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Many dysregulated microRNAs (miRNAs) have been suggested to serve as oncogenes or
tumor suppressors to act as diagnostic and prognostic factors for HCC patients.
However, the dysregulated mechanisms of miRNAs in HCC remain largely unknown.
Herein, we firstly identify 114 disordered mature miRNAs in HCC, 93 of them are caused
by dysregulated transcription factors, and 10 of them are driven by the DNAmethylation of
their promoter regions. Secondly, we find that seven up-regulated miRNAs (miR-9-5p,
miR-452-5p, miR-452-3p, miR-1180-3p, miR-4746-5p, miR-3677-3 and miR-4661-5p)
can promote tumorigenesis via inhibiting multiple tumor suppressor genes participated in
metabolism, which may act as oncogenes, and seven down-regulated miRNAs (miR-99-
5p, miR-5589-5p, miR-5589-3p, miR-139-5p, miR-139-3p, miR-101-3p and miR-125b-
5p) can suppress abnormal cell proliferation via suppressing a number of oncogenes
involved in cancer-related pathways, which may serve as tumor suppressors. Thirdly, our
findings reveal a mechanism that transcription factor and miRNA interplay can form
various regulatory loops to synergistically control the occurrence and development of
HCC. Finally, our results demonstrate that this key transcription factor FOXO1 can activate
a certain number of tumor suppressor miRNAs to improve the survival of HCC patients,
suggesting FOXO1 as an effective therapeutic target for HCC patients. Overall, our study
not only reveals the dysregulated mechanisms of miRNAs in HCC, but provides several
novel prognostic biomarkers and potential therapeutic targets for HCC patients.

Keywords: hepatocellular carcinoma (HCC), miRNA, methylation, prognosis, transcription factor
INTRODUCTION

Currently, the 5-year survival rate of liver cancer patients is only 20.3%, and even below 8% in
underdeveloped countries or regions (1–3). Liver cancer mainly includes two major subtypes, i.e.
hepatocellular carcinoma (HCC) and cholangiocarcinoma, in particular HCC is the most important
subtype (about 80% of all liver cancer patients) (3). The occurrence of HCC is usually associated with
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virus infection (e.g. HBV or HCV), alcoholism, and metabolic
syndrome (e.g. fatty liver) (4–6). Importantly, HCC can only be
detected by specific markers (e.g. AFP) at this later stage due to the
lack of early diagnostic markers, which leads to the lower survival
of HCC patients (7–9). Therefore, the discovery of novel
diagnostic and prognostic factors has very important clinical
value in promoting the survival of HCC patients.

At present, studies have demonstrated that miRNAs can serve
as oncogenes or tumor suppressors to regulate the occurrence
and development of tumor (10–12). Many miRNAs have been
reported to be closely associated with the progression of HCC (4,
6, 12). For instance, miR-16 could target Bcl-2 to regulate the
apoptotic process of HCC (13, 14), miR-21 could negatively
regulate the expression of tumor suppressor genes PTEN and
MAP2K3 (15–17), the down-regulated miR-139 is markedly
associated with the poor prognosis of HCC patients (18, 19),
miR-122 could target PI3K and Bcl-w to activate the RTK
survival pathway and the anti-apoptotic signaling pathway in
HCC (20, 21), miR-223 could target the oncogene C-Myc (22),
and miR-125b could target cMet, MMP and PGF to promote
tumor angiogenesis and metastasis of HCC (23), as well as miR-
34a could modulate cell cycle and inflammatory response of
HCC (24–26). Moreover, many dysregulated miRNAs have been
demonstrated to act as diagnostic and prognostic factors for
HCC patients (27, 28). However, the dysregulation mechanism
of miRNAs in the development and progression of HCC
remains unclear.

