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Muscle-invasive bladder cancer (MIBC) is the most common urinary system carcinoma
associated with poor outcomes. It is necessary to develop a robust classification system
for prognostic prediction of MIBC. Recently, increasing omics data at different levels of
MIBC were produced, but few integration methods were used to classify MIBC that
reflects the patient’s prognosis. In this study, we constructed an autoencoder based deep
learning framework to integrate multi-omics data of MIBC and clustered samples into two
different subgroups with significant overall survival difference (P = 8.11 × 10-5). As an
independent prognostic factor relative to clinical information, these two subtypes have
some significant genomic differences. Remarkably, the subtype of poor prognosis had
significant higher frequency of chromosome 3p deletion. Immune decomposition analysis
results showed that these two MIBC subtypes had different immune components
including macrophages M1, resting NK cells, regulatory T cells, plasma cells, and naïve
B cells. Hallmark gene set enrichment analysis was performed to investigate the functional
character difference between these two MIBC subtypes, which revealed that activated IL-
6/JAK/STAT3 signaling, interferon-alpha response, reactive oxygen species pathway, and
unfolded protein response were significantly enriched in upregulated genes of high-risk
subtype. We constructed MIBC subtyping models based on multi-omics data and single
omics data, respectively, and internal and external validation datasets showed the
robustness of the prediction model as well as its ability of prognosis (P < 0.05 in all
datasets). Finally, through bioinformatics analysis and immunohistochemistry
experiments, we found that KRT7 can be used as a biomarker reflecting MIBC risk.
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INTRODUCTION

Bladder urothelial carcinoma (BLCA) is one of the most
common cancer types in human (1), while muscle-invasive
bladder cancer (MIBC) accounts for the majority of patient
mortality (2). Over the past tens of years, there is no practical
option to improve the survival of MIBC patients. Unlike the high
5-year survival rate (95%) of bladder cancer that has not spread
beyond the inner layer of the bladder wall, the 5-year survival
rate of MIBC without distant metastasis dropped to 69%, and if
cancer extends through the bladder to the surrounding tissue or
has spread to nearby lymph nodes or organs, the 5-year survival
rate is 35% (Approved by the Cancer.Net Editorial Board,
05/2019).

In recent years, many studies have characterized the
molecular features at different omics levels and reported
subclassification of bladder cancer into distinct subtypes based
on unique molecular signatures (3–11). For example, The Cancer
Genome Atlas (TCGA) consortium reported four clusters of
MIBCs with gene expression profiling and two of which were
also evident in microRNA (miRNA) sequencing and protein data
(6). Robertson et al. (11) recruited many TCGA-MIBC samples
and subtyped the MIBC patients referring to the mutation
signature, the expression of mRNA, lncRNA, and miRNA,
respectively, and revealed some of the subtypes related to a
poor-survival phenotype.

Nevertheless, the previous studies investigated the molecular
subtypes of bladder cancer only based on single omics level, and
did not connect with the survival information during the process
of defining subtypes. Thus, a subtyping method that could reflect
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different survival profiles is valuable for the clinical application in
guiding the treatment of MIBC patients.

Here, we employed a multi-omics-based utilized deep
learning (DL) computational framework to stratify the MIBC
patients into two subgroups concerning different risks of overall
survival (OS) (Figure 1). We investigated feature differences
between the two subgroups of MIBC, and derived prognostic
models based on multi- or single-omics data to classify MIBC
into different subgroups. Gene expression-based model were
further validated by both in-group and out-group datasets.
Besides, we figure out a cell surface marker—KRT7 (CK7),
which is significantly differently expressed in high-risk and
low-risk MIBC.
MATERIALS AND METHODS

Datasets and Study Design
The multi-omics data of TCGA-BLCA, including gene-level copy
number variation (CNV) profile, mRNA and miRNA expression
profile revealed by RNA-seq and miRNA-seq, and DNA
methy l a t i on da t a p rofi l e d by I l l um ina Infin ium
HumanMethylation450 platform, were downloaded from the
University of California Santa Cruz (UCSC) Xena database
(https://xenabrowser.net/).

