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Malignant pleural mesothelioma (MPM) is a rare and aggressive malignancy with limited
therapeutic options beyond surgery and cytotoxic chemotherapy. The success of immune
checkpoint inhibition has been found to correlate with expression of immune-related
genes such as CD274 (PD-L1) in lung and other solid cancers. However, only a small
subset of MPM patients respond to checkpoint inhibition, and this response has been
varied and unpredictable across several clinical trials. Recent advances in next-generation
sequencing (NGS) technology have improved our understanding of the molecular features
of MPM, also with respect to its genetic signature and how this impacts the immune
microenvironment. This article will review current evidence surrounding the interplay
between MPM genetics, including epigenetics and transcriptomics, and the
immune response.
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INTRODUCTION

Malignant pleural mesothelioma (MPM) is a rare and aggressive tumor of the pleural cavity. It
affects approximately 3,000 new patients per year in the United States, and median survival
following diagnosis ranges from 7 to 13 months (1, 2). First-line treatment consists of cytotoxic
chemotherapy either in the neoadjuvant or adjuvant setting (3). Given the success of immune
checkpoint inhibition in other solid tumors, the use of these agents is being investigated in MPM.
Unfortunately, few MPM patients respond to current checkpoint inhibitor regimens (4, 5) and
reliable predictive biomarkers for response are lacking (6). A deeper understanding of the immune
microenvironment in MPM is required to improve the way immunotherapy is applied in these
patients. In this review, we explore the interplay between the complex molecular features of MPM
and the immune response.
THE IMMUNE MICROENVIRONMENT IN MPM

Tumor Development
MPM is believed to arise in the context of chronic inflammation (7). It is associated with asbestos
exposure in 70-90% of cases (8). Over decades, asbestos or other mineral fibers can cause both direct
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cytotoxicity and genotoxicity, generate free radicals, and lead to
chronic inflammation through cytokine dysregulation (9, 10).
This in turn results in immune activation, propagating the
inflammatory environment and contributing to epigenetic and
genetic alterations in mesothelial cells, and eventual malignant
transformation (11). MPM may also arise in the absence of
prolonged inflammation, particularly in young female patients or
those with germline variants in genes such as BRCA1 associated
protein 1 (BAP1) and BLM RecQ Like Helicase (BLM) (12, 13).
However, MPM tumorigenesis under these circumstances is rare
and remains incompletely understood.

Despite evidence for the typical role of inflammation in MPM
oncogenesis, tumor survival requires an element of immune
evasion or immunosuppression: the tumor microenvironment
is believed to be highly immunosuppressive in MPM (11).
Consequently, the composition of the immune cell infiltrate,
including macrophage phenotypes and lymphocyte
subpopulations, has been investigated in several studies.

The Immunosuppressive Phenotype
The interactions between myeloid cells, particularly tumor-
associated monocytes/macrophages (TAMs), and lymphoid cells
regulate the local antitumor immune response. In particular,
different macrophage phenotypes can shape the immune
microenvironment in divergent ways: classically activated M1
macrophages promote T cell proliferation and antitumor activity,
while alternatively activated M2 macrophages exert
immunosuppressive effects via cytokines such as IL-6 and IL-10
(14). Prevalence, function, and prognostic implications of these cell
types have been extensively investigated in MPM (11).

To study the myeloid infiltrate in MPM tumors, Burt and
collaborators (15) performed immunohistochemistry (IHC) for
CD68, a macrophage surface marker, in 52 MPM tumors. They
found that macrophages comprise a significant (27% ± 9%)
proportion of tumor area on average. The same group found
that the numbers of preoperative circulating monocytes and total
white blood cells (WBC) were higher in non-epithelial compared
with epithelioid MPM. In addition, higher preoperative
monocyte counts were correlated with overall shorter survival
in all patients regardless of histology (HR 3.98 [2.64-5.93]
p<0.001). Successively, Ujiie and collaborators (16)
demonstrated that beyond macrophage prevalence, the
proportion of M2 macrophages specifically influences
prognosis. Within the tumor, monocytes differentiate into
immunosuppressive macrophages via the CSF1R pathway in
response to M-CSF (17, 18) and potentially IL-34 secretion by
tumor cells (19). Furthermore, IHC analysis for a panel of
immune-related markers was performed on 395 MPM tumors
across the histologic spectrum. Shorter survival was associated
with increased CD163/CD8 (N=22) and CD163/CD20 (N=48)
ratios, which are indicative of an M2 predominance. A separate
IHC-based analysis in epithelioid tumors alone showed a similar
decrease in survival with higher CD163/CD68 ratio (Pearson r
−0.72, p<0.05), demonstrating the deleterious effect of M2
polarization (14). Using bulk RNA-seq data, Bueno and
collaborators (20) found that the M2 macrophage to T cell
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ratio based on the expression levels of 41 genes was predictive
of reduced overall survival. In addition, the expression levels of
the 22 genes associated with M2 macrophage phenotype were
estimated to be higher in sarcomatoid tumors confirming
previous observations of higher number of macrophages in
non-epithelioid tumors.

