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Purpose: MYCN amplification plays a critical role in defining high-risk subgroup of
patients with neuroblastoma. We aimed to develop and validate the CT-based machine
learning models for predicting MYCN amplification in pediatric abdominal neuroblastoma.

Methods: A total of 172 patients with MYCN amplified (n = 47) and non-amplified (n =
125) were enrolled. The cohort was randomly stratified sampling into training and testing
groups. Clinicopathological parameters and radiographic features were selected to
construct the clinical predictive model. The regions of interest (ROIs) were segmented
on three-phrase CT images to extract first-, second- and higher-order radiomics features.
The ICCs, mRMR and LASSO methods were used for dimensionality reduction. The
selected features from the training group were used to establish radiomics models using
Logistic regression, Support Vector Machine (SVM), Bayes and Random Forest methods.
The performance of four different radiomics models was evaluated according to the area
under the receiver operator characteristic (ROC) curve (AUC), and then compared by
Delong test. The nomogram incorporated of clinicopathological parameters, radiographic
features and radiomics signature was developed through multivariate logistic regression.
Finally, the predictive performance of the clinical model, radiomics models, and
nomogram was evaluated in both training and testing groups.

Results: In total, 1,218 radiomics features were extracted from the ROIs on three-phrase
CT images, and then 14 optimal features, including one original first-order feature and
eight wavelet-transformed features and five LoG-transformed features, were identified
and selected to construct the radiomics models. In the training group, the AUC of the
Logistic, SVM, Bayes and Random Forest model was 0.940, 0.940, 0.780 and 0.927,
respectively, and the corresponding AUC in the testing group was 0.909, 0.909, 0.729,
0.851, respectively. There was no significant difference among the Logistic, SVM and
Random Forest model, but all better than the Bayes model (p <0.005). The predictive
performance of the Logistic radiomics model based on three-phrase is similar to
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nomogram, but both better than the clinical model and radiomics model based on single
venous phase.

Conclusion: The CT-based radiomics signature is able to predict MYCN amplification of
pediatric abdominal NB with high accuracy based on SVM, Logistic and Random Forest
classifiers, while Bayes classifier yields lower predictive performance. When combined
with clinical and radiographic qualitative features, the clinics-radiomics nomogram can
improve the performance of predicting MYCN amplification.
Keywords: children, abdomen, neuroblastoma, MYCN, radiomics, prediction
INTRODUCTION

Neuroblastoma (NB) is one of the most common solid
malignancy in children originating from neural crest tissues
along the sympathetic chains (1). NB can arise from various
anatomical compartments (i.e., neck, chest, abdomen or pelvis),
but most frequently arise from the abdomen (adrenal gland or
extra-adrenal retroperitoneum), accounting for 73% of all
systems (2). As a kind of heterogeneous tumor, the clinical
outcome of abdominal NB varies from spontaneous regression
to extensive systemic metastasis (3). For the pediatric patients
with abdominal NB in advanced stage, the long-term survival
rate is less than 50% regardless of the intensive treatment (4).
Therefore, risk stratification is vital enough to choose the optimal
therapy for individuals in the era of precision medicine (5).
Among the various attempts from different international groups
aimed to identify factors that can be used to risk stratification
and to define an sub-population with poor clinical outcome (6),
all groups highlight the significance of MYCN amplification
status for defining high-risk group and consider that all
patients with MYCN amplified are prone to relapse (2).
Clinically, the amplification of MYCN oncogene is significantly
correlated to an aggressive phenotype (7). Therefore, the
detection of MYCN amplification status is critical to risk-
stratify patients. However, as an invasive method, traditional
biopsy may cause various complications (8). Meanwhile, the
availability of detection of MYCN has been hindered by the
limited access to genetic testing methods in many institutions
(9), therefore, an alternative non-invasive method is needed to
characterize the MYCN amplification status availably.

