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Metabolic rewiring is considered as a primary feature of cancer. Malignant cells reprogram
metabolism pathway in response to various intrinsic and extrinsic drawback to fuel cell
survival and growth. Among the complex metabolic pathways, pyrimidine biosynthesis is
conserved in all living organism and is necessary to maintain cellular fundamental function
(i.e. DNA and RNA biosynthesis). A wealth of evidence has demonstrated that dysfunction
of pyrimidine metabolism is closely related to cancer progression and numerous drugs
targeting pyrimidine metabolism have been approved for multiple types of cancer.
However, the non-negligible side effects and limited efficacy warrants a better strategy
for negating pyrimidine metabolism in cancer. In recent years, increased studies have
evidenced the interplay of oncogenic signaling and pyrimidine synthesis in tumorigenesis.
Here, we review the recent conceptual advances on pyrimidine metabolism, especially
dihydroorotate dehydrogenase (DHODH), in the framework of precision oncology
medicine and prospect how this would guide the development of new drug precisely
targeting the pyrimidine metabolism in cancer.

Keywords: metabolic reprogram, pyrimidine metabolism, precision medicine, dihydroorotate dehydrogenase,
pyrimidine inhibitor
INTRODUCTION OF PYRIMIDINE METABOLISM PATHWAY

In mammal, pyrimidine can be produced through de novo synthesis pathway taking amino acids as
substrates or salvage pathway by uptake of the circulating pyrimidines in the bloodstream.
Generally, salvage pathway is the main pyrimidines sources for resting or fully differentiated
cells, while the de novo pathway is necessary for high-proliferating cells to meet the boosted
requirement of pyrimidines. Uridine 5′-monophosphate (UMP) is the first production of de novo
pyrimidine pathway and is further converted to other pyrimidine nucleosides for synthesis of DNA
and RNA. On the other hand, pyrimidine synthesis is also implicated in other metabolic pathways.
Cytidine triphosphate (CTP) acts as a shuttle for PtdCho through cytidine diphosphate (CDP)-
choline pathway (1). Uridine-5′-triphosphate (UTP) participates in the formation of UDP-N-
acetylglucosamine (UDP-GlcNAc), UDP-glucose, UDP-galactose, and UDP-glucuronic acid (2).
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Owing to the critical functions of pyrimidine in cell proliferation
and survival, the disorder of pyrimidine metabolism has been
considered as a vital driver in tumor initiation and progression
(3, 4).

Pyrimidine Biosynthesis Through
De Novo Pathways
Pyrimidine de novo biosynthesis pathway is initiated by a
trifunctional enzyme CAD (carbamoyl phosphate synthetase
(CPS), aspartate carbamoyltransferase (ATC) and dihydroorotase)
(Figure 1) (5). The CPS leads the first reaction using glutamine,
bicarbonate, and ATP to produce carbamoyl phosphate, which is
the first committed step in pyrimidine de novo synthesis metabolic
flux (6). The second step is catalyzed by the ATC domain via
converting aspartate and carbamoyl phosphate to carbamoyl
aspartate (7). The dihydroorotase domain, a Zn metalloenzyme
locating between CPS and ATC domains, hydrolyzes carbamoyl
aspartate to dihydroorotate (DHO) (8). CAD, governing the
initiation of pyrimidine de novo synthesis pathway (9–11), is
under precise control in cells (12, 13).

Dihydroorotate dehydrogenase (DHODH), a ubiquitous
flavoprotein (flavin mononucleotide, FMN) located in the
mitochondrial inner membrane, converses DHO to orotic acid
(14). DHODH is a unique enzyme that could perform this
conversion in cells, representing the second rate-limiting step
in pyrimidine de novo synthesis pathway. Additionally, DHODH
transfers two electrons to coenzyme Q (CoQ) via ubiquinone
and directly couples to the mitochondrial respiratory chain and
oxygen consumption (15–18).

Subsequently, uridine monophosphate synthetase (UMPS), a
bifunctional protein, transforms orotic acid into uridine
monophosphate (UMP) through two catalytic reactions. The N-
terminal domain of UMPS converts orotic acid into orotidylate
(OMP) taking phospho-a-dribosyl-1-pyrophosphate (PRPP) as co-
substrate, while C-terminal converts OMP into UMP (19).

In general, the de novo pyrimidine flux is low in resting or
fully matured cells, where the demand of pyrimidines is mostly
satisfied through the salvage pathway. Nevertheless, the high
pyrimidine flux is indispensable in cancer cells in order to meet
their increased need of nucleic acid and other cellular
components (4, 20). Besides, owing to the bifunction of DHODH
linking the pyrimidine de novo synthesis pathway with
mitochondrial respiratory chain and oxygen consumption, this
pathway becomes a pacemaker for cell growth and proliferation
under limited oxygen tension. Consequently, pyrimidine de novo
synthesis represents a promising therapeutic target in delaying
cancer progression (15, 21–25).

