCC = 0.514) was higher than that of 2D
features (AUC = 0.740, AUC-PR = 0.846, MCC = 0.404). The joint 3D and 2D features
(AUC=0.813, AUC-PR = 0.926, MCC = 0.563) showed similar results as 3D features.
Incorporating clinical features with 3D and 2D radiomics features slightly improved the
AUC to 0.836 (AUC-PR = 0.918, MCC = 0.620) and 0.780 (AUC-PR = 0.900, MCC =
0.574), respectively.
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Conclusions: After algorithm optimization, 2D feature-based radiomics models yield
favorable results in differentiating malignant and benign SPLs, but 3D features are still
preferred because of the availability of more machine learning algorithmic combinations
with better performance. Feature selection methods ANOVA and RFE, and classifier LR,
LDA, SVM and GP are more likely to demonstrate better diagnostic performance for 3D
features in the current study.
Keywords: algorithms, area under the curve, lung neoplasms, machine learning, magnetic resonance imaging
INTRODUCTION

Asolitarypulmonary lesion (SPL) is oneof themost commonfindings
on chest radiographs and computed tomography (CT). An increasing
number of pulmonary nodules are detected by CT with the
improvement in lung cancer screening. However, most of these
positive detections are not cancerous (1). The high false-positive rate
can lead to awaste ofmedical resources, additional radiation exposure,
unnecessary patient anxiety, and so on. Recent advances in magnetic
resonance imaging (MRI) techniquesmake it possible to use lungMRI
in routine clinical practice. Published evidence showed that lungMRI
could be a potentially effective screening tool because its performance
was comparable with that of low-dose CT (2), even with a lower false-
positive rate fornodule detection (3).Aconventional sequence, such as
T2 weighted imaging(T2WI), has the potential to detect pulmonary
nodules no less than 6 mm in diameter (4), which is essential for
screening. However, as amorphological sequence, it may have limited
value in distinguishing malignant from benign SPLs.

Radiomics is an emerging field that extracts a large number of
quantitative features from medical imaging and quantifies tumor
heterogeneity related to cellularity, necrosis, and angiogenesis in the
tumor microenvironment (5). Therefore, radiomics provides the
possibility for early and accurate diagnosis of SPLs. Radiomics can
increase the diagnostic accuracy of baseline CT (6). In addition,
studies have shown the potential of radiomics based onCT andMRI
in distinguishing pulmonary lesions (7, 8). However, MR radiomics
research focusing on differentiating SPLs has not yet been reported.
Also, the performance of 2D and 3D CT features in pulmonary
lesions has been shown to be controversial in different studies (9, 10).
However, the performance of 2D and 3DMR features as well as their
corresponding optimal machine learning methods in distinguishing
SPLs has not been discussed. These issues are crucial for further
generalizationofMRradiomics in clinical researchandapplication in
the lung.

The present study aimed to develop and validate a T2WI-based
radiomics classifier to differentiate between malignant and benign
SPLs. Inaddition,differentmachine learningmethodswere evaluated
to achieve the best performance. Furthermore, 2D and 3D features
and their combination with clinical features were compared.
MATERIALS AND METHODS

Data Cohort
This retrospective study was approved by the local ethics
committee of the hospital, which waived the need for patients’
2

informed consent. Preoperative MRI data of 231 patients with chest
lesions from November 2015 to April 2018 were analyzed. The
inclusion criteria were as follows: (a) lesions were measurable on
previous CT scan or T2-weighted imaging; (b) no contraindication
for MR examinations; and (c) patients received no therapies or anti-
inflammatory therapies at least 2 weeks before the MRI scan, and
lesions showed no shrinkage. The exclusion criteria were as follows:
(a) operations or biopsies were not available (n = 27); (b) multiple
lesions were reported (n = 42); and (c) mediastinal or pleural
neoplasms were found (n = 30).