In recent years, the increasing application of radiomics in
solid tumors has resulted in the emergence of radiogenomics.
The heart of radiogenomics is to identify and predict the
expression of clinically significant molecular biomarkers of
tumors by analyzing high-dimensional quantitative signatures
extracted from tumor regions of interest (ROIs) in radiographic
images (9, 10). Compared with histopathology and genetic
testing methods, radiogenomics not only can overcome
sampling bias and the possible complications caused by biopsy,
but also is expected to provide more comprehensive and accurate
information in predicting the biomarkers (9). To date, the
application of radiogenomics in pediatric tumors is mainly
focused on MRI-based signatures of medulloblastoma, and the
CT-based radiogenomics is rarely used (11, 12). Although a
2

recent study has shown the potential of CT-based signature in
the predict ion of MYCN amplificat ion of NB and
ganglioneuroblastoma (GNB) (8), there were some problems
with the patients’ selection, in which nonabdominal NB and
GNB were also enrolled, because previous literatures have
demonstrated that MYCN amplification rarely occurs in
nonabdominal NB and GNB (13, 14). Meanwhile, due to the
heterogeneity of NB, the ROIs selectively delineated on several
largest levels of the tumor cannot reflect the biological
characteristics of the tumor comprehensively (15). Instead, the
whole-tumor ROIs delineated on all slices in other radiomics
studies have contributed to reduce sampling bias and improve
intra- and inter-observer consistency (16, 17).

In the present study, we developed and validated the CT-
based radiomics features combined with various machine
learning methods for predicting MYCN amplification of
abdominal NB in the cohort of pediatric patients. Besides, we
constructed a clinical model based on clinicopathological
parameters and radiographic features, and then added the
radiomics signature to develop radiomics-clinics model. The
predictive performance of clinical model, radiomics model and
radiomics-clinics model was finally evaluated and compared
according to the AUC and Delong test.
MATERIALS AND METHODS

Patients and MYCN
Amplification Characterization
The Ethics Committee of our hospital approved this single-
center retrospective study and waived the requirement for
informed patient consent. We identified 172 abdominal NB
patients with MYCN amplified (n = 47) and non-amplified
(n = 125) by searching the medical record management system
and radiology picture archiving and communication system
(PACS) of our department from May 2012 to August 2020
consecutively according to the inclusion and exclusion criteria.
Inclusion criteria were: (1) availability of abdominal contrast-
enhanced CT with sufficient image quality, including non-
enhanced, arterial and venous phase; (2) patients without any
radiotherapy, chemotherapy or surgical treatment before the first
CT examination; (3) pathologically confirmed abdominal NB;
(4) with the detection of MYCN status. Exclusion criteria were:
(1) patients with ganglioneuroma or GNB; (2) patients with
May 2021 | Volume 11 | Article 687884
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nonabdominal NB (e.g., neck, chest or pelvis); (3) abdominal NB
patients absent of three-phrase CT scans; (4) insufficient image
quality; (5) without the detection of MYCN status; (6) abdominal
NB patients with prior treatments. The detailed workflow of
patients’ selection is shown in Figure 1.

The study cohort was randomly stratified sampling into
training group and testing group in a proportion of 7:3.
Clinicopathological parameters, including gender, age (month),
histopathology, INSS stage, Shimada classification and urinary
vanillylmandelic acid (VMA) were collected from medical
records. According to the differentiation degree, the
histopathological results were categorized into two groups:
undifferentiated or poorly differentiated, and differentiated NB
(8). The prognostic Shimada classification of patients was
defined as favorable histology (FH) and unfavorable histology
(UFH) on the basis of age, degree of differentiation and mitotic
karyorrhectic index (MKI) of NB (18). The MYCN gene copy
number was detected by fluorescence in situ hybridization
(FISH) method in all specimens using a MYC-N/LAF double
probe, and cases with the number of signals exceeding 10-fold
MYCN copies were considered to be MYCN amplified (18). The
intervals between the MYCN status detection and contrast-
enhanced CT scans of the same patient in the present study
were less than a month.