In this work, we found 114 disordered mature miRNAs in
HCC, 93 and 10 of which are caused by dysregulated
transcription factors and the DNA methylation of promoter
region, respectively. We identified 14 disordered miRNAs as
prognostic factors for HCC patients, seven up-regulated miRNAs
can serve as oncogenes to promote HCC tumorigenesis, and
other seven down-regulation miRNAs can act as tumor
suppressors to suppress abnormal cell proliferation. Among 14
above prognostic miRNAs, 12 disordered miRNAs were caused
by the disorders of 14 transcription factors. Finally, we
demonstrated that several up-regulated transcription factors
can activate several oncogenic miRNAs to inhibit tumor-
suppressing transcription factors FOXO1 to down-regulate a
certain number of tumor-suppressing miRNAs, which leaded to
the occurrence and development of HCC. Taken together, our
results revealed the disordered mechanisms of miRNAs and their
prognostic roles in HCC.
MATERIALS AND METHODS

Data Acquisition and Preprocessing
The expression data and clinical information of all HCC samples
were generated from the Cancer Genome Atlas (TCGA) (https://
portal.gdc.cancer.gov/). These level 3 expression data of mRNA,
mature miRNA and pre-miRNA of HCC as well as 12 other
tumor types were downloaded from the UCSC Xena (https://
xenabrowser.net/). After removing samples with survival days
less than 15, we finally retained 344 cancer samples, including 48
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matched tumor and paracancerous samples. Next, these samples
were randomly divided into independent training sets (240
samples) and test sets (104 samples). The protein-coding gene
annotation was derived from the ENSEMBL (http://asia.ensembl.
org/index.html), and the human transcription factor annotation
was derived from AnimalTFDB 3.0 (http://bioinfo.life.hust.edu.
cn/AnimalTFDB/#!/).

Differentially Expressed Gene Analysis
Differential expression analysis of paired cancer and
paracancerous mRNA was performed using the edgeR package
(29). Genes with extremely low expression (Sums (cpm) <1) or
expressed in no more than half of the sample were removed. The
filtering criteria for differentially expressed genes were set to
|log2FC| >1, FDR <0.05. The expression level of mRNA was
taken log2 logarithm after normalized by edgeR to be used for
next analysis. At the same time, differentially expressed miRNAs
were identified based on 48 matched cancer and adjacent tissues
using the limma package (30). The filtration criteria of
differentially expressed miRNA were same as above.

Methylation-Driven miRNA Analysis
Genome-wide lllumina HumanMethylation450K BeadChip data
of HCC samples were derived from UCSC Xena (https://
xenabrowser.net/). The methylation value of the methylation
site of the sample is represented by the beta value, which was
obtained via calculating the ratio of the fluorescence signal of the
methylation site and the non-methylation site, Beta = M/(M +
UM). The H3K4me3 (Accession number: ENCFF219ZOU) and
H3K27ac (Accession number: ENCFF259DOA) ChIP-seq data
of HCC cell line HepG2 were downloaded from the ENCODE
database (https://www.encodeproject.org/). Transcription start
sites (TSS) of all human miRNAs were acquired from the
mirTrans database (https://mcube.nju.edu.cn/jwang/lab/soft/
mirtrans/) (31). The promoter region of miRNA is defined as
1,500 bp upstream and 500 bp downstream of the TSS. These
differential methylation sites in matched tumor and adjacent
tissues were calculated using Wilcoxon rank sum test.
Differential methylation sites were defined as |log2FC| >1 and
FDR <0.05. The methylation value is defined as an average value
of all methylation sites of miRNA promoter region. The
correlation between the methylation value of miRNA promoter
region and miRNA expression level was calculated using the
spearman method with p <0.05.

Prediction of Transcription Factor
Targeting miRNAs
We used this TransmiR2.0 database (http://www.cuilab.cn/
transmir) to identify the candidate transcription factor-miRNA
regulatory pairs, which were performed by integrating public
ChIP-seq, transcription factor binding sites (motif), accurate
miRNA transcription start site and manual literature collection
(32). Herein, we presumed that transcription factor activates the
expression of target miRNA, thus the expression level between
transcription factors and miRNAs was positive correlation
(r >0.2, p <0.05), which could be further accepted for a
veritable transcription factor-miRNA pair.
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Establishment of miRNA Survival
Prognosis Model
The training set was used to screen survival-associated miRNAs
and establish prognostic model. The test set was used to verify
the reliability and accuracy of the prognostic model. Firstly, the
multivariate cox regression analysis was used to screen
differentially expressed miRNAs using age and sex as
covariates. MiRNAs with p <0.05 by the multivariate cox
analysis were selected as candidate biomarkers. Then, these
candidate miRNAs were divided into high-expression and low-
expression groups according to their respectively median
expression level to further verify these screened survival-related
miRNAs. The multi-gene predictive model was constructed
according to these final survival-related miRNAs to predict the
risk value of HCC patient, and the survival curve of different risk
stratification was plotted to test whether the model could predict
the survival of HCC patient. The Receiver Operating
Characteristic (ROC) curve was drawn using the survivalROC
R package (https://CRAN.R-project.org/package=survivalROC),
and the reliability of the prediction model was evaluated based
on the AUC curve. In addition, both sensitivity and specificity of
prognostic model were verified in the test set.