Finally, 132 patients (men and women; age range, 19–78 years;
mean age, 54.9 years) were included in the study. The
histopathological examination revealed 93 malignant lesions (46
adenocarcinoma, 23 squamous carcinoma, 13 small cell carcinoma,
6 lymphoepithelioid carcinoma, 3 mucoepidermoid carcinoma, 1
sarcomatoid carcinoma, and 1 pulmonary synoviosarcoma). Benign
lesions included 7 organizing pneumonia, 6 tuberculosis, 6
granulomatous inflammation, 6 pulmonary cryptococcoses, 4
pulmonary hamartomas, 3 pulmonary aspergilloses, 2 sclerosing
alveolar cell tumors, 2 bronchial cysts with infection, 2 focal
inflammation, and 1 pulmonary adenofibroma. The patients were
randomly divided into two independent groups in a ratio of 7:3. The
training cohort included 92 patients (65/27 = positive/negative),
whereas the independent test cohort included 40 patients (28/12 =
positive/negative).

Image Data Acquisition
All patients were examined with a 3.0-T MRI (Achieva, Philips
Healthcare, Best, The Netherlands) using a body phased-array coil.
Turbo spin-echo T2-weighted (T2WI) imaging was performed
using the following parameters: TR, 992 ms; TE 80 ms; field of
view, 350 × 430 mm2; matrix, 640 × 640; thickness, 5 mm;
gap, 0.5 mm.

Lesion Segmentation
Mass segmentation was performed to select the entire tumor using
open-source software (ITK-SNAP v. 3.6.0, http://www.itksnap.org).
Regions of interest (ROIs) of lesions were segmented manually by
the consensus of two radiologists with 3 and 8 years of experience
(Figure 1). The ROIs included the whole tumor and excluded
visible air regions.

Extraction of Features
The radiomics features were extracted by the Philips Radiomics tool
(Philips Medical Systems, Shanghai, China) based on pyRadiomics
(11). The hyper-parameters were set to default parameters of the
November 2021 | Volume 11 | Article 683587
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PyRadiomic. The details were described on the website: https://
pyradiomics.readthedocs.io/en/latest/features.html. For each ROI, a
total of 1,692 3D and 1231 2D radiomic features, including direct
features, indirect features, Wavelet transform features, and
Laplacian of Gaussian filtered features, were extracted as
described in a previous study (12). The 2D features were
generated using the slice with the maximum area in 3D ROI. The
basic clinical data, sex and age, were included as clinical features.
The flow chart for the data processing is displayed in Figure 2.

Radiomics Feature Selection
and Classifier Building
Building one machine learning model usually consisted of the
following steps (1): normalizing each feature to avoid the effect of
the scale (2); reducing the dimension of the feature space to
remove the information of no use (3); selecting features from the
remained features according to the label; and (4) training a
classifier to map the selected features onto the diagnosis. In each
Frontiers in Oncology | www.frontiersin.org 3
step, different methods could be selected to make a machine
learning pipeline for the final diagnosis.

Three normalization methods [Min-max Normalization
(norm-unit), Z-Score Normalization (norm0center), Mean
Normalization (norm0centerunit)], two dimension reduction
algorithms [principal component analysis (PCA) and Pearson
correlation coefficient (PCC)], three feature selection methods
[analysis of variance (ANOVA), relief, recursive feature
elimination (RFE)], and 10 different classifiers [support vector
machine (SVM), auto-encoder (AE), linear discriminant analysis
(LDA), random forest (RF), logistic regression (LR), LR-least
absolute shrinkage and selection operator (Lasso), Adaboost
(AB), decision tree (DT), Gaussian process (GP), naive Bayes
(NB)] with 7 different feature numbers (confined to 3–9) were
used to build 1260 models for the diagnosis. These methods were
chosen due to their popularity in the literature. More details of
the combination of the pipelines are illustrated in Figure 3. The
number of features was constrained to less than 10% of the
FIGURE 2 | Flow chart for the data processing.
FIGURE 1 | Segmentation of a nodule in the upper right lobe on T2-weighted images.
November 2021 | Volume 11 | Article 683587
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training sample size to build a robust machine learning model
(13). The ten-fold cross-validation on the training dataset was
applied to choose the candidate machine-learning pipeline. The
pipeline was selected as the optimal final model when the area
under the receiver operating characteristic (ROC) curve (AUC)
difference between the training and validation sets on cross-
validation was less than 0.1, and the AUC in the test set was the
highest. Grid search is used for hyperparameter tuning. The search
grid of each classifier was documented in Supplementary Table 1.