CT Scanning
All CT scans were acquired during a single breath-hold in
cooperative children or during quiet respiration in children
unable to suspend respiration, and those who could not
cooperate were sedate by oral administration of 10% chloral
hydrate (0.5 ml/kg, body weight) before examination. All
abdominal three-phase CT scans, including non-enhanced
phase (NP), arterial phase (AP), and venous phase (VP), were
Frontiers in Oncology | www.frontiersin.org 3
performed on Lightspeed VCT 64-slice spiral CT (GE
Healthcare, USA) scanner or Brilliance ICT 256-slice spiral CT
(Philips, Netherlands) scanner. The CT scanning parameters
were (1) tube voltage: 120 kV; (2) tube current: 200 mAs; (3)
pitch: 0.984:1; (4) slice thickness: 5.0 mm; (5) slice interval:
5.0 mm; (6) reconstructed slice thickness: 1.25 mm. Nonionic
iodinated contrast material (Omnipaque 300 mg I/mL or
Visipaque 320 mg I/ml, GE Healthcare) was used. Contrast
material (2 ml/kg, body weight) was injected into peripheral
vein of the forearm with a power injector at a rate of 1–3 ml/s. AP
and VP of post-contrast scanning were performed at 20–35 and
60–70 s respectively after contrast material administration.

Imaging Analysis
All CT examinations were transmitted to the workstation for
review and analysis. All images were initially analyzed
independently by two experienced pediatric radiologists
without knowledge of the MYCN status. The tumor features,
including calcification (present or not), infiltrating across
midline (exceeding the contralateral edge of the spine, present
or not) and necrosis (present or not), were recorded[8].
Disagreements were resolved by negotiation.

Clinical Model Building
Clinicopathological parameters of MYCN-amplified and non-
amplified groups included gender, age, histopathology, INSS
stage, Shimada classification and urinary vanillylmandelic acid
(VMA) and radiographic features. Influence characteristics that
were statistically significant with p<0.05 in the univariate logistic
analyses were included in the multivariate analysis following the
stepwise selection method. The Akaike information criterion
(AIC) and Log-Likelihood were used as the stopping rules to
select the most predictive clinical features.
FIGURE 1 | The workflow of patients’ selection in our study.
May 2021 | Volume 11 | Article 687884
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Image Preprocessing and
Tumor Segmentation
Before the tumor segmentation, isotropic voxel resampling into
1 mm × 1 mm × 1 mm with linear interpolation was used to
image preprocessing for purpose of normalizing the geometry of
CT images. The ROIs of whole-tumor were manually 3D-
delineated on three phrases respectively using a free open-
source software package (ITK-SNAP, ver.3.4.0) by a pediatric
radiologist with 2 years of experience, and the ROIs were then
reviewed and confirmed by the other pediatric radiologist with
10 years of experience (Figure 2). The ROIs included the
calcification and necrosis area of the lesion. The ROIs
segmentation of each tumor was performed twice by reader 1
(time-interval of 2 weeks) and once by reader 2. The intra-
observer class correlation coefficients (ICCs) were calculated
based on the features extracted from the ROIs delineated by
reader 1 at different time points.

Radiomics Features Extraction
and Selection
The images and corresponding ROIs were imported into the in-
house software (Artificial Intelligence Kit, AK, Version V3.2.2.R,
GE Healthcare) together, and then features extraction was
performed with AK software. The radiomics features were
classified into seven groups including: first order, shape,
gray-level co-occurrence matrix (GLCM), gray-level size-zone
Frontiers in Oncology | www.frontiersin.org 4
matrix (GLSZM), gray-level run-length matrix (GLRLM),
neighborhood gray-tone difference matrix (NGTDM) and
neighboring gray-level dependence matrix (GLDM). To
enhance intricate patterns in the data invisible to the human
eye, advanced filters, including Laplacian of Gaussian (LoG;
sigma, 2.0 and 3.0 mm), and wavelet decompositions with all
possible combinations of high (H) or low (L) pass filter in each of
the three dimensions (HHH, HHL, HLH, LHH, LLL, LLH, LHL,
HLL), were applied. A total of 3654 radiomic features of each
patient (1218 features in each phase) were finally extracted from
the ROIs based on NP, AP and VP.