miRNA Target Prediction and Target
Function Analysis
These target prediction results of miRNAs were derived from
miRWalk3.0 (http://mirwalk.umm.uni-heidelberg.de/), which
comprehensively contain the miRNA target genes of humans,
mice and other species through integrating the TarPmiR
algorithm and the information from miRDB, TargetScan,
miRTarBase and other databases (33, 34). Since miRNAs
negatively regulate their target genes, the spearman correlation
coefficient and significance between miRNA and their target
genes were calculated. Only those targets with a significant
negative correlation with miRNAs (r <−0.2, p <0.05) were further
considered as true targets of miRNAs. Kyoto encyclopedia of Genes
and Genomes (KEGG) enrichment analysis of targets was
performed using the clusterProfiler package (35).

Data Statistics and Visualization
All data analyses were performed using the R software version 3.5.1.
The network visualization was performed using the cytoscape
software 3.6.1. The survival curve was drawn by Kaplan–Meier (K–
M), and the difference significance was evaluated by log-rank test.
RESULT

Differentially Expressed miRNAs
and Genes
We here identified 114 differentially expressed mature miRNAs
including 21 up-regulated and 93 down-regulated mature miRNAs
(|logFC| >1, FDR <0.01) (Figure S1A), and 1,784 differentially
expressed protein coding genes consisting of 1,065 up-regulated and
719 down-regulated genes (|logFC| >1, FDR <0.01) between 48
matched tumor and adjacent tissues (Figure S1B). Some 80 up-
Frontiers in Oncology | www.frontiersin.org 3
regulated and 51 down-regulated transcription factors were
included in these differentially expressed mRNAs. Remarkably,
these abnormally down-regulated miRNAs were nearly 4.3 times
higher than these up-regulated miRNAs. Unsupervised clustering
heat maps of miRNAs (Figure S1C) and mRNAs (Figure S1D)
further demonstrated significant differences of gene expressions
between tumor and adjacent tissues. These above results not only
confirmed the reliability of this data source, but indicated a clear
grading between tumor and adjacent tissues.