Pyrimidine Biosynthesis Through
Salvage Pathways
Although de novo pathway generally provides competent
pyrimidine for cells growth and development, energetic
expensiveness of this pathway restricts its application in cells (26).
Cells at rest can meet their pyrimidine requirement via salvage
pathway using intracellular nucleic acid degradation product or
extracellular nucleoside pool in the blood stream (Figure 1) (27).
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Intracellularly, uridine/cytidine kinase (UCK) participates in the
recycling of cytidine and uridine to CMP and UMP, respectively.
CMP is then converted to CTP by cytidine monophosphate kinase
(CMPK) and nucleoside-diphosphate kinase (NDPK). For reusing
extracellular nucleoside, their availabilities between cells and
external environment are primarily mediated by specific
nucleosides transport channels and pumps (28, 29). Specifically,
nucleoside transport in mammals is comprised of two major gene
families, SLC28 (SLC28A1, SLC28A2, SLC28A3) for encoding
cation dependent concentrative nucleosides transporters (CNTs)
and SLC29 (SLC29A1, SLC29A2, SLC29A3, SLC29A4) for
encoding energy independent equilibrate nucleoside transporters
(ENTs) (28, 29). These nucleosides transporters differ both in
concentration of cation coupling and permeant selectivity. Also,
targeting pyrimidine salvage pathway was considered as a valuable
approach for reducing pyrimidines accessibility in cancer cells
(30–36).

Biological Role of Pyrimidines
As an non-negligible substrate for DNA and RNA biosynthesis,
UMP can be phosphorylated to generate produce UDP and UTP
(37). UDP is catalyzed into deoxy-UMP (dUMP), which is the
substrate to produce deoxyribonucleotides dTMP and dTTP
through thymidylate synthase (TS). CTP synthetase (CTPS)
converts UTP into CTP using glutamine as amine donor (12).
Overal l , UMP can supply al l kinds of pyr imidine
deoxyribonucleotides (dTTP, dCTP) and ribonucleotides (CTP,
UTP) for DNA and RNA biosynthesis to sustain transmission of
genetic information in cell proliferation (3, 38).

Beyond DNA and RNA biosynthesis, CTP also participates in
phospholipids biosynthesis in cells. Phosphatidylcholine (PC) is
a primary component of phospholipid among biological
membranes as well as a source of lipid-like second messengers
(39), indicating that PC is a vital substance in cell metabolism
and growth. CDP-choline generation is a rate-limiting step for
the PC biosynthesis in mammals, which is produced by choline
phosphate cytidylyltransferase (CCT) using CTP and choline
phosphate (40). Thus, intracellular CTP pool is critical for the
generation of PC and the subsequent phospholipid biosynthesis.

During energy metabolism, glucose-derived glucose-1-
phosphate combined with UTP to produce UDP-glucose, which
is further catalyzed to UDP-glucuronic acid through UDP-glucose
6-dehydrogenase (UGDH) (41, 42). UDP-glucuronic acid is a
requisite precursor for the glycosaminoglycans, a component of
proteoglycans for sustaining electrolyte as well as fluid balance in the
extracellular matrix.

On the other hand, UTP also takes part in the glycosylation
modification of proteins, which has a wide range of function and
shows essential role for life even at the single cell level (43). In
this case, UTP combines with N-acetylglucosamine (GlcNAc)
derived from hexosamine biosynthesis (HBP) pathway involving
four enzymes converting fructose 6-phosphate to UDP-GlcNAc,
to generate UDP-GlcNAc. UDP-GlcNAc is a necessary substrate
for O-linked glycosylation (O-GlcNAcylation), a frequent and
essential post-translation modification of protein in linking
glycosidic of saccharides to proteins in Golgi apparatus (44).
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During this process, the O-GlcNAc transferase (OGT) takes
UDP-GlcNAc as a substrate to install GlcNAc to the hydroxyl
oxygen of serine or threonine residues of proteins (45), while O-
GlcNAcase (OGA) catalyzes the removal of O-GlcNAc from
modified proteins (46, 47).
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Together, these evidences demonstrate that pyrimidine
metabolism cooperates with various cell metabolism and
signaling pathways, demonstrating the decisive effects of
pyrimidine metabolism in determining cell fates including
proliferation, differentiation, apoptosis, and metastasis.
FIGURE 1 | The pyrimidine metabolism in cells In mammal, pyrimidine synthesis is composed of de novo pathway and salvage pathway. The de novo synthesis
pathway initiated with the generation from glutamine to dihydroorotate catalyzed by trifunctional enzyme CAD including carbamoyl-phosphate synthetase, aspartate
transcarbamylase, and dihydroorotase. The mitochondrial inner membrane protein DHODH oxidizes dihydroorotase to orotate accompanied by the respiratory chain
transmission. Orotate is subsequently phosphorylated and produced to UMP by bifunctional enzyme UMPs. As for pyrimidine salvage synthesis pathway, cells
obtained extracellular uridine and cytidine mainly through two nucleosides transporter families, SLC28A as well as SLC29A. Subsequently, uridine and cytidine are
converted to UMP and CTP, respectively.
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ONCOGENES REPROGRAM PYRIMIDINE
METABOLISM IN CANCERS

Dysfunction of Pyrimidine Metabolism
in Cancers
In cancer, dysfunctional pyrimidine de novo synthesis not only
supplies high-level of nucleotides, but also affects other metabolism
pathways and cellular signaling (Figure 2). For instance, the
essential characters of CTP in phospholipid synthesis, UDP in
glucose metabolism and UTP in protein glycosylation hint the
influence of pyrimidine synthesis in tumorigenesis. The high
requirement of membrane components in active cells sets the
indispensable of phosphatidylcholine obtained from CTP and
choline in membrane biogenesis. It is reported that phospholipid
synthesis pathway was highly relied on the cellular CTP level, which
modulates the mitochondrial phospholipid composition upon
altered abundance of ether lipids (18). Moreover, CTP also takes
part in signaling transmission, enzymatic processes of membrane as
well as cell homeostasis (48–51).