Only samples with tumor stage II/III/IV (MIBC) remained
for downstream analysis. These TCGA-MIBC datasets were used
in two ways: 1) All samples were used to perform subgroup
stratification based on deep learning and clustering algorithm; 2)
FIGURE 1 | Overall workflow for the deep learning-based prognostic subtyping and validation.
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samples were randomly split by 4:1, including a training dataset
to train the classification model and an in-group testing dataset
to validate the prediction accuracy. Three gene microarray
matrices containing 43 MIBC patients (GSE19915), 62 MIBC
patients (GSE48277-GPL14951), and 73 MIBC patients
(GSE48277-GPL6947) were downloaded from Gene Expression
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/),
serving as out-group validation datasets. For these datasets, only
samples with prognostic information were taken into
consideration for downstream analysis.

Multi-Omics Data Integration
The autoencoder framework was chosen as the implementation
of deep learning for integrating the results derived from multi-
omics data. The CNV, gene expression, miRNA expression, and
methylation data extracted from TCGA-MIBC dataset served as
an input for the autoencoders framework. The autoencoder was a
dimensionality reduction method based on an unsupervised
feed-forward, non-recurrent neural network, which is
implemented in python with package Keras (https://github.
com/fchollet/keras).

We build the autoencoder framework as previously reported
(12), which could be briefly described as follows:

For a given input layer, the objective of an autoencoder
reconstructed the input layer x (sized as d × p) into the same
dimension output layer y through an activation function tanh (a
hidden layer between x and y). In this study, we used the four
preprocessed data matrices of different level of omics data
(features × samples) and stacked all features together into a
merged big matrix. In total, 350,631 features were used for
downstream analysis. All of the features except CNV features
were scaled so that all values are within a similar distribution
range. This step could be expressed as:

yi = fi(x) = tanh(Wi·x + bi)

where bi is an intercept vector of size p and Wi·x = Sj Wi,j·xj, in
which xj is the value of a single feature of x. When the
autoencoder framework has k layers,

y = F1!k(x) = f1 °⋯ fk−1 ° fk(x)

where fk−1 ° fk(x) = fk−1(fk(x)).
To train an autoencoder, the objective is to find the different

weight vectors Wi minimizing a specific objective function. We
chose binary crossentropy as the objective function, which
measures the error between the input x and the output y:

binary crossentropy(x, y) = o
d

k=1

(xklog(yk) + (1 − xk)log(1� yk))

We added two regularization penalty aw and aa for both
weight vector Wi and node activities F1!k (x):

L(x, y) = binary crossentropy(x, y)

+o
d

i=1
(awjjWi ji + aaj j F1!i(x)j jj22)
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We set the three hidden layers in the autoencoder, which
included 500, 100, and 500 nodes, respectively. The bottleneck
layer of the autoencoder was adopted to generate novel
characteristics from the four-level omics data. The penal values
aw and aa were set as 0. 1 and 1 × 10-7, respectively. Finally, the
autoencoder was trained by the gradient descent algorithm with
10 epochs and a batch size of 64.

Selection of the Transformed Features and
Sample Clustering
One hundred novel features were derived from the omics data
based on the deep learning algorithm. For each of these
transformed features, we performed the univariate Cox
proportional-hazards regression analysis to find out the OS-
related features (log-rank test, P < 0.05). Subsequently, we used
these selected features to cluster the MIBC samples into groups
based on the K-means clustering algorithm. The hazard ratio and
the p-value derived from log-rank test were used to evaluate the
prognostic differences.

Genomic Analysis of TCGA Data
Somatic mutation data of TCGA BLCA and copy number
segment data were downloaded from UCSC Xena database
(https://xenabrowser.net/datapages/), respectively, and MIBC
samples were extracted for downstream analysis. The mutation
data was converted into “maf” format and visualized by Maftools
(13). The segmentation file contains the segmented data for all
the samples separated into S1 and S2 subgroups, and the
recurrent frequency of each segment in each subgroup was
calculated using GISTIC2 (14). The frequency of each
chromosome cytoband in S1 and S2 was calculated smoothly
from the files named “scores.gistic”, and then chi-square test was
used to detect regions with significant differences in CNA
frequency between S1 and S2 subtypes. Immune cell
composition of MIBC was estimated from the expression data
using the program CIBERSORT (15).