The Underlying Mechanism Driving miRNA
Expression Dysregulation in HCC
To further explore the mechanisms of causing disordered
expressions of 114 mature miRNAs in HCC, we firstly
investigated methylation levels of 114 disordered miRNAs,
finding that 10 of them are driven by DNA methylation of
their promoter regions (Table S1). Especially, the expression
levels of miR-10a (r <−0.35, p <0.001), miR-200b/miR-200a/
miR-429 family (r <−0.42, p <0.001) and miR-4746 (r <−0.34,
p <0.001) are significantly negative correlation with the
hypermethylation levels of their promoter regions, respectively
(Figures 1A–C). These results were consistent with the ChIP-seq
data of H3K4Me3 and H3K27ac, which are markers of the active
promoter region. Our results showed that the hypermethylated
promoter region of miR-323a, miR-376c, miR-154, miR-10a,
miR-200a, miR-200b, miR-429 had no active markers in HCC
cell line HepG2, but the hypomethylated promoter region of
miR-1180 and miR-4746 were obviously enriched in H3K4Me3
and H3K27ac peaks (Figure S2). In particular, the promoters of
miRNAs belonging to the same family had similar modifications
of H3K4Me3 and H3K27ac, such as miR-323a, miR-376c, miR-
154 of the miR-323a family and miR-200a, miR-200b, miR-429
of the miR-200 family (Figure S2). These results indicated that
DNA methylation can drive the expression disorders of 10
mature miRNAs via inhibiting the activity of their promoter
regions in HCC. Secondly, to detect whether dysregulated
transcription factors can result in the disorders of miRNAs in
HCC, we predicted these disordered miRNAs regulated by
dysregulated transcription factors. Interestingly, we found that
23 dysregulated transcription factors could cause the expression
disorders of 93 mature miRNAs (r >0.2, p <0.05) (Figures 1D, E
and Table S2). Among these regulatory pairs, seven up-regulated
transcription factors could activate the up-regulated expressions
of 10 mature miRNAs (Figure 1D). In contrast, 16 down-
regulated transcription factors could down-regulate the
expressions of 83 mature miRNAs (Figure 1E). Overall, our
results suggested that dysregulated transcription factors and
DNA methylation are main cause of resulting in the expression
disorder of miRNAs in HCC. Moreover, the disordered
mechanisms of 11 other miRNAs in HCC have yet not been
explored and need further in-depth study.
Identification of Survival-Related miRNAs
and Establishment of Prognostic Model
To reveal whether 114 disordered miRNAs can serve as prognostic
and diagnostic factors for HCC patients, we executed the
July 2021 | Volume 11 | Article 691115
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multivariate analysis and the Kaplan–Meier survival analysis for
these 114miRNAs using age and gender as covariates in the training
set. We identified 14 prognostic-related miRNAs, including seven
down-regulated miRNAs (miR-99-5p, miR-5589-5p, miR-5589-3p,
miR-139-5p, miR-139-3p, miR-101-3p and miR-125b-5p) (Figure
S3A) and seven up-regulated miRNAs (miR-9-5p, miR-452-5p,
miR-452-3p, miR-1180-3p, miR-4746-5p, miR-3677-3 and miR-
4661-5p) in tumor tissues (Figure S3B). Our results revealed that
seven up-regulated miRNAs were closely related to the poor
Frontiers in Oncology | www.frontiersin.org 4
prognosis of HCC patients (p <0.05) (Figures 2A–G and Figure
S3C), but the other seven down-regulated miRNAs may act as
protective miRNAs to promote the good prognosis of HCC patients
(p <0.05) (Figures 2H–N and Figure S3C). Furthermore, our
results demonstrated that along with the risk increasing, the
number of dead patients became more and more denser, and the
expression levels of the risk factor miRNAs were gradually increased
(Figure 3A), whereas the expression levels of the protective factor
miRNAs were gradually decreased (Figure 3B). Remarkably,
A B

D E

C

FIGURE 1 | Methylation drivers and transcription factor imbalances cause dysregulated miRNA expression. Correlation between expression and promoter region
methylation of pre-miRNAs. (A) Spearman correlation diagram of mir-10; (B) Spearman correlation diagram of mir-200b; (C) Spearman correlation diagram of mir-
4746. Network diagram of transcription factors regulating miRNAs. (D) Up-regulated transcription factors regulate up-regulated miRNAs; (E) Down-regulated
transcription factors regulate down-regulated miRNAs.
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patients with high tumor progression (T3–T4 and G3–G4) had
significantly higher risk values than patients with low tumor
progression (T1–T2 and G1–G2) (p <0.05) (Figures 3C, D).
Especially, the median survival rate of HCC patients in the high-
risk group was significantly lower than that in the low-risk group
(p <0.0001), and the cumulative number of deaths in the high-risk
group was also about two times higher than the low-risk group at
each cut-off time point (Figure 3E). Moreover, the ROC curve
based on the 14 miRNAs as a signature demonstrated an average 3
and 5 year AUC values for 0.726 and 0.781, respectively (Figure 3F).