Glycosaminoglycan, derived from UDP and glucose, resides in
the extracellular aiming to provide mechanical support for cells,
involving in the cell migration, adhesion, motility and wound
healing (52). The elevated glycosaminoglycan concentration is
identified in multiple types of cancers, such as breast cancer,
brain tumor, glioblastoma, and lung cancer (53–56). During the
glycosaminoglycan biosynthesis, UGDH, catalyzing conversion of
UDP-glucose to UDP-glucuronate, is recognized as the rate-limiting
enzyme and has been identified as a potential anti-cancer target (55,
57–60). While, the precursor contents of glycosaminoglycan were
rarely investigated. Recently, Xiongjun Wang et al. found that the
activation of UGDH by epidermal growth factor receptor (EGFR)
attenuates the UDP-glucose-mediated disruption of the interaction
of HuR and SNAI1 mRNA, which promotes lung metastasis
through initiating the epithelial-mesenchymal transmission (54).

UTP is critical for protein glycosylation by serving as a
glycosylation substrate sub-fraction. It is reported that protein
glycosylation level is generally elevated in various malignancies
and has been identified as a hallmark of cancer (61). As an
abundant post-translational modification of protein, glycosylation
takes part in sustaining cancer cell growth and proliferation (62–69).
O-GlcNAc modification is important for VEGF levels, and
disordered glycosylation of VEGFR could regulate its interaction
with galectins, which are associated with both angiogenesis and
tumor metastasis (70, 71). The O-GlcNAc was also reported to be
implicated in the regulation of oncogenic gain-of-function of
mutant p53 (72, 73). Additionally, Kevin Qian et al. demonstrated
that ERK signaling pathway profoundly affected O-GlcNAc
homeostasis via OGA-mediated OGT transcription in pancreatic
ductal adenocarcinoma (PDAC), laying the profound role of O-
GlcNAc signaling in cancers (74). Decreased O-GlcNAc levels
elevates the cell-cycle regulator p27Kip1 and reduces FoxM1 as
well as its downstream target genes expression in breast cancer (67).
Moreover, Christina M. Ferrer et al. uncovered that O-
GlcNAcylation regulates HIF-1a proteasomal degradation via a
a-ketoglutarate-dependent manner (75). The pentose phosphate
pathway (PPP) is critical for rapidly proliferational cells through
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maintaining cellular redox homoeostasis and the upregulation of
PPP has been appeared in various cancer types (76, 77). The activity
of G6PD, the rate-limiting enzyme of PPP, was reported to be
regulated by O-linked glycosylation of Ser 84, which significantly
elevated PPP metabolism flux in human lung cancer cells related to
hypoxia pressure regulation (78). Besides, O-GlcNAcylation inhibits
phosphofructokinase 1 (PFK1) activity in response to hypoxia,
redirecting glucose flux through PPP to confer growth advantage
to lung cancer cells (79).

The chronic inflammatory response plays an essential role in
cancer development and abundant evidences shown that
glycosylation can modulate multiple key mediators involved in
the inflammatory process. It is reported that O-linked
glycosylation can upregulate the transcription level of NF-kB
(80) and pro-inflammatory factor COX2 (81). Furthermore, the
protein glycosylation level of COX2 is associated with the
therapeutic efficiency of its inhibitors (82). On the other hand,
the pro-inflammatory cytokines in turn balance glycan
composition of cells via increasing glycosyltransferases
expression and promote cancer-related antigens biosynthesis in
pancreatic cancer as well as gastric cancer (83, 84).

Published studies have suggested that cellular O-glycosylation
level is highly associated with the activities of OGT or OGA and the
level of substrate UDP-GlcNAc (85–88). However, the direct and
detailed role of pyrimidine synthesis in the regulation of O-
glycosylation is not well established. Thus, the specific mechanism
of pyrimidine synthesis in regulating O-glycosylation needed to be
further explored.

Additionally, pyrimidine synthesis also participates in tumor
metastasis. Pharmacological inhibition of DHODH was reported to
reduce liver metastasis in colorectal cancer (89) and small cell lung
cancer model (88). Siddiqui, A. et al. reported that thymidylate
synthase (TS) was reported to be increased in cancer cells with a
mesenchymal phenotype (90). Depletion of TS significantly decreased
the expression of ZEB1, a powerful epithelial-mesenchymal transition
(EMT) driver, and impeded the migration of cancer cells. Moreover,
TS maintains the de-differentiated state of triple negative breast
cancers (91) and drives the EMT phenotypes in NSCLC (92).
These results further demonstrated the potential association of
pyrimidine metabolism to the malignant process of cancer.

Oncogene Reprograms Pyrimidine
Metabolism in Cancers
Generally, tumorigenesis is accompanied by enhanced metabolic
reprogramming for satisfying cells survival and proliferation in front
of their internal and external surrounding microenvironment
changes. It is well known that cancer cells intend to remodeling
metabolism to increase pyrimidine de novo synthesis flux to support
vigorous growth. Here, we regularly review the influence of various
oncogenic signaling pathways on gene expression and post-
translational modifications in pyrimidine metabolism in cancers.