Differential Expression Analysis and
Functional Enrichment
Differentially expressed genes (DEGs) of TCGA data were
detected by DESeq2 (16), and DEGs of microarray-based
datasets were detected using the limma package (17) Hallmark
gene set was downloaded from Molecular Signatures Database
v7.0 (MSigDB, http://software.broadinstitute.org/gsea/msigdb/),
and gene set enrichment analysis (GSEA) was performed using
the R package “clusterProfiler” (18).

Differential Methylation Analysis and
Functional Enrichment
To test for differentially methylated CpG sites (DMS), we use the
limma package. CpG site was defined as a DMS that |log2(fold-
change)| of Beta value was more than 1 and adjusted p-value was
less than 0.05. DMS located genes were extracted, and over-
represent enrichment analysis was performed using the R
package “clusterProfiler”.
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https://www.ncbi.nlm.nih.gov/geo/
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://xenabrowser.net/datapages/
http://software.broadinstitute.org/gsea/msigdb/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhang et al. Prognostic Subtyping of Bladder Cancer
Data Partitioning and Prognostic
Subgroup Robustness Assessment
All TCGA MIBC samples were randomly separated into
training/testing datasets following a 4:1 split. Then, we build a
supervised classification model using random forest, Naïve
Bayes, k-Nearest Neighbor, and Adaboost algorithms. For the
training dataset, we normalized each omics layer and calculated
the p-value (Wilcox test) of each feature between these two
prognostic subgroups. Then, we selected top features (50 for
CNV, 100 for mRNA, 50 for miRNA, and 50 for CpG
methylation) that are most correlated with subgroup labels
based on the p-values. Then, we conducted 10-fold cross-
validation with 10-time repeat to evaluate the predictive ability
of the selected features.

During each repetition, different algorithms were applied
(mentioned above), and receiver operating characteristic
(ROC) curves were executed. The area under the curve (AUC)
in all the repeats would provide us the predictive value of the
classification. Once the AUC value was less than 0.7, the whole
dataset would be re-split and the analysis would be re-started till
the satisfying results were obtained. Finally, we select the best
classification model with the highest AUC.

We selected the same features of each omics data in the
testing dataset and predicted the label of each sample based on
the classification model. The univariate Cox proportional-
hazards regression analysis was performed to test the survival
risk difference between the predicted groups.

For the out-group validation dataset, which only has a gene
expression profile, we just use the overlapped features with the
100 mRNAs mentioned above to fit the classification model. The
same tests were performed on TCGA testing dataset.

Immunohistochemical (IHC) Staining
and Assessment
Twenty-two MIBC samples were selected from Sun Yat-sen
University Cancer Center, Guangzhou, China, between January
2015 and December 2015. Only samples with overall survival less
than 1.5 years or over 5 years were taken into consideration in
this study. IHC staining was performed using BenchMark
ULTRA automatic immunostaining device according to the
manufacturer’s instructions to analyze the KRT7 expression. In
brief, the paraffin-embedded MIBC samples were sectioned and
deparaffinized using EZ prep solution (BenchMark, Roche,
Arizona, USA). The endogenous peroxidase activity was
inhibited, and the sections were subjected to antigen retrieval
in a cell-conditioning solution maintained at 95°C for 30 min.
The sections with the primary antibody mouse anti-CK7 (MXB
Biotechnologies Inc., Fuzhou, China, Kit-0021, 1:100 dilution)
were incubated at 37°C for 1 h after adding Liquid crystal
solution (BenchMark, Roche, Arizona, USA). A secondary
antibody was then added at 37°C for 15 min, and signals were
detected using the chromogen 3,3’-diaminobenzidine (DAB).
The sections were counterstained with hematoxylin and then
dehydrated and mounted on a coverslip. Staining proportion
(0–100%) and staining strength (- to 4+) were measured for each
sample, and an IHC score was calculated as follows:
Frontiers in Oncology | www.frontiersin.org 4
SIHC = Spro + Sstr