To confirm the accuracy of the above prognostic model, we
further verified the reliability of the model in the test set. Similar to
Frontiers in Oncology | www.frontiersin.org 5
the training set, the survival rate of HCC patients in the high-risk
group was also lower than that in the low-risk group (p <0.0001),
and the cumulative number of deaths in the high-risk group was
more four times than that of the low-risk group (Figure 3G), as well
as the ROC curve showed a good specificity and sensitivity with 3-
year AUC for 0.825 (Figure 3H). These above results indicated that
the predictive model had a good specificity and sensitivity.
Moreover, we further used the multivariate cox analysis to reveal
the effect of different clinical factors on the survival of HCC patients.
When age, gender, American Joint Committee on Cancer (AJCC)
stage and the signature of combined 14 miRNAs were taken as
continuous variables for multivariate cox analysis, this prognostic
A B

D E F

G IH

J K L

M N

C

FIGURE 2 | Survival curves for 14 prognostic miRNAs. (A–H) Survival curves of seven up-regulated oncogenic miRNAs. (I–N) Survival curves of seven down-
regulated cancer suppressor miRNAs.
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signature was still a robust predictor, whether in the training set
(HR = 2.683, p <0.001) or the test set (HR = 6.388, p <0.001)
(Table 1). Taken together, our present study revealed that the 14
miRNAs are closely related to the survival and disease progression
of HCC patients, implying that they could serve as important
prognostic biomarkers for the survival of HCC patients.
Frontiers in Oncology | www.frontiersin.org 6
The Clinical Diagnostic Value of 14
Prognostic miRNAs
To explore the clinical diagnostic value of 14 prognostic
miRNAs, we further plotted their respective ROC curves to
evaluate the ability of each miRNA expression level in
distinguishing tumor from normal tissues. Herein, the
A

B
D

E

F

G

H

C

FIGURE 3 | Model risk signature based on 14 miRNAs was used to predict the outcome of patients. (A) The distribution map of patient deaths at different risk
values. (B) The heat map of prognostic miRNA expression in patients with different risk values. (C) The risk difference for patients with different T grades (extent of
the primary tumor). (D) The risk difference for patients with different G grades (histopathological degrees). (E) Survival curves of the high and low risk groups in the
training set. (F) ROC curve of signatures based on 14 miRNAs in the training set. (G) Survival curves of the high-risk and low-risk groups in the test set. (H) ROC
curve of the 14 miRNA-based signatures in the test set.
July 2021 | Volume 11 | Article 691115

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Qin et al. miRNA Imbalance Mechanism in HCC
comprehensive diagnostic results of AJCC stage was used as
indicators of disease progression of HCC patients. Our results
indicated that in early diagnosis (AJCC stage I*), the AUC value
of each miRNA reached above 0.63, which was higher than the
alpha-fetoprotein (AFP) (the AUC value for 0.606) (Figure S4).
Especially, miR-139-5p, miR-139-3p and miR-101-5p had more
high AUC values for 0.958, 0.991 and 0.950, respectively
(Figure S3). In advanced diagnosis (AJCC stage III*/IV*), the
AUC value of each miRNA reached above 0.68, which was higher
than AFP (the AUC value of 0.622) (Figure S5). Significantly,
miR-139-5p, miR-139-3p, miR-101-5p and miR-125b-5p also
had very high AUC values for 0.950, 0.985, 0.933 and 0.912,
respectively (Figure S5). Overall, these above results suggested
that these 14 miRNAs may be applied to the diagnosis and
detection of HCC patients.

Herein, we further investigated whether these 14 prognostic
miRNAs possess specificity or universality. We thus calculated
their expressions in other 12 kinds of tumors, finding that the
expression levels of miR-4661-5p and miR-452-5p were
significantly increased only in one or two kinds of tumors,
while miR-5589-3p and miR-5589-5p were also significantly
down-regulated just in one tumor (Figure S6), which implied
that miR-4661-5p, miR-452-5p, miR-5589-3p and miR-5589-5p
had higher specificity than other miRNAs. In contrast, miR-
4746-5p, miR-3677-3p and miR-1180-3p were respectively
significantly up-regulated in five or six types of tumors,
meanwhile miR-139-3p, miR-139-5p and miR-99a-5p were
also respectively significantly down-regulated in more than six
types of tumors (Figure S6), implying that their expressions have
obvious universality. Additionally, miR-9-5p and miR-452-3p
were respectively significant up-regulated in three or four kinds
of tumors, and miR-125b-5p and miR-101-3p were also
respectively significant down-regulated in three or four tumor
types, revealing their moderate specificity (Figure S6). These
results reveald that these 14 prognostic markers for HCC
were both specific and universal, in particular miR-4661-5p,
miR-452-5p, miR-5589-3p and miR-5589-5p may be more
suitable for the diagnosis and prognosis of HCC patients, as
well as the other miRNAs may be also applied to the prognostic
and detection markers for other types of tumors.