Oncogenic Signaling Pathways Modulate Gene
Transcription in Pyrimidine Metabolism
Oncoprotein c-Myc is critical for cell proliferation, differentiation,
apoptosis, and cell metabolism via regulating the expression of
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FIGURE 2 | The biological role of pyrimidine In addition to serving as an indispensable substrate for DNA and RNA biosynthesis, pyrimidine also participates in many
other cellular metabolisms. UDP-GlcNAc, derived from UTP, is a pivotal metabolic used in O-GlcNAc modification of protein while UDP-glucose is used to synthesis
proteoglycans. Besides, CTP could be converted to CDP-Choline for participating in producing phosphatidylcholine (PC), a primary component of phospholipid.
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hundreds of target genes (93–95). It was reported that c-Myc
upregulated the level of CAD by binding to the highly conserved
palindromic E box sequence downstream of transcriptional site of
CAD promoter (96–98) (Figure 3). Besides, c-Myc is also
implicated in the transcription regulation of UMPS and CTPS
(99). On the other hand, our studies and others have revealed that
intervention of pyrimidine synthesis by targeting DHODH resulted
in decreased protein stability and transcription activity of c-Myc in
AML and melanoma (100, 101). These studies highlight the
complex interplay between c-Myc oncogenic signaling and
pyrimidine metabolic reprogramming in cancers (24, 99, 102, 103).

Hypoxia-inducible factor (HIF-1a) was identified to bind to
CAD promoter and repress its transcription of in vivo, triggering the
inhibition of pyrimidine de novo synthesis and subsequently cell-
cycle arrest (104, 105). In addition, specificity protein 1 (Sp-1)
interacts with estrogen receptor a (ERa) physically and results in
transcriptional activation of estrogen-responsive genes expression
including CAD (106–110).

Oncogenic Signaling Pathways Affect
Post-Translation Modification of Pyrimidine
Metabolism Enzyme
Post-translation modification of pyrimidine pathway is also
regulated by various oncogenic signaling pathways. As a hexamer
of a 243 KD polypeptide, CAD folds into three functional domains
autonomously (111), including CPS, aspartate ATC and
dihydroorotase. The activity of CPS domains, governing the flux
of pyrimidine de novo synthesis, can be reversible inhibited by UTP
and allosterically activated by PRPP. Lee M. Graves et al. described
that EGFR-mitogen-activated protein (MAP) kinase cascade
promotes cell proliferation via phosphorylation of CAD at
Thr456 (Figure 3) (112). This allosteric regulation abolishes the
feedback inhibition of UTP as well as endow more sensitive to
PRPP, which increases the flux of pyrimidine de novo synthesis
(113). While, protein kinase A (PKA) induced phosphorylation of
Ser1406 elevated UTP inhibition and decreased sensitivity upon
PRPP, consequently decreased CAD activity and pyrimidine flux
(114). Additionally, both MAPK and PKA complexes with CAD
stably and the steric interference by the bound kinase will influence
each other (115). Thus, the reciprocal phosphorylation of CAD is
under the precise control of PKA and MAPK signaling cascades,
which provides the elegant mechanism to regulate pyrimidine de
novo synthesis.

The mammalian target of rapamycin complex 1 (mTORC1) is
a Ser-Thr kinase sensing growth signals to modulate cell
metabolism and proliferation (116). PI3K-PTEN-mTORC1
signaling pathway has been shown to phosphorylate Ser1859 of
CAD via downstream ribosomal protein S6 kinase 1 (S6K1) and
promoted CAD oligomerization, facilitating the concerted action
of three enzymatic domains (6, 111) and stimulating pyrimidine
de novo synthesis (10, 117). Karina N. et al. found that loss of
sirtuin 3 (SIRT3), a tumor suppressor, also hyperactivates
mTORC1-CAD axis and hence increases de novo pyrimidine
synthesis (118), however the specific mechanism is still to be
explored. Furthermore, LKB1 suppressed CPS1 transcriptional
level through AMPK, which is known to inhibit mTOR and
Frontiers in Oncology | www.frontiersin.org 6
KRAS. LKB1 mutation speeds the dependence on pyrimidine
synthesis in lung cancer cells (13). In addition, loss of
argininosuccinate synthase (ASS1) increases CAD activity via
mTOR-S6K1 signaling pathway and facilitates pyrimidine
synthesis to support proliferation (7).

Targeting Pyrimidine Metabolism
Vulnerability in Oncogene-Driven Cancers
A plethora of studies have showed that oncogene-driven cancers
exhibit higher level of pyrimidine de novo pathway, pointing out
the opportunity of precision cancer therapy by targeting the
pyrimidine dependence (Table 1). In recent years, DHODH has
emerged as a promising synthetic lethal target for various
oncogenic events, including BRAF (V600E) mutation (101),
PTEN deficiency (23) (22), and RAS mutation (119) (Figure 3).

In BRAF (V600E) mutant melanoma cells, DHODH
modulates transcriptional elongation and its inhibition
completely abrogated cell growth, providing the potential
therapeutic strategy through combination of DHODH and
BRAF (V600E) inhibitors (101). PTEN, one of the commonly
mutated tumor suppressor, is an important negative regulator of
oncogenic PI3K signaling (120). It is reported that DHODH
inhibition caused inherent defects in DNA repair and
accumulated DNA damage contributes to synthetic lethality in
PTEN mutant TNBC cells (23). Besides, Kristin K. Brown et al.
characterized adaptive metabolic reprogramming of pyrimidine
de novo synthesis as an early issue promoting chemotherapy
resistance in TNBC treatment. Thus, targeting DHODH-driven
pyrimidine synthesis seems to be a feasible strategy in
overcoming chemotherapy resistance in TNBC clinically (22).