Because many of the extracted high-dimensional features are
often redundant and meaningless, a variety of methods were
used for dimensionality reduction. To begin with, intra-observer
analysis was used to assess the reliability and reproducibility of
the features in order to find out the robust features. Features with
ICCs higher than 0.80 were considered reliable and selected.
Then, two feature selection methods, the maximum relevance
minimum redundancy (mRMR) and the least absolute shrinkage
and selection operator (LASSO) regression, were applied to
eliminate the redundant and irrelevant features and choose the
optimized subset of features to construct the radiomics models.
Due to the CT scans in our study were performed on two
scanners from different manufacturers (Lightspeed VCT and
Brilliance ICT), the performance of radiomics features derived
from two scanners was evaluated by ROC analysis and Delong
FIGURE 2 | Examples of manual delineated regions of interests (ROIs) of amplified and non-amplified NB. Delineation of the ROI on one slice of a non-amplified NB
(Female, 2 months, asymptomatic) on non-enhanced phase (NP) (A), arterial phase (AP) (B), and venous phase (VP) (C); Delineation of the ROI on one slice of an
amplified NB (female, 2 years, presented with abdominal palpable mass) on NP (D), AP (E), and VP (F).
May 2021 | Volume 11 | Article 687884
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test. Rad-score was calculated by summing the selected features
weighted by their coefficients.

Machine Learning
The selected features from the training group were used to
establish radiomics models based on three-phrase using
Logistic regression, Support Vector Machine (SVM), Bayes and
Random Forest. The performance of the developed radiomics
models were then validated in both training and testing groups
according to the area under the receiver operator characteristic
(ROC) curve (AUC). The Delong test was used to compare the
performance of four different machine learning models.

Nomogram Building and Evaluating
Finally, the radiomics signature was added to build the
radiomics-clinics nomogram incorporated of statistically
significant clinicopathological parameters and radiographic
features on the basis of the results of multivariate logistic
regression analysis in the training group. The predictive
performance of the clinical model, radiomics models, and
nomogram was evaluated according to the area under the
receiver operator characteristic (ROC) curve (AUC) in both
training and testing groups, and the Delong test was applied to
compare the performance of different models.
Frontiers in Oncology | www.frontiersin.org 5
Statistical Analysis
IPM statistics (IPMs, version 2.4.0, GE healthcare) and R
programming language (ver. 3.4.2, http://www.r-project.org) were
used to carry out statistical analysis. A chi square test or Fisher’s
exact test was used for the nominal variables, and a Mann–Whitney
test was used for the continuous variables with abnormal
distribution between the two cohorts. A two-tailed p <0.05
indicated statistical significance. “mRMRe” and “glmnet” packages
were used to carry out the mRMR and LASSO respectively. The
“pROC” package was used to performDelong test and plot the ROC
curves of each model. The “rms” package was used to carry out
machine learning and build clinical-radiomics nomogram.
RESULTS

Patient Characteristics and Clinical
Model Building
According to the inclusion and exclusion criteria, 172 patients
were identified in the present study (47 patients with MYCN
amplified and 125 patients with MYCN non-amplified). The
patients were divided into training group (n = 121) and testing
group (n = 51) randomly in a proportion of 7:3, and the
characteristics of patients are detailed in Table 1. The meaningful
TABLE 1 | Clinicopathologic and radiographic features in training and testing groups.

Features Training group (n = 121) Testing group (n = 51)

Non-amplified Amplified p-value Non-amplified Amplified p-value

Gender (%) 0.736 0.543
Male 51 (57.95) 18 (54.55) 22 (59.46) 7 (50.00)
Female 37 (42.05) 15 (45.45) 15 (40.54) 7 (50.00)
Histopathological types (%) 0.629 0.772
Differentiated 28 (31.82) 9 (27.27) 14 (37.84) 4 (28.57)
Undifferentiated or poorly differentiated 60 (68.18) 24 (72.73) 23 (62.16) 10 (71.43)
INSS 1 (%) 0.023* 0.43
1 12 (13.64) 0 (0.00) 6 (16.22) 0 (0.00)
2 7 (7.95) 1 (3.03) 1 (2.70) 0 (0.00)
3 18 (20.45) 4 (12.12) 8 (21.62) 3 (21.43)
4 48 (54.55) 28 (84.85) 20 (54.05) 11 (78.57)
4S 3 (3.41) 0 (0.00) 2 (5.41) 0 (0.00)
Shimada classification (%) 0.006* 0.071
UFH 58 (65.91) 30 (90.91) 23 (62.16) 13 (92.86)
FH 30 (34.09) 3 (9.09) 14 (37.84) 1 (7.14)
Infiltrating
across midline (%)