where Spro stands for the score of staining proportion (0%, Spro =
0; 1–20%, Spro = 1; 21–40%, Spro = 2; 41–60%, Spro = 3; 61–80%,
Spro = 4; 81–100%, Spro = 5) and Sstr stands for the score of
staining strength (-, Sstr = 0; +, Sstr = 1; ++, Sstr = 2; +++, Sstr = 3; +
+++, Sstr = 4). The IHC score was used to measure the expression
level of KRT7.
RESULTS

The Identification of OS-Related Subtypes
Based on TCGA Multi-Omics Data
The multiple layers of genetic data were extracted from the
TCGA database, and with the help of autoencoder-based deep
learning algorithm, these data were stacked together (see
Materials and methods). As a result, 100 new features were
extracted from the bottleneck hidden layer, which represented
the features of omics. We performed univariate Cox
proportional-hazards regression analysis on these features and
identified 98 features that were highly correlated with patients’
OS (P < 0.05, log-rank test; Supplementary Table S1).
Subsequently, the MIBC patients were assigned into different
clusters using K-means clustering algorithm referring to these
OS-related features. We chose 2 as the optimal number of
clusters (Figure 2A). Then, we conducted a univariate Cox
proportional-hazards regression on the grouping result and
observed that these two subtypes show a significant difference
in OS outcomes (P = 8.11 × 10-5, log-rank test, Figure 2B).
Furthermore, we performed multi-variates cox regression
analysis using general clinical characters as well as the
predicted subtypes, and the result shows that this molecular
classification can be used as an independent prognostic indicator
compared to general clinical information (Figure 2C). We
further analyzed the relationship between the molecular
subtyping and clinical information, and found that all patients
from S2 were of high grade (Figure 2D).

Molecular Differences Between These Two
Prognostic Subtypes
In order to analyze the molecular characteristics of the two
molecular subtypes, we firstly compared the differences in
mutation and CNA levels between the two groups. There is no
significant difference between the two subtypes in terms of
mutation burden (Figure 3A). Several genes were found
significantly mutated in S1, including NFE2L2, UGGT2, SCN3A,
TGFBR3, and NPC1L1 (Figure 3B). Besides, regions located on
chromosome 3p have a significantly higher frequency of deletion
in S2 patients (Figure 3C and Supplementary Table 2; adjusted
P-value < 0.05, chi-square test), which contains some important
tumor suppressor genes (TSGs) including FANCD2, VHL,
RPARG , XPC , TGFBR2 , MLH1 , SETD2 , and RHOA .
Interestingly, TGF-Beta receptors were significantly altered in
S2 at both SNV and CNV levels. Considering that transforming
growth factor (TGF)-b is a key executor of immune homeostasis
August 2021 | Volume 11 | Article 689626
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and tolerance, which can inhibit the expansion and function of
many components of the immune system, we next performed
immune decomposition for each sample and investigated the
differences in immune components between the two molecular
subtypes using CIBERSORT (15). As a result, tumors from S2
patients contained less M1 macrophages and resting NK cells, but
more regulatory T cells, plasma cells, and naïve B cells
(Figure 3D; P < 0.05, Wilcoxon signed-rank test).