KRAS mutation is one of the most common mutation in
human cancer. Previous studies have demonstrated that KRAS
mutants induce pyrimidine metabolism reprogramming in
multiple malignancies types (121, 122). Malvika Koundinya
et al. have reported that KRAS mutant cells seems to exhibit
high sensitivity to DHODH inhibitors (119). Decreased
expression of mutant KRAS has been shown to downregulate
the genes transcriptional level in pyrimidine pathways (123, 124).
KRAS mutation activates classic MAPK pathway, which results
in MYC upregulation and transcriptional level of the non-
oxidative PPP gene ribose 5-phosphate isomerase A (RPIA),
promoting the nucleotide biosynthesis (123). Notably,
interference with nucleotide biosynthesis resulted in glutamine
deprivation in KRAS-driven cancer cells and thus lead to S-phase
cell cycle arrest and DNA replication stress (125). These
evidences fully define the increase pyrimidine synthesis flux in
KRAS mutant cancer cell. On the other hand, although KRAS
mutant cells exhibits decreased oxidative phosphorylation (126),
the mitochondrial electron transport via DHODH in sustaining
hyperpolarized mitochondrial membrane potential and pro-
survival (127) could explain for the increased sensitivity of
KRAS mutant cells to DHODH inhibition.

In addition, p53 also plays a pivotal role in regulating cellular
metabolism (128–132). For instance, Irem Kaymak et al. stated
that p53 deficiency activates the mevalonate pathway through
SREBP2 and speeds ubiquinone synthesis which is crucial to the
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DHODH catalyzed pyrimidine synthesis (133). Combination of
DHODH and CHK1 inhibitors demonstrate synergistically effect
in p53 dysfunctional cancer cells through inducing aberrant cell
cycle and massive cell death (134). While, the potential
Frontiers in Oncology | www.frontiersin.org 7
association between p53 and DHODH should to be
further elaborated.

In addition, cancer cells with electronic transmission chain
(ETC) deficiency displayed the dysfunction of DHODH due to
FIGURE 3 | Oncogene reprogram pyrimidine metabolism in cancer Pyrimidine metabolism in cell is regulated by multiple oncogenes and suppressors. Upon the
activation of epidermal growth factor, c-Myc dictates the CAD transcription by binding the CAD promoter while HIF-1a exhibits the same pharmacological effect
without the participation of EGF. RAS-RAF-MEK-MAPK signaling pathway mediates the phosphorylation of CAD at T456 while PKA phosphorylates S1406 of CAD.
Besides, mTOC1 activation following the PI3K/Akt signaling results in the S6K1-regulated phosphorylation of CAD at S1859, which is also inhibited by LKB1 and
STAT3 pathways. Both modifications of CAD stimulate the pyrimidine de novo pathway flux and promote the pyrimidine synthesis. Cancer cells with BRAF, KRAS as
well as PTEN mutation dependent more on pyrimidine de novo pathway and exhibit synthetic lethal vulnerability upon DHODH inhibitor. Most importantly, p53
activation is potentially related to the dysfunction of DHODH.
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the lack of complex III. Restoration of ETC recovers DHODH
activity and cell growth (15, 17). These results suggested the
indispensable role of DHODH-driven pyrimidine synthesis in
linking ETC and tumorigenesis. Furthermore, David B. Sykes
et al. described that DHODH inhibitors significantly decreased
levels of leukemia-initiating cells, and improved survival of
leukemia-bearing mice. This pioneering study defined
DHODH as a metabolic regulator of differentiation in multiple
subtypes of acute myeloid leukemia (AML) and DHODH
inhibition emerged as a potential strategy for overcoming
differentiation blockade in treating AML (135). Of note,
multiple DHODH inhibitors were found to promote AML cell
differentiation and launched to clinical research in AML
treatment (Table 2) (100, 136–139).
BIOINFORMATICS ANALYSIS OF
PYRIMIDINE METABOLISM AND
SIGNALING IN CANCERS

We then turn to investigate the gene expression profiling of
pyrimidine metabolizing enzymes in cancer genomics. We first
score the pyrimidine metabolism pathway in 31 TCGA cancers
compared with corresponding normal tissues in GEPIA (140).
As shown in Figure 4A, more than 80% cancers demonstrate
significantly increased expression of pyrimidine metabolism
related genes compared to normal tissues, which indicates the
Frontiers in Oncology | www.frontiersin.org 8
closing correlation of pyrimidine metabolism in tumor
progression. Specifically, AML exhibits the highest score.