To characterize the lymphoid infiltrate in MPM, Awad and
collaborators (21) utilized a novel method for comprehensive
immune profiling using flow cytometry in 43 MPM tumors
annotated with programmed death ligand 1 (PD-L1) IHC
status. PD-L1–positive and non-epithelioid tumors showed a
significantly greater proportion of infiltrating T cells than PD-
L1–negative and epithelioid tumors (21). In addition, PD-L1–
positive tumors exhibited considerable immunophenotypic
variability across samples, with a higher proportion of CD8+
memory T cells (p = 0.007), higher CD8+ effector memory T cells
(p = 0.03), and a lower proportion of CD8+ effector T cells (p =
0.001) than the PD-L1 negative tumors. Moreover, PD-L1
expression was shown to be associated with increased CD8 T
cell proliferation (based on Ki67+ status) and with increased
proportion of Treg infiltration compared to PD-L1 negative
tumors (21). This study suggested that the immunophenotypic
variability observed across PD-L1 samples may be responsible
for the minority of PD-L1–positive mesotheliomas likely to
respond to pembrolizumab. Another study by Combaz-Lair
and colleagues (22) examined the association between PD-L1
staining, TLR3 expression and immune infiltration by IHC in 58
MPM FFPE specimens. The authors demonstrated, using two
different antibodies, that overall PD-L1 expression was increased
in sarcomatoid tumors compared with other histologic types. A
correlation between PD-L1 expression on infiltrating
lymphocytes and PD-L1 expression on tumor cells was also
found (p ≤ 0.001 for both antibody clones). In addition, a
correlation between PD-L1 expression on lymphocytes and
CD3 and CD8 expression was found, but there was no
association between PD-L1 expression and immune infiltrate
density identified in this study. Increased PD-L1 expression was
associated with reduced unadjusted survival for one clone
(SP142, log-rank p=0.016) but not the other (E1L3L, log-rank
= 0.022) (22). A different study characterized 93 treated and 65
chemo-naïve MPM cases by tumor microenvironment (TME)
and PD-L1 status, respectively (23). Non-epithelioid tumors
showed higher cytotoxic T cell infiltration, higher macrophage
infiltration, and lower CD4+ T cell levels than epithelioid
tumors; they also showed higher levels of tumor PD-L1
expression. The authors also demonstrated an association of
these features with aggressive histopathological characteristics
including necrosis and tumor grade. In another IHC analysis of
88 MPM tumors, PD-L1 was expressed regardless of the MPM
histologic subtype, but both PD-L1 positive tumors and
sarcomatoid MPM showed an increase of stromal CD4+ and
CD19+ lymphocytes. In contrast, epithelioid tumors were
associated with a higher proportion of CD8+ cells (24).

In addition to their effect on the TIL composition, the relative
composition of the lymphoid infiltrate itself was found to be an
independent predictor of outcomes. The balance between CD4
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and CD8 T cells is key in this respect (24, 25). Fusco and
collaborators (24) analyzed 88 MPM tumors. In this study,
CD4+ cells correlated with improved prognosis (HR 0.48
[0.24-0.96] p=0.036), while CD8 infiltration correlated with
poor prognosis (for low CD8, HR 0.44 [0.27-0.72] p=0.0012).
Consequently, a high stromal CD4/CD8 ratio was found to be an
independent predictor of longer survival in a multivariate model
accounting for histology and PD-L1 status (24). Moreover,
associations between tumor infiltrating lymphocytes (TIL) and
survival were observed to change in presence of systemic therapy.
A separate analysis of 32 MPM specimens, resected post-
neoadjuvant chemotherapy, demonstrated that patients with
high levels of CD8+ tumor-infiltrating lymphocytes by IHC
had longer survival compared with those with low levels (3-
year survival: 83% vs. 28%; p = 0.06) (26).