0.17 0.201

Yes 41 (46.59) 20 (60.61) 23 (62.16) 12 (85.71)
No 47 (53.41) 13 (39.39) 14 (37.84) 2 (14.29)
Calcification (%) 0.016* 0.454
Yes 61 (69.32) 15 (45.45) 27 (72.97) 8 (57.14)
No 27 (30.68) 18 (54.55) 10 (27.03) 6 (42.86)
Necrosis (%) 0.034* 0.099
Yes 51 (57.95) 26 (78.79) 24 (64.86) 13 (92.86)
No 37 (42.05) 7 (21.21) 13 (35.14) 1 (7.14%)
Age (P25, P75) 24.0 (8.45, 48.0) 25.0 (12.0, 40.3) 0.518 15.00 (7.70, 48.00) 22.0 (13.9, 30.3) 0.598
VMA (P25, P75) 21.7 (5.97, 43.36) 5.14 (2.96, 21.76) 0.005* 21.19 (6.39, 41.27) 4.67 (2.36, 11.6) 0.002*
May 202
1 | Volume 11 | Article
*p <0.05. A chi square test or Fisher’s exact test was used for the nominal variable. A Mann–Whitney test was used for the continuous variable with abnormal distribution. 1 INSS,
International Neuroblastoma Stage System. Since the morphological characteristics of lesions were firstly interpreted by two radiologists independently and then the difference was
resolved by negotiation, the reader agreements were evaluated [Infiltrating across midline: 0.909 (0.878–0.933), Calcification: 0.871 (0.809–0.909), Necrosis: 0.920 (0.890–0.942)].
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characteristics, including the INSS stage, Shimada classification,
infiltrating across midline, calcification, necrosis and VMA, were
identified as significant with p <0.05 by univariate analyzing.
Among them, four characteristics, including Shimada
classification (odds ratio (OR) = −2.22, p <0.001), infiltrating
across midline (OR = 0.89, p = 0.352), calcification (OR =
−1.363, p = 0.0017) and VMA (OR = −0.019, p = 0.0127) were
selected using the stepwise selection by multivariate logistic
regression analysis (Table 2). The AIC criterion was in the
multivariate analysis following the stepwise selection method, and
the model with smallest AIC value would be chosen. The AIC value
of the selected model was 171.4549.
Feature Selection and Machine Learning
A total of 1,218 radiomics features were automatically extracted
for each segmented ROI (NP, AP and VP). 734 features were
firstly selected with ICCs higher than 0.80 by intra-observer
analysis. Before selection of the 734 features, the abnormal or
missing values were replaced by the median, and features
standardization was applied. And then, mRMR and LASSO
were used to select the most optimal features. After the
redundant and irrelevant features were removed by mRMR, 30
features from AP, NP and VP were retained. Then LASSO was
Frontiers in Oncology | www.frontiersin.org 6
conducted to identify the final 14 optimal features, including one
first-order feature and eight wavelet-transformed features and
five LoG-transformed features, to construct the radiomics
models. The LASSO includes choosing the regular parameter l
and determining the number of the feature (Figure 3). After the
number of features determined, the most predictive subset of
features was chosen and the corresponding coefficients were
calculated (Figure 4). The comparison of radiomics signatures
derived from two scanners is shown in Supplementary Figure 1
and Table 1, and the performance of the signatures from two
scanners was different. Rad-score was calculated by summing the
selected features weighted by their coefficients. The final formula
of rad-score is showed in Supplementary Figure 2.

The ROC curves of the four machine learning models in the
training and testing groups are shown in Figure 5. In the training
group, the AUC among the Logistic, SVM, Bayes and Random
Forest was 0.940, 0.940, 0.780 and 0.927, respectively, and the
corresponding AUC in the testing group was 0.909, 0.909, 0.729,
0.851, respectively. The Delong test was applied to compare the
performance of the four models. There was no significant
difference among the Logistic, SVM and Random Forest model
(Logistics vs SVM: p = 0.99, Logistic vs Random Forest: p = 0.33,
SVM vs Random Forest: p = 0.33), but all better than the Bayes
model (p <0.005) (Table 3).
TABLE 2 | Univariate and Multivariate logistic analysis in the cohort.