In order to further examine the importance of pyrimidine
metabolism in AML, we then analyzed the cellular responses in
the presence of various shRNA in AML cell lines from Cancer
Cell Line Encyclopedia (CCLE) (141). As shown in Figure 4B,
knock down of genes involved in pyrimidine metabolism
generally decrease the cell viability, suggesting the
indispensable role of pyrimidine pathway in the development
of AML. Specifically, the most negative shRNA score occurs in
AML is DHODH, suggesting the significant cell proliferation
inhibition treated with shRNA. DHODH catalyzes pyrimidine de
novo pathway simultaneously transferring electrons to
mitochondrial respiration chain. Depletion of DHODH
significantly disturbs tumor formation with complete
functional oxidative phosphorylation. It is reported that
DHODH-dr iven pyr imidine synthes i s ra ther than
mitochondrial ATP synthase connects respiration to
tumorigenesis (15). Furthermore, DHODH inhibition
restructures the ETC upon respirasome assembly and activity
owing to the modified phospholipid synthesis dependent on CTP
level. Hence, the dual function of DHODH provides the plausible
explanation for the prominent effect of shDHODH in AML.
Moreover, survival analysis from GEPIA database indicated that
higher expression of DHODH was closely associated with
shorter disease-free survival (DFS) (Figure 4C). These
oncology genomics data suggest that DHODH plays a decisive
role in the cell survival and proliferation of leukemia.
TABLE 1 | Small molecular inhibitors of pyrimidine metabolic pathway approved by FDA.

Drug Structure Target Disease

Teriflunomide F

F

FHN

O

OH

H3C

N

DHODH Multiple sclerosis

Leflunomide F

F

FHN

O

O

N

CH3 DHODH Rheumatoid arthritis

Fluorouracil
HN

N
H

F

OO

Thymidylate synthase; DNA; RNA Multiple solid tumors

Floxuridine

NH

N O

F

O

O

HO

OH

Thymidylate synthase Metastatic hepatic cancer
Stage 4 gastrointestinal
adenocarcinoma

Gemcitabine

NH

N NH2

O

O

OH

HO
F
F

DNA; RRM1; TYMS; CMPK1 Non-small cell lung cancer
Pancreatic cancer
Bladder cancer
Breast cancer
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We then analyzed the potential proteins directly interacting
with DHODH using STRING v11.0 and clustered these enzymes
through KEGG pathways (142). As shown in Figure 4D, in
addition to two key enzymes involved in pyrimidine de novo
pathway, CAD and UMPS, enzymes related with many other
cellular metabolism pathways are associated with DHODH,
including purine metabolism, one carbon poll by folate,
antifolate resistance as well some hall markers in various
Frontiers in Oncology | www.frontiersin.org 9
diseases especially in neurodegenerative diseases. These data
suggest that pyrimidine metabolism is paired with other
cellular metabolisms and the balance and crosstalk of these
metabolism pathway support the cell proliferation and growth.
Moreover, patients with high DHODH expression had much
worse prognosis than these with lower level, especially in AML.
Hence, detecting the expression level of DHODH may provide a
promising approach in early diagnosis or predict outcomes in
TABLE 2 | Representative small-molecular inhibitors of DHODH.

Drug Structure Disease Phase

Brequinar

N

HO O

H3C

F

F

Acute myeloid leukemia Phase II

BAY2402234

F

Cl

N
H

O O

F

N

FF
F

N
N

O

OH

Leukemia Phase Ia

ASLAN003
N

HO
O

HN

F

F O

Acute myeloid leukemia Phase II

PTC299

Cl

H
N

N

O

O

O Cl

Acute myeloid leukemia Phase I

AG-636 Unavailable Lymphoma Phase I

Leflunomide F

F

FHN

O

O

N

CH3 Relapsing multiple sclerosis
COVID-19

Phase II

ML390

N
H

O

N
H

O

OCF3

Acute myeloid leukemia –

Isobavachalcone HO

O

OH

OH

Acute myeloid leukemia –

Piperine

N

O

O

O

Multiple sclerosis –
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clinical. Taken together, cancer genomic analysis revealed a
unique clue for precisely targeting of pyrimidine metabolism
pathway in cancer.
EMERGING THERAPEUTICS TARGETING
PYRIMIDINE METABOLISM IN CANCERS

CAD Inhibitors
PALA
N-(phosphonacetyl)-L-aspartate (PALA) is a potent inhibitor of de
novo pyrimidine pathway targeting aspartate transcarbamylase
domain of CAD (143). PALA had failed in a phase II trial as
single agent owing to the non-ideal efficacy as well as serious side
effect due to nonspecifically causing DNA damage in normal cells
(144). Additionally, PALAwas reported to targeting othermetabolic
Frontiers in Oncology | www.frontiersin.org 10
enzymes, such as carbonic anhydrase IV (145). Therefore, more
potent, and specific CAD inhibitor is needed to reevaluate the
feasibility of targeting CAD.

On the other hand, PALA had showed synergistic anticancer
effect in drug combination therapy. For example, Kensler et al.
have shown that treatment with drug combination of PALA and
acivicin resulted in >80% inhibition of Lewis lung carcinoma
tumor growth, and 50% increases in life span (146). Besides,
PALA showed synergistical cytotoxic effects with Fluorouracil
(5-FU) across most human colon cancer cell lines (147).

DHODH Inhibitors
Leflunomide/Teriflunomide
Leflunomide is an effective DHODH inhibitor that has gained FDA
approval for the treatment of rheumatoid arthritis and psoriatic
arthritis (148). Leflunomide inhibits DHODH by binding to the
ubiquinone binding channel and prevents the production of the
A

B

D

C

FIGURE 4 | Bioinformatics analysis of pyrimidine metabolism pathway (A) Histogram indicate the score of protein abundance of multiple key enzymes involved in
pyrimidine metabolism pathway in 31 TCGA tumor tissues compared with corresponding normal tissues in GEPIA. The gene set includes CAD, DHODH, UMPs,
UCK1, CMPK, NDPK, CTPS, SLC28A1, SLC28A2, SLC28A3, SLC29A1, SLC29A2, SLC29A3, SLC29A4. (B) Dot plots demonstrate the shRNA scores in AML cell
lines in CCLE targeting multiple key enzymes involved in pyrimidine metabolism pathway. (C) Survival plots suggest the disease-free survival (DFS) for the low and
high expression groups of DHODH among AML patients with median cutoff in GEPIA database. (D) Predicted the proteins interacted with DHODH according to the
STRING V11.0 software and clustered these enzymes through KEGG pathways.
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orotic acid (149). Teriflunomide (also known as A771726), an active
metabolite of leflunomide, was approved by FDA for the treatment
of relapsing multiple sclerosis (MS) (150, 151).