Statistical Analysis
The clinical characteristics between the training and testing sets
were compared using the Student t test for continuous variables
and the chi-squared (c2) test for categorical variables. If the
counting variable had a theoretical number <10, it was obtained
by Fisher’s exact probability test. The aforementioned processes
were executed in R software version 3.0.2 (The R Project for
Statistical Computing, Vienna, Austria; http://www.r-
project.org). A P value of <0.05 indicated statistical significance.

The performance of models was evaluated using the ROC
curve, precision-recall(PR) plot, and Matthews Correlation
Coefficient. The AUC-ROC and AUC-PR were calculated for
quantification. The accuracy, sensitivity, specificity, positive
predictive value (PPV), and negative predictive value (NPV)
were also calculated at a cutoff value that maximized the value of
the Youden index. Also, the estimation was boosted 1000 times
to give the 95% confidence intervals (CIs) of AUC-ROC. The
aforementioned processes were implemented with FeAture
Explorer (14) (FAE, v0.2.5, https://github.com/salan668/FAE)
on Python (3.6.8, https://www.python.org/), which is an open-
source software based on scikit-learn (v0.22) (15).
RESULTS

Clinical Characteristics
In general, a statistically significant difference was found in age
(57.54 ± 10.24 vs. 49.23 ± 14.90, P < 0.001) and sex (male/female
Frontiers in Oncology | www.frontiersin.org 4
ratio 69:24 vs. 20:19, P = 0.01) between the malignant and benign
groups. The clinical features of training and test cohorts are
summarized in Table 1. No significant differences in lesion
diameter were found between the training and test sets.
Malignant tumors were more common in upper lobes, men,
and elderly people in the training set (P = 0.039, 0.04, and 0.001,
respectively) and showed a similar trend in the test set in an
insignificant manner (P = 0.667, 0.121, and 0.13, respectively).

Comparison of Different Machine
Learning Classification Models
Figure 4 shows the AUC heat map of 2D and 3D features with
different machine learning methods. The number of models with
AUC greater than 0.7 in both the validation and test groups was
used as an evaluation index. A total of 140 models based on 3D
features (n = 129) and 2D features (n = 11) showed AUC greater
than 0.7 in both groups. For dimension reduction algorithms,
PCA (n = 111) showed higher performance than PCC (n = 29).
In terms of normalization, min-max, Z-score, and mean
normalization had similar performance in 3D features, while
models using only the Z-score (n = 11) showed AUC >0.7 for 2D
features. For feature selection, ANOVA (n = 80) performed the
best followed by RFE (n = 60), while relief had poor performance
(n = 0) in the dataset. As for classifiers, SVM, LDA, LR, GP, and
NB performed better for 3D features, while RF, AB, and GP
performed better for 2D features (Table 2).

Model Performance
The AUC-ROC and AUC-PR of different models are shown in
Figures 5, 6. For 2D features, the model based on six features
with Z-score + PCA + RFE + GP could achieve stable (the
difference in the AUC of the training and validation sets was less
than 0.1) and the highest AUC in the test dataset (training: 0.858;
validation: 0.810; test: 0.740) with a sensitivity of 0.607 and
specificity of 0.833. The model obtained an AUC-PR of 0.846 and
MCC of 0.404. After adding clinical features, the AUC-ROC,
AUC-PR, and MCC in the test dataset were improved to 0.780,
0.900, and 0.574 (sensitivity: 0.893, specificity: 0.667) with a
machine learning pipeline of Z-score + PCA + ANOVA + SVM.
FIGURE 3 | Combination of the pipelines for radiomics analysis.
November 2021 | Volume 11 | Article 683587
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For 3D features, the model based on nine features with Min-
max + PCA + ANOVA + GP could achieve stable and the highest
AUC (training: 0.858; validation: 0.797; test: 0.824) with a
sensitivity of 0.643 and specificity of 0.917. The model
obtained an AUC-PR of 0.927 and MCC of 0.514.
Incorporating clinical features with 3D radiomic features
slightly improved the AUC-ROC of the testing dataset (AUC =
0.836, sensitivity: 0.821, specificity: 0.833), with an AUC-PR of
0.918 and MCC of 0.620.