Variable Univariate analysis Multivariate analysis

OR (95%CI) P-value OR (95%CI) P-value

Gender 0.809 (0.412, 1.589) 0.539
Histopathological type 1.323 (0.632, 2.771) 0.457
INSS stage 2.040 (1.255-3.316) 0.004*
Shimada classification 0.171 (0.058, 0.508) 0.001* −2.22 (−3.396 to −1.045) <0.001*
Infiltrating across midline 2.033 (1.003, 4.121) 0.049* 0.890 (0.062–1.718) 0.0352*
Calcification 0.403 (0.202, 0.802) 0.010* −1.363 (−2.212 to −0.513) 0.0017*
Necrosis 3.250 (1.402, 7.533) 0.006*
Age 0.996 (0.984, 1.008) 0.467
VMA 0.981 (0.967, 0.996) 0.013* −0.019 (−0.035 to −0.004) 0.0127*
May 2021 | Volume 11 | Article
Intercept = 0.24026. *reflected the significant difference with the P value <0.05.
FIGURE 3 | The LASSO includes choosing the regular parameter l, determining the number of the feature.
687884
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Nomogram Building and Evaluating
After performing multivariate logistic regression analysis, the
radiomics-clinics nomogram was built by incorporating of
clinical-radiological predictors (Shimada classification (odds
ratio (OR) = −2.22, p <0.001), infiltrating across midline (OR =
0.89, p = 0.352), calcification (odds ratio (OR) = −1.363, p =
Frontiers in Oncology | www.frontiersin.org 7
0.0017), VMA (odds ratio (OR) = −0.019, p = 0.0127)) (detailed
in Figure 6) and the calculated radscore. The ROC analysis of the
clinical model, radiomics model, and nomogram is illustrated in
Figure 7 and the comparison of different models is shown in
Table 4. The nomogram had a superior predictive performance
than using the clinical model alone, accompanied with an
improved AUC value from 0.770 to 0.946 in the training group
and 0.917 to 0.977 in the testing group. The performance of the
Logistic radiomics model based on three-phrase is similar to
nomogram, but both better than clinical model and radiomics
model based on single venous phase (Table 4).
DISCUSSION

MYCN amplification status plays a significant role in risk
classification of NBs, and NBs with MYCN amplified are
usually classified into the high-risk group, where the patients
need intensive treatment of operation, radiotherapy and
chemotherapy (19). In addition to genetic testing method,
radiogenomics, which focusing on establishing the correlation
between imaging features and molecular biomarkers, is expected
to provide an alternative method to characterize and predict the
MYCN amplification status of neuroblastoma noninvasively and
inexpensively (8, 20). Previous studies on radiogenomics have
demonstrated its potential to predict mutated genes in the solid
FIGURE 5 | ROC analysis used to evaluate the predictive performance of different radiomics models in the training and testing groups.
TABLE 3 | Comparison of four different machine learning model based on three-phrase in the training and testing groups.

Models Training group (n = 121) Validation group (n = 51)

AUC (95%CI) Delong test AUC (95%CI) Delong test

Logistic 0.940 (0.901–0.978) 0.99# 0.909 (0.824–0.994) 0.99#

SVM 0.940 (0.901–0.978) <0.005## 0.909 (0.824–0.994) <0.005##

Bayes 0.780 (0.692–0.867) <0.005### 0.729 (0.581–0.863) 0.051###

Forest 0.927 (0.879–0.974) 0.33#### 0.851 (0.725–0.976) 0.055####
May 2021 | Volume 11 | A
#indicated the Delong test between the logistic and SVM model; ##indicated the DeLong test between the SVM and Bayes model; ###indicated the Delong test between the Bayes and
Forest model; ####indicated the DeLong test between the Logistic and Forest model.
FIGURE 4 | The most predictive subset of feature was chosen and the
corresponding coefficients were evaluated in the training group.
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tumors (11, 12, 20, 21). Among adult tumors, CT-based
radiogenomics has been widely studied in lung, kidney and
liver neoplasms (22–24). However, there have been a few
reports on CT radiogenomics in pediatric tumors (8). In this
study, data from clinicopathologic parameters (Shimada
classification, VMA) and radiographic features (infiltrating
across midline, calcification and radiomics features) were
selected to develop predictive models for the MYCN
amplification of pediatric abdominal NB. Compared to the
other study of CT radiogenomics in pediatric NB and GNB
(8), we only enrolled the pediatric patients with abdominal NB,
because MYCN amplification mostly occurs in abdominal NB
(13, 14). Meanwhile, we delineated the whole-tumor ROIs on all
slices for the purpose of improving intra- and inter-observer
consistency. In addition to first-order and textural features,
higher-order features transformed by wavelet and LoG were
also extracted to further evaluate the optimal radiomics
features correlating with MYCN amplification. Moreover, we
also compared the performance of radiomics models developed
by four common machine learning methods.