In preclinical models, leflunomide and teriflunomide showed
anti-proliferative effects against cancer cells from various cancer
types through targeting DHODH-driven nucleotide pools
accessibility (152, 153). Synergy between leflunomide/
teriflunomide and genotoxic chemotherapy agents (doxorubicin,
cisplatin, etoposide, and topotecan) was observed by exacerbating
DNA damage and overwhelming the DNA damage response (154).
In recent years, leflunomide was advanced into clinical trials of solid
tumor and hematologic tumor: metastatic TNBC (NCT03709446)
and Plasma Cell Myeloma (NCT04370483).

Brequinar
Brequinar is a potent and specific inhibitor of DHODH,
originally developed by DuPont Pharmaceuticals (DUP 785;
NSC 368390) (155) with an IC50 of ~20 nM upon DHODH in
vitro and has a in vivo half-life of ~12 hr. Brequinar has been
advanced into early clinical trials of patients with advanced solid
tumor malignancies, whereas serious toxic effects limit its clinical
development (156–159). In 2016, a pioneering study from David
B. Sykes group have revealed the excellent therapeutic benefit
and safety of brequinar in treating leukemia using an improved
dosage regimen in preclinical models. Inspired by these
evidences, DHODH targeting by brequinar was recently re-
evaluated towards AML in clinical (NCT03760666).

Other Synthetic DHODH Inhibitors in Clinical
Recently, Bayer AG have reported a highly potent and selective
DHODH inhibitor BAY 2402234, which exhibits strong
differentiation therapy potential in preclinical leukemia models.
However, the clinical trial has been terminated due to the lack of
sufficient clinical benefit (NCT 03404726) (137). ASLAN003, a
DHODH inhibitor developed by ASLAN Pharmaceuticals
(Singapore, SG), was initial designed for the treatment of
autoimmune disease. Subsequent studies have shown that
ASLAN003 can also induce leukemia cell differentiation in
vitro and in vivo, providing a rational basis for clinical
application of ASLAN003 in leukemia (NCT 03451084) (136).
PTC299, an inhibitor of VEGFA mRNA translation, was
subsequently identified as a DHODH inhibitor. The unique
dual-mechanism of PTC299 may provide a promising
therapeutic opportunity for patients with refractory cancers
(NCT 03761069) (138).

Natural Product-Derived Inhibitors
Natural products represent a critical and valuable source of lead
compounds and drugs. Currently, only few natural-occurring
compounds have been identified as DHODH inhibitor. We
previously reported that isobavachalcone (IBC), derived from
Traditional Chinese Medicine Psoralea corylifolia, inhibits
DHODH with high affinity. IBC dramatically triggers apoptosis
as well as overcomes differentiation blockade of multiple AML
cell lines. Additionally, the combination of IBC and adriamycin
effectively prolong mouse survival in a mouse model of AML
(160). On the other hand, using a panel of biochemical assays
Frontiers in Oncology | www.frontiersin.org 11
and structural biology approach, we identified that piperine, a
main bioactive constituent of black pepper, as a potent inhibitor
of DHODH. We characterized that piperine impairs T cell
proliferation as well as reduced inflammation in MOG-induced
EAE mouse model with lessened myelin and bold-brain barrier
(BBB) destruction by targeting DHODH (161). Collectively,
these natural products-derived DHODH inhibitors may
represent promising treatment strategy across various diseases.

UMPs Inhibitors
Pyrazofurin
Pyrazofurin was found to inhibit the orotidine 5 ′-
monophosphate decarboxylase activity of UMPS as a
nucleoside analogue in the last century with high efficacy
especially in acute myelogenous leukemia patients (162).
Nevertheless, the resistance to pyrazofurin appeared early in
clinical (163–165).

Other Inhibitors
Fluorouracil/Floxuridine/Gemcitabine
Fluorouracil is an analogue of uracil with a fluorine atom at the C-5
position in place of hydrogen, which mimicked uracil incorporating
into DNA and RNA, producing intracellularly several active
metabolites: fluorodeoxyuridine monophosphate (FdUMP),
fluorodeoxyuridine triphosphate (FdUTP) and fluorouridine
triphosphate (FUTP) (166). Fluorouracil is reported to bind the
deoxyribonucleotide of the FdUMP and the folate cofactor, N5–10-
methylenetetrahydrofolate, to thymidylate synthase (TS) to form a
covalently bound ternary complex. Up to now, 5-FU has been
approved for treating multiple solid tumors including breast,
pancreas, stomach, head and neck, and colorectal cancers (167).

Floxuridine is a pyrimidine analogue used as an
antineoplastic antimetabolite that is metabolized to
fluorouracil, usually as a continuous hepatic arterial infusion to
treat hepatic metastases from colon cancer (168). Unlike 5-
fluorouracil (5-FU), floxuridine is specifically incorporated into
DNA, not into RNA. Inhibition of cell proliferation resulted by
floxuridine is 10- to 100-fold higher than that of 5-FU (169, 170).