For the joint 2D and 3D features, the model based on nine
features with Z-score + PCC + ANOVA + SVM could achieve
stable and the highest AUC (training: 0.770; validation: 0.737;
test: 0.813) with a sensitivity of 0.607 and specificity of 1.000. The
Frontiers in Oncology | www.frontiersin.org 5
model obtained an AUC-PR of 0.926 and MCC of 0.563. The
clinical statistics of the independent test dataset are summarized
in Table 3. The hyperparameter settings of each classifier used in
final models were provided in Supplementary Table 2.
DISCUSSION

The identification of optimal machine learning methods is
essential for stable and clinical application (16). The present
study provided a comprehensive and detailed assessment of
machine learning approaches and explored the diagnostic value
of multiple models including 2D, 3D radiomics models, and
FIGURE 4 | AUC heat map in each dataset showed the performance of 2D and 3D features combined with different machine learning methods in distinguishing
solitary pulmonary lesions. It can be clearly seen that the 3D feature group has much more machine learning combinations with higher AUC than 2D feature group in
the test dataset. AB, Adaboost; AE, auto-encoder; ANOVA, analysis of variance; DT, decision tree; FN, feature numbers; GP, Gaussian process; LASSO, least
absolute shrinkage and selection operator; LDA, linear discriminant analysis; LR, logistic regression; NB, naive Bayes; PCA, principal component analysis; PCC,
Pearson correlation coefficient; RF, random forest; RFE, recursive feature elimination; SVM, support vector machine; Unitnorm, Min-max Normalization; Unit with
Zerocenter, Mean Normalization; Zscorenorm, Z-score normalization.
TABLE 1 | Clinical features of training and test cohorts.

LABEL Training cohort Test cohort

benign malignant P-value benign malignant P-value

N 27 65 12 28
Age 48.22 ± 15.05 57.57 ± 10.71 0.001 51.50 ± 14.98 57.50 ± 9.26 0.13

Diameter
(cm)

3.59 ± 2.54 4.51 ± 2.60 0.126 3.42 ± 2.28 4.60 ± 2.21 0.131

Gender 0.04 0.121
Male 15 (55.56%) 50 (76.92%) 5 (41.67%) 19 (67.86%)
Female 12 (44.44%) 15 (23.08%) 7 (58.33%) 9 (32.14%)

Location 0.039 0.677
Other lobes 20 (74.07%) 33 (50.77%) 6 (50.00%) 12 (42.86%)
Upper lobe 7 (25.93%) 32 (49.23%) 6 (50.00%) 16 (57.14%)
November 2
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combinations of clinical and radiomics models based on MR
T2WI in noninvasively differentiate SPLs. Our results
demonstrated that the T2WI-based radiomics model showed
potential in differentiating malignancy from benign SPLs. The
3D radiomics features were better than the 2D features in
differentiating SPLs. The optimal machine learning methods
were not consistent in different scenarios or with different
features included.

Both 2D and 3D features have been employed in previous
radiomics researches. A previous CT study suggested that 2D
features were superior to 3D features in predicting the
prognosis of non-small cell lung cancer (10). However, in
Frontiers in Oncology | www.frontiersin.org 6
some other studies, 3D features demonstrated better
predictive performance (17, 18). In the present study, the
number of extracted 2D radiomics features was less than that
of 3D features because 2D features were extracted based on a
single slice, thus losing the spatial information within lesions.
Therefore, some features reflecting the spatial distribution of
voxels became unavailable. The study found that the radiomics
signature derived from 3D features outperformed the signature
from 2D features, indicating that the 3D volumetric ROI
contained more comprehensive information than 2D ROI
and therefore had a better diagnostic performance. Although
joint 2D and 3D features showed a higher AUC in a previous
FIGURE 5 | Receiver operating characteristic curves for 2D features, 2D + clinical features, 2D + 3D features, 3D features, and 3D + clinical features in
distinguishing malignant from benign solitary pulmonary lesions.
TABLE 2 | The number of models with AUC greater than 0.7 in both validation and test groups.