Then, DEGs were derived by comparing the two prognostic
subtypes, aiming to present the underlying mechanisms. A total
of 6139 DEGs, including 2081 upregulated and 4058
downregulated genes, were detected with log2 fold change > 1
and FDR < 0.05 (Figure 3E). To investigate the functional
difference between these two subtypes, we then performed
Hallmark GSEA. In the top five most significantly enriched
gene sets, we found that IL-6/JAK/STAT3 signaling, Interferon
alpha response, reactive oxygen species, and unfolded protein
response were activated in S2 subtype (high-risk group), while
bile acid metabolism related genes were downregulated in this
subtype (Figure 3F and Supplementary Table 3). Furthermore,
Frontiers in Oncology | www.frontiersin.org 5
we also performed differential methylation analysis between these
two subtypes of MIBC. As a result, 40 hypermethylated CpG sites
and 34 hypomethylated CpG sites were found in S2 group
compared with S1 (Supplementary Figure 1A). The
hypermethylated CpG site located genes had significantly
enriched functions such as cell mitosis, cell junction, protein
binding, endocytosis, AMPK signaling pathway, and VEGF
signaling pathway (Supplementary Figure 1B), while the
hypomethylated CpG sites were in genes related to GTPase
binding and Ras guanyl-nucleotide exchange factor activity
(Supplementary Figure S1C).
Internal and External Validation of the
Subtyping of MIBC
To apply the identified classification into the prognosis of MIBC,
we try to build a classification model of MIBC subtyping. We
randomly selected 321 (80%) TCGA-MIBC cases as the training
set and the other 81 (20%) MIBC cases as an internal validation
set (Table 1). For the training set, we obtained the omics data at
A B

C D

FIGURE 2 | Two prognostic subtypes of MIBC were classified using multi-omics data-based deep learning framework. (A) Principal component analysis shows two
distinguished MIBC subgroups clustered by K-means algorithm. (B) Kaplan-Meier curves show a significant difference of overall survival between MIBC subtypes.
(C) Forest plot shows the multi-variates cox regression analysis result using general clinical characters as well as the predicted MIBC subtypes. (D) Distribution of the
MIBC subtypes in various clinical phenotypes.
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A B

C

E F

D

FIGURE 3 | Molecular comparison between two prognostic MIBC subtypes. (A) Mutation burden of MIBCs for each tumor was compared in S1 and S2.
(B) Oncoplot shows differentially mutated genes between two MIBC subtypes. Chi-square test is performed, and genes with P < 0.05 are displayed. (C) Frequency
comparison between S1 and S2 of genome-wide copy number gain and loss. The CNV frequencies along genome of S1 and S2 are shown in top and middle
pattern, respectively. All amplifications in MIBC cohort are shown in red, and all deletions are shown in blue. Chi-square test is performed for each cytoband, and
the P-value distribution of each region was shown in the bottom module. Chromosome 3p, which contains all significant regions, is highlighted in orange.
(D) Comparison of the immune cell compositions in S1 and S2. The immune cell contents were decomposed using CIBERSORT. Wilcox test is performed for each
comparison, and significant entries are marked with asterisks (**P < 0.01; *P < 0.05). (E) Volcano plot shows the differentially expressed genes between high-
and low-risk subtypes. Ten most significantly expressed genes are marked. (F) Top five hallmark gene sets from gene set enrichment between high- and
low-risk subtypes.
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four levels (CNV profile, gene expression profile by RNA-seq,
miRNA expression profile by miRNA-seq, and DNA
methylation profile) and calculated the p-value for each feature
from each omics data profile between the two subtypes by
Wilcox test, respectively. The top features (50 for CNV, 100
for mRNA, 50 for miRNA, and 50 for CpG methylation) were
selected for model training, which were mostly different between
the two subgroups of MIBC. We perform 10-fold cross-
validation with 10-time repeat to evaluate the predictive ability
of the selected features. In each repeat, different algorithms were
used separately to build supervised classification model, and the
best model with highest AUC was selected for the internal
validation (see Materials and methods). The same features were
extracted from the internal validation cohort, and samples were
classified into two different groups according to the prediction
model. Considering the previous subtype labels of samples from
internal validation set, we construct the ROC curve to evaluate
the robustness of the supervised classification model
(Figure 4A). The AUC value (AUC = 0.784) indicated the
reliable robustness of the model. Kaplan–Meier survival curve
showed that the classification model using cluster labels was
robust to predict the survival-specific clusters (P = 0.031, log-
rank test; Figure 4B).