Functional Roles of 14 Prognostic miRNAs
in HCC
To understand the function roles of the 14 prognostic miRNAs in
the occurrence process of HCC, we predicted their target genes.
Frontiers in Oncology | www.frontiersin.org 7
Our results demonstrated that seven down-regulated miRNAs
could target 592 up-regulated genes, and seven up-regulated
miRNAs could target 481 down-regulated genes (Table S3). To
better describe the characteristics of 14 miRNAs and their target
genes, we detailedly investigated their target types (carcinogenic,
tumor suppressor and cancer-driven genes) recorded by this
CancerMine database (http://bionlp.bcgsc.ca/cancermine), and
picked out these target genes directly related to the survival of
HCC patients to explore they involved in KEGG pathways. Our
results indicated that most up-regulated target genes had been
identified as carcinogenic genes for the poor prognosis of HCC
patients via activating cancer-related pathways (Figure 4A,
Figure S7A and Tables S3, S4). For example, the proto-
oncogene SRC can involve in Focal adhesion, Rap1, Endocrine
resistance, VEGF and other pathways (Figure 4A and Table S4).
Especially, this SRC gene can be synergistically inhibited by miR-
125b-5p, miR-99a-5p, miR-139-3p, miR-139-5p (Figure 4A and
Tables S3, S4), and thus their down-regulation expressions can
cause the up-regulation expression of SRC to further lead to a
poorer prognosis for HCC patients (p = 0.01) (Figure 4B).
Interestingly, studies had reported that miR-99a is induced to
be down-regulated when c-Src is activated, and re-overexpressed
miR-99a can target mTOR/FGFR3 to inhibit Src-related
oncogenic pathways and thereby inhibit the growth of lung
cancer cells (36). Similarly, down-regulated miR-5589-5p,
miR-139-3p, miR-139-5p and miR-125b -5p can synergistically
promote the up-regulated expression of oncogenic genes CDK1
and CCNA2 to result in the significantly poor prognosis for
HCC patients (p <0.01) (Figures 4A, C, D and Tables S3, S4).
The miR-125b had been reported to inhibit the proliferation
of esophageal squamous cell carcinoma cells by reducing
CCND1, CCNA2 and CCNE1 (37). In the mouse model of
macrophages, CCNA2 had also been reported to be targeted by
miR-125b (38).

Unlike these up-regulated target genes, these down-regulated
target genes of seven up-regulated miRNAs were more enriched
in metabolic and immune-related signaling pathways
(Figure S7B), in particular many down-regulated target genes
could be acted as tumor suppressor genes (Figure 5A and Table
S5). For example, the up-regulated expressions of miR-452-5p,
miR-1180-3p and miR-4746-5p could significantly inhibit the
expression of the tumor suppressor gene CYP3A4 to cause a
remarkably poor prognosis of HCC patients (p = 0.0032)
(Figures 5A, B and Tables S3, S5). Interestingly, miR-452 had
been demonstrated to target CYP2C8 and the same cluster of
TABLE 1 | Multivariate analysis of impact on patient survival of risk signature, age, gender and AJCC stage.

Variables Train set Test set

Hazard ratio (95%CI) P-value Hazard ratio (95%CI) P-value

Age 1.158 (0.742–1.806) 0.519 1.358 (0.606–3.041) 0.457
Gender 0.828 (0.531–1.290) 0.404 1.199 (0.432–3.330) 0.728
AJCC stage 2.555 (1.643–3.972) <0.001 1.898 (0.811–4.443) 0.140
Risk signature 2.683 (1.691–4.257) <0.001 6.388 (2.391–17.071) <0.001
July 2021 | Volume 11 | Article
High and low risk group, age, gender and AJCC stage are coded as continuous variables. Specifically, high-risk group = 1, low-risk group = 0; male = 1, female = 0; AJCC stage I = 1, AJCC
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miR-224 can target CYP3A4 to affect metabolism and
detoxification in the liver (39). Besides, IL7R was involved in
JAK-STAT and cytokine interaction pathway, and the up-
regulated expression of miR-9-5p repressed IL7R expression to
further lead to a poorer prognosis of HCC patients (p = 0.037)
(Figures 5A, C). Moreover, IL7R and other interleukin genes
have been reported to be inhibited by miR-9, which may link
inflammation with nasopharyngeal carcinoma (40).