In summary, lymphoid and myeloid cells comprise a
significant portion of the MPM microenvironment. Non-
ep i the l i o id h i s t o l og i c sub types o f t en exh ib i t an
immunosuppressive phenotype, which correlates with shorter
survival. However, there remains significant variability even
among histologically similar tumors and further work is
needed to explore how this variability may influence
treatment response.

Genetic and Epigenetic Effects on the
Immune Response
The genetic intratumor heterogeneity is crucial for cancer
invasion, proliferation and resistance to therapy and is closely
related to the TME (27). The epigenetic and genetic landscape of
MPM is characterized by frequent chromosomal losses and a
relatively low number of somatic mutations compared to other
solid tumors (20). Potential relationships between genome-level
features and immune microenvironment in MPM have been
investigated including associations with epigenetic, structural/
chromosomal, and gene-specific alterations.

Epigenetic modifications determine changes in gene
expression without altering the DNA sequence. Epigenetic
changes have been associated with tumor progression and poor
outcomes in a diverse array of tumors (28–30), and in MPM have
been linked to alterations of the tumor-infiltrating immune cells.
Epigenome-wide association analyses of a cohort of 159 asbestos-
exposed patients with MPM identified the methylation of the
single-CpG marker, cg03546163, located in the 5’ untranslated
region of the FKBP5 gene, as associated to survival (31). This
marker showed better performance compared with the
traditional inflammation scores, lymphocyte-to-monocyte ratio
(32), generally used as a prognostic biomarker in MPM.

A similar study focused on immune system-related genes was
conducted comparing 163 MPM patients with 137 healthy
controls. Several signatures were identified including significant
differential methylation of the CpG regions of LIME1 (involved in
lymphocyte signaling), CXCR6 (associated with T cell
localization), TOLLIP (related with IL-1 receptor trafficking),
and TNFAIP6 (involved in inflammation) (33). These data
supported the hypothesis that changes in the DNA methylation
and in the TME may be associated with asbestos exposure.
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Chromosomal instability may result in gross karyotypic
alterations. It has been related to cancer immunogenicity (27),
and is a common feature of MPM (34, 35). Genome-wide copy
number analysis performed in 113 MPM tumors with IHC data
for PD-L1, CD4, CD8, and FOXP3 was used to compute the
percent genome aberration (PGA) for each sample as total count
of base pairs involved in copy number gains or losses divided by
the total length of the genome in base pairs (36). Epithelioid
tumors showed a significantly higher PGA than non-epithelioid
tumors, but PGA did not correlate with PD-L1 status. Samples
with lower PGA had significantly higher CD4+ and CD8+ T-cell
infiltration indicating that chromosomal instability may be
associated with immune infi l trat ion. Chromosomal
rearrangements have also been shown to have immunologic
implications through expression of neoantigens in MPM (37).
Mansfield and collaborators (38) performed mate-pair
sequencing, RNA-seq, T cell receptor (TCR)-seq, and major
histocompatibility complex (MHC) peptide binding assays to
assess structural variants of chromosomes and predict
neoantigens using 28 specimens from treatment-naïve MPMs.
They identified 1535 chromosomal rearrangements, of which
637 (41.5%) resulted in novel gene fusions, leading to 179
potential novel amino acid sequences potentially drive the
expression of neoantigens. In addition, the increase in
predicted neoantigens was correlated with clonal expansion of
tumor-infiltrating T cells. Spatial heterogeneity in MPM has
shown to affect TIL clonality in the context of neoantigenicity. In
a study of 6 MPM tumors sampled at three distinct anatomic
sites each, increasing neoantigen load correlated with oligoclonal
TIL expansion, as well as increased cytotoxic T cell activity. In
addition, heterogeneous mutation patterns across sites with
associated differences in immune microenvironment signatures
were identified (39). A multi-region, longitudinal whole exome
and T-cell receptor sequencing analysis was conducted on 69
specimens from nine MPM tumors before and after dasatinib
treatment. It was found that mutation profile among sites was
relatively homogeneous (>80% concordance), but T-cell clonality
varied widely particularly after treatment (40).