AUCval > 0.7 &AUCtest > 0.7 AUCval> 0.7 &AUCtest > 0.8

3D features 2D features 3D features 2D features

Dimension reduction PCA 101 10 22 0
PCC 28 1 1 0

Normalization Min-max 36 0 13 0
Z-score 45 11 1 0
Mean 48 0 9 0

Feature selection ANOVA 75 5 17 0
RFE 54 6 6 0
Relief 0 0 0 0

Classifier SVM 24 0 5 0
AE 0 0 0 0
LDA 33 0 3 0
RF 0 5 0 0
LR 41 0 3 0
LR + LASSO 0 0 0 0
AB 0 4 0 0
DT 0 0 0 0
GP 23 2 12 0
NB 8 0 0 0
Nov
ember 2021 | Volume 11 |
AUC, area under the curve; PCA, principal component analysis; PCC, Pearson Correlation Coefficients; ANOVA, analysis of variance; RFE, recursive feature elimination; SVM, support
vector machine; AE, auto-encoder; LDA, linear discriminant analysis; RF, Random forest; LR, logistic regression; LASSO, least absolute shrinkage and selection operator; AB, Adaboost;
DT, Decision Tree; GP, Gaussian Process; NB, Naive Bayes.
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study (9), they failed to show superiority over 3D features in the
present study. Instead, the performance of joint features was
similar to that of 3D features. This finding suggested that the
joint features contained information on both 2D and 3D
features, while 2D features could not provide new
information to 3D features in the present cohort .
Accordingly, the classification performance of the joint model
failed to show improvement.

In this study, the dimensionality reduction method of PCA
was better than PCC, probably because each feature was linearly
independent after PCA. Therefore, information could be
expressed with fewer features, and thus the performance was
stable. However, PCA made variables less interpretable.
Therefore, PCA was not suitable for cases where feature
“interpretability” was emphasized. In addition, In this study,
the three normalization methods (min-max, Z-score, and mean
normalization) showed little difference in 3D features,
indicating that all these three can be used as effective
normalization methods.

Our results showed that the feature selection methods
ANOVA and RFE, and the classifier LR, LDA, SVM and GP
yield relatively better diagnostic performance for 3D features
compared with other methods. This explains the optimal
machine learning approach reported in some previous studies
(14, 19). Song et al. (14) reported that ANOVA feature selection
Frontiers in Oncology | www.frontiersin.org 7
and an LDA classifier yielded the highest AUC in classifying the
clinical-significant prostate cancer (CS PCa) and non-CS Pca.
Wang et al. (19) reported that RFE combined with SVM
performed the best in distinguishing benign and malignant
pulmonary lesions. These also suggested that the optimal
machine learning methods were not consistent in various
scenarios. Besides, we found that the optimal machine learning
strategy was nonunique and different among 2D, 3D, and joint
features, indicating that the optimal method might vary
depending on the features included.

The lesion diameter did not differ between benign and
malignant groups. This is due to the inclusion of inflammatory
lesions in the benign group, which could be patchy and thus have
a large diameter. Besides, the results showed that elderly patients
and men were predisposed to lung malignancies, which was
consistent with the findings of a previous study (20). Integrating
these clinical data into the radiomics model further increased the
accuracy of the model, indicating that clinical and radiomics
features contained complementary information needed for
differential diagnosis. However, the improvement after adding
clinical data was not significant in the present cohort. This might
be because the difference in sex and age between malignant and
benign groups was not significant in the test dataset. The
radiomics models (especially with 3D features) still performed
well under such circumstances, which suggested that the
TABLE 3 | Clinical statistics in the independent test dataset.