To expand the application of the prognostic subtyping, we
also tested the stability of the identified classification using
single-omics data from the internal validation dataset. We
found the AUCs of gene expression data, miRNA expression
profile, as well as methylation data were more than 0.8 (0.95,
0.90, and 0.87, respectively; Figure 4C), indicating the prediction
robustness of these three single omics data. Then, we introduced
three microarray-based gene expression datasets (GSE19915 and
two subsets of GSE48277, Table 1) as external validation datasets
to further validate our findings. Same expression features (the
top 100 DEGs in training data) were extracted from each external
Frontiers in Oncology | www.frontiersin.org 7
validation datasets, and the supervised prediction model is tested
in the same way of internal validation, respectively. The
predicted two subtypes of MIBC also show significant OS
differences in all the three cohorts (P = 0.026, P = 0.00094, and
P = 0.00047, respectively, log-rank test; Figures 4D–F). This
result indicates that this subtyping method could be effectively
applied to classify MIBC patients into different risk levels.

KRT7 Is a Marker Gene to Classify High-
Risk and Low-Risk MIBC
In order to further investigate potential marker genes that
distinguish high-risk and low-risk MIBCs, we integrated the
DEGs between high-risk group and low-risk group of MIBC
from datasets of TCGA and two subsets of GSE48277 (the
expression matrix data of GSE19915 was centralized so that it
is not considered in this analysis). As shown in Figure 5A, only
three upregulated genes (NELL2,MDGA2, and CAMK4) and two
downregulated genes (GGTLC1 and KRT7) are overlapped
among these three datasets, respectively. We selected KRT7
(also named as CK7) as a candidate marker to distinguish
high-risk and low-risk MIBC. As expected, the expression level
of KRT7 was negatively correlated with risk-score of MIBC (r = -
0.47, P < 2.2 × 10-16; Figure 5B). We further verified this
candidate at the protein level. Firstly, we examined the KRT7
expression in bladder tumors on the webserver of The Human
Protein Atlas (https://www.proteinatlas.org/) and found that
KRT7 protein was highly expressed in the low-grade bladder
cancer cells but medially or lowly expressed in high-grade
bladder cancer cells (Supplementary Figure 2). We next
selected 22 MIBC samples and separated them into two
distinct groups with different risks: the high-risk group (12
samples) were samples that OS < 1.5 years and samples from
the low-risk group (10 samples) were survived over 5 years. As
expected, KRT7 was significantly highly expressed in the low-risk
TABLE 1 | Basic information of training and validation datasets for MIBC subtyping model.

Training set Validation sets

TCGA TCGA GSE19915 GSE48277-1 GSE48277-2

Total 321 81 43 62 73
Sex
Female 85 (26.5%) 21 (25.9%) 0 (0.0%) 13 (21.0%) 0 (0.0%)
Male 236 (73.5%) 60 (74.1%) 0 (0.0%) 49 (79.0%) 0 (0.0%)
N/A 0 (0.0%) 0 (0.0%) 43 (100.0%) 0 (0.0%) 73 (100.0%)

Age
<60 72 (22.4%) 14 (17.3%) 0 (0%) 16 (25.8%) 13 (17.8%)
>=60 249 (77.6%) 67 (82.7%) 0 (0%) 46 (74.2%) 60 (82.2%)
N/A 0 (0.0%) 0 (0.0%) 43 (100.0%) 0 (0.0%) 0 (0.0%)

Stage
II 106 (33.0%) 23 (28.4%) 19 (44.2%) 46 (74.2%) 42 (57.5%)
III 111 (34.6%) 27 (33.3%) 21 (48.8%) 15 (24.2%) 23 (31.5%)
IV 102 (31.8%) 31 (38.3%) 3 (7.0%) 1 (1.6%) 8 (11.0)
N/A 2 (0.6%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Grade
High 299 (93.1%) 79 (97.5%) 41 (95.3%) 0 (0.0%) 0 (0.0%)
Low 19 (5.9%) 2 (2.5%) 2 (4.7%) 0 (0.0%) 0 (0.0%)
N/A 3 (0.9%) 0 (0.0%) 0 (0.0%) 62 (100.0%) 73 (100.0%)
August 2021 | Volume 11 | A
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MIBC (Figures 5C, D and Supplementary Table 4), which is
further confirmed that KRT7 can be used as a marker to
characterize MIBC risk.
DISCUSSION