Roles of Transcription Factors in
HCC Occurrence
Herein, we found 14 transcription factors could regulate 12
prognostic miRNAs, i.e. four up-regulated transcription factors
(E2F1, EBF1, HEY1 and RFX5) could activate the expressions of
miR-9-5p, miR-452-5p, miR-452-3p, miR-3677-3p and miR-
1180-3p, as well as 10 down-regulated transcription factors
(FOXO1, ESR1, FOS, JUN, EGR1, KLF11, MAFF, ATF3,
BHLHE40 and CEBPD) could down-regulate the expressions
of miR-99a-5p, miR-101-3p, miR-139-5p, miR-139-3p, miR-
125b-5p, miR-5589-5p and miR-5589-3p (Figures 1D, E).
More importantly, our results demonstrated that among 14
prognostic miRNAs, 12 dysregulated miRNAs were caused by
Frontiers in Oncology | www.frontiersin.org 8
the disorders of 14 transcription factors, and one miRNA (miR-
4746) was driven by DNAmethylation (Figure 1C), as well as the
abnormal expression mechanism of another miRNA (miR-4661-
5p) was still unknown to data. Our results suggested that the
dysregulated transcription factors can play vital roles in HCC.

In this work, we further focused on the roles of transcription
factor FOXO1 in HCC. Our results indicated that HCC patients
in the highly expressed FOXO1 group exhibited a better survival
rate than the lowly expressed FOXO1 group (p = 0.0089)
(Figure 5D), revealing that FOXO1 could be served as a tumor
suppressor gene to improve the good prognosis of HCC patients,
which is agree with these previous studies (41). As shown in
Figure 6, FOXO1 can enter the nucleus to activate the expression
of its target genes to maintain normal cell apoptosis and
autophagy in normal cells (41, 42). When cells became
cancerous, the upstream cellular pathways of FOXO1 such as
PIK3, ERK, RAS, NF-kappa B can phosphorylate or acetylate
FOXO1 to cause abnormal cell proliferation and migration to
form tumors (41, 42). After phosphorylation, the stability of
FOXO1 protein decreased and further leaded to the ability loss of
entering the nucleus and shifting from the nucleus to the
cytoplasm, thereby losing its ability to regulate downstream
A

B DC

FIGURE 4 | KEGG signaling pathways of up-regulated target genes and their regulation by miRNAs. (A) KEGG signaling pathways involved in survival-related up-
regulated target genes and their regulation by miRNAs. (B–D) The impact of up-regulated target genes on the overall survival rate of HCC patients, taking SRC,
CDK1 and CCNA2 as examples.
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target genes (41, 42). Especially, acetyl modification usually
affects the ability of FOXO1 to bind to the promoter of its
target genes (38, 39). Our results demonstrated that
on the one hand the down-regulated FOXO1 could cause the
down-regulation of certain tumor suppressed miRNAs (e.g. miR-
125b-5p, miR-99a-5p, miR-101-3p, miR-let-7c, miR-200a-3p) to
promote the expressions of upstream carcinogenic genes (e.g.
PIK3C2B, PIK3R3, SRC, EFNA4, MRAS, RASL1, RASGRF2,
MAPK11, MAPK12, MMP14) to activate multiple cancer-
related pathways, which further lead to the occurrence of HCC
(Figures 6, S8 and Table S3); on the other hand several up-
regulated transcription factors (e.g. E2F1, EBF1, FOXM1 and
RFX5) might inhibit the expressions of FOXO1 and certain
tumor suppressor genes (e.g. CYP3A4, ACAT1 and NPY1R) to
promote the occurrence of HCC via activating carcinogenic
miRNAs (e.g. miR-224-5p, miR-96-5p, miR-3677-3p and miR-
21-5p) (Figures 5, 6 and Tables S3, S5). These results seemed to
imply that transcription factors and miRNAs interplay could
suppress the expression of FOXO1 to participate in the
occurrence and development of HCC (Figure 6). Overall, our
Frontiers in Oncology | www.frontiersin.org 9
study revealed that FOXO1 dysregulation might cause the
dysregulation of a certain number of tumor suppressor
miRNAs to result in the occurrence of HCC (Figures 6 and
S8), in particular the interplay between transcription factors and
miRNAs could synergistically control the occurrence and
development of HCC (Figure 6).
DISCUSSION