Growing data suggest that mutations in specific genes
influence the immune response (41). BAP1 is one of the most
frequently mutated genes in MPM (20), and the impact of BAP1
mutations on the immune system has been investigated. An
analysis of 43 MPM tumors found no significant differences in
the immune cell infiltration between BAP1 mutant versus wild-
type MPM (21). In peritoneal mesothelioma, a multi-omic
analysis of 19 tumors identified an association between
inflammatory TME and haploinsufficiency of BAP1 .
Specifically, BAP1 deleted tumors were found to have strong
cytokine signaling and upregulation of the innate immune
response based on gene set enrichment analysis. In contrast,
tumors displaying intact BAP1 had upregulation of adaptive
immunity and MHC-I/II antigen presentation (42).
Furthermore, tumors with deleted BAP1 showed a lower
proportion of plasma cells, natural killer (NK) cells, and B cells
but higher mast cell and T cell infiltration, as well as higher
expression of genes with a known role in immune checkpoint
June 2021 | Volume 11 | Article 684025
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modulation (PD1, PD-L1 CD80, CTLA4, LAG3, and ICOS),
compared with tumor with wild-type BAP1. This finding was
not suppor t ed by the TCGA ana ly s i s in p l eu ra l
mesothelioma (42).

Single gene mutations may also influence the antitumor
response through neoantigen formation and modulation of
immune and inflammatory signaling pathways. Bueno and
collaborators (20) analyzed somatic alterations in 98 MPMs
with paired exome and RNA-seq data and found that 59% of
1,493 mutations resulted in MHC class I-binding peptides.
Further, the more frequently mutated genes BAP1, NF2, and
TP53 each resulted in multiple predicted neoantigens (20).
CDKN2A is another frequently mutated gene in MPM (20),
and is located <1Mb from several interferon genes raising the
possibility that prognostically significant loss of IFN gene
expression may reflect a “passive hitchhiking event” associated
with CDKN2A deletion in cancer (43). Type I interferon (IFN-I)
signaling is known to play a role in antitumor immunity (44). An
integrative analysis of the association between IFN gene
alterations, CDKN2A loss, and in vitro oncolytic virus
sensitivity was performed. A deletion of IFNB1 was identified
in 17/57 (30%) MPM short-term cell lines with homozygous
deletion of CDKN2A, and CDKN2A loss in 17/18 (94%)
established cell lines with homozygous deletion IFNB1.
Utilizing the TCGA database of 87 patients with MPM,
homozygous deletions of IFNA2 and IFNB1 were found in
18.4% and 9.2% of patients respectively. Furthermore,
homozygous deletion of IFN-I genes resulted in more frequent
sensitivity of MPM cell lines to oncolytic virus therapy (45).
While a link between IFN signaling and immunotherapy
response has not been established in MPM, it has been
observed in other cancers (43).

Heterogeneity of Gene Expression
Associated With Immune Checkpoints
Checkpoint molecules such as programmed-death 1 (PD-1) and
cytotoxic T lymphocyte associated antigen 4 (CTLA4) have been
recognized as key regulators of oncologic immune evasion
through their role in immunosuppression (46). Protein
expression of checkpoint molecules by IHC such as PD-L1 are
often used as prognostic biomarkers to guide response to
checkpoint inhibition in several solid cancers (47). However,
in MPM, similar analyses have shown inconsistent results
(6, 48, 49). In contrast, characterization of the immune
microenvironment in relation to checkpoint pathways using
high-throughput methodologies has led to prognostic insights
both in MPM and other solid tumors (50, 51).

Unsupervised analysis of RNA-seq data from 284 MPMs
identified a continuum of molecular profiles which correlate
with prognosis (50). The majority of variation was found to be
related to immune checkpoint and angiogenic pathways. Two
profiles were identified to be associated with poor prognosis: one
immunologically active characterized by high lymphocyte
infiltration and high immune checkpoint expression, and one
less activated profile with low lymphocyte infiltration. Both were
characterized by high expression of pro-angiogenic genes. In
Frontiers in Oncology | www.frontiersin.org 4
contrast, a “VEGFR2+/VISTA+” profile was associated with
better prognosis, despite having also highly angiogenic features.
RNA expression of VISTA, a negative checkpoint regulator, was
found to be highly expressed in epithelioid MPM in a separate
well-annotated cohort of 74 untreated MPM specimens (52).