In the present study, quantitative radiomics features, derived
from CT images of the whole-tumor ROIs on three-phrase, were
extracted and selected by using ICCs, mRMR and LASSO
Frontiers in Oncology | www.frontiersin.org 8
methods. mRMR refers to Maximum Relevance and Minimum
Redundancy, which is used to select the optimal features that are
most relevant to the classification task but least redundant to
each other. mRMR is an algorithm based on mutual information,
similar to the Maximum Dependency algorithm. However,
unlike Maximum Dependency algorithm, which is not
applicable in the case of large number of features, mRMR is
especially suitable for high-dimensional data space (25). After
the redundant and irrelevant features were removed by mRMR,
LASSO regression model was used to prevent overfitting of the
selected radiomics features. The main advantage of LASSO
method is that it does not compress the variable with larger
parameter estimation, while the variable with smaller parameter
estimation is compressed exactly to zero. The complexity of the
model is controlled through a series of parameters, so as to avoid
overfitting. Moreover, the parameter estimation of LASSO
analysis has continuity, which is suitable for the model
selection of high-dimensional data (26).

Finally, 14 features from three phases were identified as the
most predictive subset of feature to construct the radiomics
model, including one original first-order feature and eight
wavelet-transformed features and five LoG-transformed
features. Among the final selected features, the higher-order
A

B C

FIGURE 6 | The developed nomogram and calibration curve. (A) The nomogram was developed in the training group and incorporated the radiomics signature,
Shimada types, VMA, Infiltrating across midline and calcification. (B) Calibration plots of the nomogram in the training group. (C) Calibration plots of the nomogram in
the testing group.
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features filtered by wavelet and LoG filters were obviously
superior to the original first-order and textural features. Chen
et al. (16) investigated the role of CT-based radiomics to
differentiate pelvic rhabdomyosarcoma from yolk sac tumors
in children. Among the 10 features selected in their radiomics
model based on each phrase, most of the selected features were
wavelet-transformed features. Wavelet and LoG are both higher-
order statistical methods imposing filter grids on the images, and
could possibly reflect more information about vascularity and
spiculation of the lesion (27). The principle of wavelet is to put a
matrix of linear or radial “waves” on images, while LoG is mostly
used to extract features from areas with coarse textural pattern
(27). Besides, we evaluated the performance of radiomics features
from two scanners, and the results showed that the performance
of two signatures is different. One reason for this difference may
be that radiomics features are correlated with different scanners
from different manufactures, and the other reason may be that
the sample size of patients scanned on Lightspeed VCT (GE
Healthcare) was relatively too small.

The results of our study showed that radiomics models based
on NP, AP and VP images can predict MYCN amplification in
pediatric abdominal NB, while the performance of different
machine learning radiomics models varies. The AUC in the
training group among the Logistic, SVM, Bayes and Random
Forest was 0.940, 0.940, 0.780 and 0.927, respectively, and the
Frontiers in Oncology | www.frontiersin.org 9
corresponding AUC in the testing group was 0.909, 0.909, 0.729,
0.851, respectively. The Logistic and SVM models have the best
predictive performance with the same value of AUC. According
to Delong test, there was no significant difference among the
Logistic, SVM and Random Forest model, but all better than the
Bayes model. In previous studies, researchers mostly chose one
classifier to build radiomics model, and there is no consensus on
the best-performing classifier method. Deist et al. (28) compared
the performance of different classifiers (decision tree, random
forest, neural network, support vector machine, elastic net
logistic regression, LogitBoost) in predicting radiotherapy
outcomes. In their study, Random forest and elastic net logistic
regression performed better than other classifiers. Machine
learning classifiers can be used to identify the best combination
of radiomics features, while different algorithms have different
advantages and disadvantages (29). Therefore, we should
choose the optimal machine learning method with overall
maximal predictive performance according to the specific
clinical application.