AUC-ROC 95% CI AUC-PR MCC Sen Spe PPV NPV P-value

2D features 0.740 0.716-0.800 0.846 0.404 0.607 0.833 0.895 0.476 <0.001
2D features + Cli 0.780 0.763-0.81 0.900 0.574 0.893 0.667 0.862 0.727 <0.001
3D features 0.824 0.808-0.851 0.927 0.514 0.643 0.917 0.947 0.524 <0.001
3D features + Cli 0.836 0.821-0.883 0.918 0.620 0.821 0.833 0.920 0.667 <0.001
Joint 2D&3D features 0.813 0.796-0.833 0.926 0.563 0.607 1.000 1.000 0.522 <0.001
Novembe
r 2021 | Volum
e 11 | Article
AUC, area under the curve; ROC, receiver operator characteristic curve; Cli, clinical features; CI, confidence interval; PR, precision-recall plot; MCC, Matthews Correlation Coefficient; Sen,
sensitivity; Spe, specificity; PPV, positive predictive value; NPV, negative predictive value.
FIGURE 6 | The precision-recall plots of optimal models based on different features.
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radiomics models had the potential to differentiate SPLs in
patients with an atypical clinical history (e.g., lung cancer in
young patients).

The present study found that somemodels had pretty high AUC
in the training group but relatively lower AUC in the validation or
test group (e.g., the classifier RF and AB achieved AUC of 1.0 in the
training group). This could be attributed to overfitting and should
be avoided. This finding confirmed that it was necessary to have
independent datasets to test the real performance of the developed
radiomics model. Based on the experience, it was preferred that the
difference in AUC between the training and validation or test
groups was less than 0.1, indicating that the model was more
stable. In the present study, the final models had good
discrimination efficiency in the training cohort and showed
similar performance in the validation and test groups, suggesting
that the models developed in this study were robust.

Previous studies conducted on CT demonstrated that the
radiomics model was helpful in distinguishing pulmonary
lesions (8, 21–23). Chen et al. (23) found that the accuracy of
the radiomics signature in benign or malignant classification was
84% with a sensitivity of 92.85% and a specificity of 72.73%. Choi
et al. (22) developed a radiomics model with an accuracy of 84.6%,
which was 12.4% higher than that of lung-RADS. The
performance of the proposed model in the present study was
relatively satisfactory and promising, which was similar to that
reported in CT radiomics studies. MRI showed great potential in
lung application with the advantage of radiation-free and multi-
parametric imaging. Recently, pulmonary nodule characterization
using MR is recommended for clinical use (24). Nonetheless, the
application of MR radiomics in assessing lung diseases is in the
initial stage. Therefore, the potential clinical significance of our
research is that, for one thing, it provides a non-invasive method
that may help to increase the accuracy of MR routine sequence in
the differentiation of SPL, for another, it lays a theoretical basis for
more clinical applications of MR radiomics in the lung in
the future.

This study had several limitations. First, the retrospective
study design was subject to potential selection bias. Second, PCC
threshold 0.9 has been used in previous studies to screen
radiomics features (25, 26). In this study, we used a threshold
value lower than 0.9 to more rigorously filter out redundant
features. However, a seemingly arbitrarily chosen value of 0.86
was used since in the software we used, PCC can only be set as
0.86 by default. Third, the study included only T2WI to reduce
the impact of parametric changes because its scanning parameter
remained consistent in all patients while other sequences did not.
However, other sequences such as T1W contrast enhancement,
diffusion-weighted imaging, and ultrashort TE MRI (27) could
provide valuable information and should be included in future
studies. Fourth, lesion segmentation was not automatic in the
present study and thus could be susceptible to potential human
error. Finally, the sample size was relatively small. Therefore, a
study with larger sample size and external validation from
another institute is needed.

In conclusion, the present study developed and validated a
radiomics model based on T2WI that might serve as a promising
Frontiers in Oncology | www.frontiersin.org 8
tool for noninvasive discrimination of SPLs. The 3D features
were better than 2D features in differentiating SPLs and
performed well in populations with different clinical
characteristics. Therefore, 3D segmentations are recommended
for further MR radiomics researches. Combining radiomics
features with clinical data could further improve model
performance. Nonetheless, the optimal machine learning
method might not be consistent in different scenarios or with
different features involved.
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