Different levels of omics data could present diverse tumor
landscape from different angles. It is required to integrate
multi-omics data to describe the relations between clinical
outcomes and molecular characteristics, then get a
comprehensively understanding of cancer. In the present
study, we construct an autoencoder-based deep learning
framework to integrate CNV, gene expression, miRNA
expression, as well as CpG methylation results to classify
MIBC into two prognostic subtypes. The subtype S2 shows a
significantly higher risk on overall survival and some specific
genetic characters compared with the other subtype. We
construct a robustness MIBC subtyping model depending on
different omics layers and assessed the prognostic value in both
internal and external validation datasets. We also detected KRT7
as a biomarker to reflect the risk of MIBC.

We found that in the poor prognosis group, chromosome 3p
had a significantly higher frequency of deletions. Many tumor
Frontiers in Oncology | www.frontiersin.org 8
suppressor genes are located on chromosome 3p, including
TP53, VHL, MLH1, TGFBR2, THRB, RARB, and FHIT. Loss of
one copy of chromosome 3p is one of the most frequent and early
events in human cancer, found in 96% of lung tumors and 78%
of lung preneoplastic lesions (19). For cervical carcinoma (CC),
researchers found that chromosome 3p deletions in precursor
CIN lesions were smaller than the 3p losses found in the
associated invasive CC (20). 3p arm loss has been associated
with poorer prognosis for head and neck cancer as determined
by reduced disease-free and overall survival of patients at early
disease stage (21). These results suggest that the loss of
chromosome 3p plays an important role in the occurrence and
development of bladder cancer, and further analysis is needed.
We detected 26 differentially mutated genes between S2 and S1.
Some of these genes have been reported in previous tumor
studies. For example, NFE2L2 (the most significant gene that
mutated in 16% of S2 but 4% in S1) has been reported in types of
cancers. NFE2L2 has long been considered a cytoprotective
transcription factor, which is essential for the defense against
oxidative stress, and activation of the NFE2L2 pathway has been
proposed as potential preventive strategy against carcinogenesis
due to its function as a master regulator of the expression of
antioxidant and detoxifying enzymes (22, 23). Reduced
expression of NFE2L2 are associated with poor outcome in
breast cancer (24), ovarian cancer, and prostate cancer (25),
A B C

D E F

FIGURE 4 | Internal and external validation of prognostic subtyping. (A) ROC analysis shows the robustness of subgroup classification in internal testing dataset using
multi-omics data. (B) Kaplan-Meier curves show a significant difference of overall survival between subtypes predicted by multi-omics data in internal testing dataset.
(C) ROC analysis shows the robustness of subgroup classification in internal testing dataset using each single omics data, respectively. (D–F). Kaplan-Meier curves
show a significant difference of overall survival between subtypes in external datasets, including GSE19915 (D) and two subsets of GSE48277 (E, F), respectively.
August 2021 | Volume 11 | Article 689626

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhang et al. Prognostic Subtyping of Bladder Cancer
but with favorable prognosis in cervical cancer (26),
adrenocortical carcinoma, and kidney renal clear cell
carcinoma (25), highlighting the dual role of NFE2L2 in
cancer. Remarkably, both mutation and CNA comparation
show that TGF beta receptor was significantly altered in S2,
indicating that the TGF-b signaling plays important roles in the
prognostic impact in MIBC. One of the effects of this pathway is
to enforce the immune homeostasis and tolerance, and
disturbance of this pathway may influence the immune
microenvironment of tumor. Interestingly, we found a variety
of significant changes in immune cells between S1 and S2.