Gemcitabine is a deoxycytidine analogue, a pyrimidine
antimetabolite related to cytarabine. Gemcitabine is converted
into phosphate metabolites, which are incorporated in the
metabolism of pyrimidine bases and disturb DNA synthesis.
Gemcitabine exhibits cell phase specificity, primarily killing cells
undergoing DNA synthesis (S-phase) and blocking the
progression of cells through the G1/S-phase boundary. In
clinical, gemcitabine has been approved to treat various
cancers including non-small-cell lung cancer, pancreatic cancer
and gallbladder cancer (171–173).

Drugs Resistance and Potential
Combination Therapy in the Future
A wealth of clinical studies has demonstrated the strong
tolerance and toxicity of multiple inhibitors of pyrimidine
pathway, highlighting the urgent need of improved strategy
targeting pyrimidine metabolism. Herein, we mainly summary
the emerging role of DHODH inhibition in drugs resistance and
combination therapy.
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DHODH inhibition can sensitize cancer cells to conventional
chemotherapy and overcomes corresponding resistance mechanisms
by targeting metabolic dependencies. It is reported that pretreatment
with leflunomide induced pyrimidine depletion in TNBC cells and
overcame doxorubicin resistance (22) and brequinar was reported to
increased cell sensitivity to TRAIL therapy (174). Pyrimidine
depletion induced by leflunomide may result in a higher
incorporation of chemotherapeutics gemcitabine (175).

KRAS mutant driven cancer cell lines exhibit synthetic lethal
vulnerability towards pyrimidine biosynthesis (119). For instance,
DHODH inhibitors affect energy metabolism as well as glutamine
levels in KRAS mutant cell lines with high sensibility (176). As the
potential ability to increase p53 synthesis, DHODH inhibition could
combine the inhibitors of p53 degradation and enhance the
antitumor effect (177). Therefore, DHODH inhibitors combining
traditional chemotherapeutic as well as targeted drugs may increase
effectiveness and control unwanted adverse side effects in clinical.
Nevertheless, the design of efficient combination projects across
multiple cancers types remained to be undeniably challenging.
CONCLUSION AND PROSPECTS

Metabolic dysregulation has been identified as an emerging
hallmark of cancer. A wealth of evidence has demonstrated that
metabolic dependencies and phenotypes can evolve in cancer
progresses from premalignant lesions to clinically evident cancers
to metastasis malignancies. Therefore, understanding sophisticated
cancer metabolism and identifying liabilities will expedite the
development of new therapeutics to treat human cancer.

Pyrimidine is a basic and indispensable substrate for nucleic
acids, phospholipid, glucose metabolism, and protein glycosylation.
Recent works in pyrimidine metabolism intended to focus on
assessing the interplay of metabolic phenotypes and intrinsic
genetic alternation in cancer. It was identified that KRAS mutant,
PTEN deficiency as well as p53 deficiency cells exhibits increased
pyrimidine de novo synthesis flux. This dependence on pyrimidine
pathway leads to the synthetic lethal target of pyrimidine synthesis
in these cells, suggesting the hardwired metabolic vulnerabilities in
different gain-of-function mutant cancers. The crosstalk between
pyrimidine pathway and other metabolic signaling generates a
greater understanding for metabolic heterogeneity and devises
approaches to targeting for clinical therapy. Hence, the discovery
of treatments targeting precise pyrimidine metabolism could be
done once the underlying metabolic difference is recognized in
individual patients.

Considering the crucial role of DHODH in rapidly
proliferating cells (like lymphocytes), pharmacological targeting
Frontiers in Oncology | www.frontiersin.org 12
DHODH has revealed ideal effect in inflammatory disease, and
autoimmune disease. Importantly, increasing evidence have
demonstrated that DHODH closely correlates with various
oncogenic signaling pathways in many cancers as discussed
above. In clinical, DHODH is actively explored as a target in
AML differentiation therapy with several inhibitors advanced in
multiple clinical trials. Notably, the development of innovative
biomarkers of targeting DHODH in AML is critical for precision
or personalized medicine. On the other hand, combination
the rapy of DHODH inhib i tor s and convent iona l
chemotherapeutics/targeted agents may offer superior clinical
strategies for refractory/resistant AML.

Besides, it is reported that DHODH regulates b-catenin
pathway through interacting with NH2 terminal of b-catenin
directly independent on catalyzed activity (178), suggesting the
multi-function properties of DHODH protein. Thus, more
diverse, and precise targeting strategies, such as proteolysis-
targeting chimera (PROTAC) and molecular glue, are needed
to negate the pro-tumor activity of DHODH.

In summary, pyrimidine metabolic remodeling facilitates
tumor progression and introduces metabolic vulnerability that
can be intervened to treat cancer. It should be noted that cancer
metabolism is heterogeneous and flexible, and classical “one-
size-fits-all” treatment may fail to achieve satisfactory clinical
benefit. With the development of cancer genomics, proteomics,
and metabolomics, we prospect that the detailed characterization
of the interplay between cellular metabolism and oncogenic
signaling will facilitate the development of mechanism-driven
precision cancer medicine.
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84. Padró M, Mejıás-Luque R, Cobler L, Garrido M, Pérez-Garay M, Puig S,
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