Blum and collaborators (51) performed an extensive multi-
omic analysis using several public MPM transcriptomic datasets.
Two signatures (E/S scores) were identified to discriminate
epithelioid-like and sarcomatoid-like tumors within a
continuum or “histo-molecular gradient” of MPM samples
with epithelioid and sarcomatoid tumors at the two extremes.
They found that expression of most immune checkpoints
correlated with increased S-score, including TNFSF4 and its
receptor TNFRSF4, CD80, and PD-L2, as well as CD274 and
CTLA4. A positive association was found between the S-score
and IDO1, an immune modulator. In contrast, the E-score was
associated with TNFSF14 and VISTA expression. Tumors with
higher S-score were associated with increased T cell and
monocyte infiltration, while E-score was associated with
increased NK cell infiltration (51).
DISCUSSION

Tumor-immune interactions are complex regardless of the
tumor type. As immune checkpoint inhibition gains
importance in the treatment of solid tumors including MPM,
greater emphasis is being placed on immune characterization
and identification of predictive biomarkers for treatment
response. Several studies have tried to characterize the immune
TME of MPM and linked it to clinical and genetic features.

In general, MPM displays an immunosuppressive
microenvironment mediated by M2 macrophages and
characterized by high lymphocyte infiltration (Table 1) (15,
25). This immunosuppressive phenotype is more common in
non-epithelioid MPM (20) and as a result the degree of overall
macrophage infiltration has been associated with shorter survival
in non-epithelioid MPM alone (14, 15). Across all histologic
subtypes, however, an increasing balance of M2 macrophages
relative to lymphocyte infiltration has been shown to be
predictive of shorter survival (16, 20). Among lymphocytes, an
increased proportion of CD8 relative to CD4 T cells has been
associated with shorter survival (16, 24, 25). However, this effect
was found to be reversed following neoadjuvant chemotherapy
in one early study (26). Post-treatment immunologic alterations
remain an area of active study.

Investigations of the effect of checkpoint molecule expression,
including PD-L1, are also ongoing. Studies have shown that
higher PD-L1 expression is associated with shorter survival (25).
Non-epithelioid tumors exhibit higher PD-L1 expression than
epithelioid tumors (23), and there is substantial transcriptomic
variability among the expression of checkpoint molecules along
the epithelial-to-mesenchymal spectrum observed in a large
series of MPM transcriptomes (51).

Genetic alterations in MPM have also been associated with
different immune subtypes. BAP1 mutations have been linked to
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upregulation of the local innate immune response in peritoneal
mesothelioma (42), but no significant association has been
shown for pleural mesothelioma in either TCGA-based or
other analyses (52). In MPM, aneuploidy is quite common and
the creation of novel gene products through chromosomal
rearrangements has significant immune implications (27, 38).
Epigenetic alterations have been identified, particularly in
peripheral DNA specimens in asbestos-exposed MPM cases,
and have been associated in limited contexts with altered
inflammatory and immune pathways (33). However, further
work is needed to assess for causal relationships between these
findings and specific changes in the tumor microenvironment.
Gene expression is a widely studied approach to predicting the
immunologic behavior of a given tumor. Association of both
transcriptomic information and IHC with clinical data has
revealed distinct patterns of immune activation or suppression
(20, 50–52).

There remain several gaps to be addressed to link genetic
signatures to the TME, and especially to predict clinical
outcomes and guide therapy. Current and future work with
high-resolution sequencing technology will identify unique
immune programs to associate the genetic characteristics of
Frontiers in Oncology | www.frontiersin.org 5
individual tumor to specific immune phenotypes. Next-
generation sequencing and machine learning are being applied
to develop polygenic scoring systems predictive of response to
checkpoint therapy. Spatial transcriptomics can reveal crosstalk
between tumor cells and adjacent leukocytes, as well as
interactions between different immune and stromal cells within
the microenvironment. Genotypic inferences can be made from
single-cell transcriptomic data, allowing correlation between cell
clonality and immune behavior in different regions of a given
tumor. As improved murine and in vitro tumor models are being
developed, immunomodulatory therapeutics can be readily
tested on patient-specific tissues leading to personalized
medicine. Ultimately, full understanding of the association
between immune TME and genetics will lead to improved
prognostication and outcomes for patients with MPM.
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