We investigate the gene expression and functional difference
between the two prognostic subtypes. In the most significantly
expressed genes shown in Figure 3E, lncRNA CASC22 has been
reported that disrupting CASC22 was associated with a
significantly increased risk of breast cancer (27). lncRNA
FER1L4 also has been noticed as a favorable survival marker
for endometrial carcinoma (28), colon cancer (29), and
osteosarcoma (30). Interestingly, two UPK genes were
significantly downregulated in high-risk MIBC subtype. UPK2
has been used as CTC markers of bladder cancer and got a
satisfying result, which indicated a promising role for UPK2
mRNA detection using the circulatory blood of patients with
Frontiers in Oncology | www.frontiersin.org 9
urothelial cancer as a new staging marker (31). This is not
consistent with our results. Besides, the most enriched gene
sets were also demonstrated prognostic in previous studies. For
example, elevated levels of IL-6 stimulate hyperactivation of
JAK/STAT3 signaling, which is often associated with poor
patient outcomes in colorectal cancer (32), breast cancer (33),
oral cancer (34), and myeloma (35). Elevated levels of reactive
oxygen species are also a common hallmark of cancer
progression and resistance to treatment (36), and unfolded
protein response was also demonstrated to play an important
role in the establishment and progression of several cancers (37).
To our surprise, we found a significant activation of interferon
alpha (IFN-a) response. IFN-a is usually used as an adjuvant
with bacillus Calmette-Guérin (BCG) in the non-invasive
bladder cancer treatment. However, there is still a lack of
evidence to demonstrate its benefit in preventing recurrences
in intermediate-risk and high-risk patients (38). Although we
only analyzed MIBC in this study, this result reminds us to be
cautious of adjuvant IFN-a therapy, especially for the high-risk
bladder tumors.

To demonstrate the robustness of the subtyping classification,
we built the prediction models at single- and multi-omics level
and tested them in internal and external validation cohorts. Both
A B

C D

FIGURE 5 | Detection and validation of risk-related markers of MIBCs. (A) Venn plot shows the overlaps of differentially expressed genes among TCGA and two
subsets of GSE48277. (B) Correlation between tumor risk score and expression level of KRT7. TCGA data was used to perform this analysis. Both Pearson
correlation coefficient (R) and P-value were calculated. (C) Representative images of KRT7 IHC staining in different risk types and corresponding H&E staining.
(D) KRT7 protein expression was significantly decreased in high-risk MIBC specimens compared with low-risk MIBC tissues by IHC. For the details of calculating
IHC score, please see Materials and methods.
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results show an effective distinction of OS between predicted
groups. In association with clinical characteristics, we noticed
that the DL-based subtyping presented more prognostic
efficiency than other clinical indexes. Comparing with other
previous genetic feature-based prognostic models, the DL-
based subtyping method is more flexible that we can use the
model based on single or multiple levels of genomics data.
Moreover, the ROC curve shows that our method is more
powerful than previous studies in single genomic level, for
instance, mRNA expression level [AUC = 0.954 vs. AUC =
0.761 (39, 40)] and miRNA expression level [AUC = 0.901 vs.
AUC = 0.663 (40)].

KRT7 is a member of the keratin gene family and is
specifically expressed in the simple epithelia lining the cavities
of the internal organs and in the gland ducts and blood vessels.
KRT7 was reported as a predictive factor of various types of
cancer, such as colorectal cancer (41) and renal clear cell
carcinoma (42), but bad prognostic factor in esophageal
squamous cell carcinoma (43) and pancreatic adenocarcinoma
(44). KRT7 was also reported to promote epithelial-
mesenchymal transition (EMT) of ovarian cancer (45). To the
best of our knowledge, few studies reveal the relationship
between KRT7 and MIBC. In this study, we report that KRT7
can be used as a biomarker that reflects the prognostic risk of
MIBC. This conclusion comes from the analysis of both RNA
and protein levels, highlighting the value of KRT7 in the clinical
application of MIBC. However, the underlying biological
mechanism still needs further research.
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(C) Functional enrichment of hypomethylated CpG site related genes.

Supplementary Figure 2 | Immunohistochemical results show the expression
level of KRT7 in low-grade (A) and high-grade (B) MIBC patients. The IHC figures
were selected and downloaded from the webserver of The Human Protein Atlas
(https://www.proteinatlas.org/) after a specific query.
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