In addition, we constructed a nomogram combining clinical
parameters, imaging features and radscore. The variables
including Shimada classification, VMA, infiltrating across
midline and calcification were selected to build the nomogram
with the most predictive signatures of radiomics. In this study,
UFH was found to show significant correlation with MYCN
FIGURE 7 | ROC analysis among the clinical model, radiomics model and nomogram in the training and testing groups.
TABLE 4 | Comparison of different models in the training and testing groups.

Variable Training group Testing group

AUC (95%CI) Sensitivity Specificity Delong AUC (95%CI) Sensitivity Specificity Delong

VP 0.89 (0.83–0.95) 0.569 0.942 0.88 (0.79–0.97) 0.416 0.852
Three-phase 0.940 (0.901–0.978) 0.970 0.818 0.0008# 0.909 (0.824–0.994) 0.786 0.919 0.884#

Clinics 0.770 (0.685–0.841) 0.727 0.795 0.0003## 0.917 (0.805–0.976) 0.857 0.834 0.0784##

Nomo 0.946 (0.889–0.979) 0.939 0.841 0.343### 0.977 (0.89–0.999) 0.928 0.918 0.05###
May 2021 | V
olume 11 | Articl
#indicated the Delong test between the venous and three-phrase radiomics model; ##indicated the Delong test between the three-phrase radiomics and Clinics model; ###indicated the
Delong test between the three-phrase radiomics and Nomo combined model.
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amplification. This finding supported the previous study which
also found that MYCN-amplified NBs were mostly categorized
as UFH group (18). Besides, we found that the majority of NBs
infiltrating across midline were MYCN-amplified, which is
consistent with the finding of Wu et al. (8), but calcification in
NB was found to be related to MYCN amplification. The
nomogram had a superior predictive performance than using
the clinical model alone, accompanied with an improved AUC
value from 0.770 to 0.946 in the training group and 0.917 to
0.977 in the testing group. Besides, we found that the radiomics
features used to construct the radiomics models were mostly
derived from the NP and VP, so we developed Logistic radiomics
model based on single VP. Then, we further evaluated and
compared the predictive performance of the nomogram,
Logistic radiomics VP model and Logistic radiomics three-
phrase model. Although compared with radiomics model,
nomogram did not significantly improve the prediction of
MYCN amplification, they were both better than clinical model
and radiomics model based on single venous phase, which
demonstrated that the radiomics features are useful for
predicting MYCN amplification and radiogenomics is expected
to be involved in risk stratification in NB patients.

Despite our study showed that CT-based radiomics has the
potential to predict MYCN amplification in pediatric abdominal
NB, there were some limitations. First, this was a retrospective
study, which may cause inherent selection bias, especially for
those valuable absent clinical indicators that could potentially
improve the performance of clinics-radiomics nomogram.
Second, we only enrolled 172 patients in the present study
because MYCN status has begun to be detected in recent years
in our hospital. Previous literatures have shown that MYCN
amplification usually occurs in about 20% of neuroblastoma. As
a tertiary referral medical center, we have accumulated a certain
number of MYCN-amplified cases over the past several years,
and the inclusion of more cases will take some time in the future.
Third, the CT scans of enrolled patients were performed on two
scanners from different manufacturers in the study, from which
the derived features have a certain influence on the predictive
performance of radiomics models. Fourth, we only choose four
common machine learning methods to build radiomics models,
and the performance of other classifiers still needs to
be evaluated.
CONCLUSIONS

In conclusion, the CT-based radiomics signature is able to
predict MYCN amplification of pediatric abdominal NB with
high accuracy based on SVM, Logistic and Random Forest
classifiers, while Bayes classifier yields lower predictive
performance. Thus, one of these three machine learning
methods should be the first consideration for researchers to
construct predictive models for MYCN amplification of
abdominal NB. When combined with clinical and radiographic
qualitative features, the clinics-radiomics nomogram can
improve the performance of predicting MYCN amplification.
Frontiers in Oncology | www.frontiersin.org 10
With the development of tumor molecular stratification,
radiogenomics is expected to provide a promising method to
characterize and predict molecular biomarkers noninvasively.
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