Although studies have demonstrated that the dysregulated
expressions of miRNAs participate in the pathogenesis of HCC
(4, 6), the dysregulated mechanisms of causing miRNA in HCC
are still poorly understood up to now. In this work, we further
study this issue. Our results reveal that transcription factor
dysregulations and DNA methylation were two main
mechanisms of causing the expression disorders of miRNAs in
HCC. Especially, the transcription factor FOXO1 can interplay
with multiple prognostic miRNAs forming distinct regulatory
loops to involve in the occurrence and development of HCC
A

B DC

FIGURE 5 | KEGG signaling pathways of down-regulated target genes and their regulation by miRNAs. (A) KEGG signaling pathways involved in survival-related
down-regulated target genes and their regulation by miRNAs. (B–D) The impact of up-regulated target genes on the overall survival rate of HCC patients, taking
CYP3A4, IL7R and FOXO1 as examples.
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(Figure 6). On the one hand, FOXO1 can be served as a tumor
suppressor to activate several protective miRNAs (e.g. miR-
125b-5p and miR-99a-5p, miR-101-3p) to further inhibit its
upstream carcinogenic genes (e.g. PIK3C2B, PIK3R3, SRC,
EFNA4, MRAS, RASL1, RASGRF2, MAPK11, MAPK12,
MMP14) of FOXO1 to promote a good prognosis for HCC
patients (Figures 6, S8 and Tables S3, S4). On the other hand,
some up-regulated transcription factors (e.g. E2F1 and FOXM1)
can activate multiple carcinogenic miRNAs (e.g. miR-21-5p and
miR-96-5p) to inhibit FOXO1 to lead to the disorder of FOXO1-
miRNA-PI3K/RAS/ERK cancer suppressive feedback loop to
cause the occurrence and development of HCC (Figure 6). In
this work, we found that the down-regulated FOXO1 could
control 26 down-regulated miRNAs (Figure S8), and at least
10 of them have been reported to act as tumor suppressors in
HCC or other cancers (4, 6, 43–50). While we found that four
up-regulated miRNAs (miR-224-5p, miR-96-5p, miR-21-5p and
Frontiers in Oncology | www.frontiersin.org 10
miR-3677-3p) might inhibit the expression of FOXO1 (Figure
S8), of which miR-21-5p and miR-96-5p had also been
confirmed to inhibit FOXO1 (51, 52). In addition, our study
indicated that several up-regulated transcription factors (e.g.
E2F1, EBF1 and FOXM1) might inhibit the expression of
FOXO1 via activating miR-224-5p, miR-96-5p and miR-21-5p
(Figure 6 and Table S3). Interestingly, previous studies had
reported that E2F1 can activate the expression of mir-224 and
mir-452 to inhibit the tumor suppressor gene TXNIP to promote
glioblastoma metastasis (53), and that E2F1 and FOXM1 can
activate the miR-21-5p and miR-96-5p to inhibit FOXO1 (54–
56), which further supports our conclusions.

In this study, we demonstrated that seven up-regulated
miRNAs could act as oncogenes (Figures 2H–N and S2C).
Previous studies have revealed that the up-regulated miR-452-
3p can promote the proliferation and migration of hepatocellular
carcinoma cells via targeting CPEB3/EGFR axis in HCC (57),
FIGURE 6 | The mechanism of transcription factors and miRNAs interaction affecting the progression of HCC disease. These solid lines represent regulatory
relationships and signal pathways that have been experimentally verified, and the dotted lines represent our results of bioinformatics analysis. The molecules involved
in the signaling pathway refer to the gene family such as PIK3 family, RAS family, but not the specific gene name. Sharp arrows represent activation and flat arrows
represent inhibition. Red represents up-regulated genes and green represents down-regulated genes the difference analysis.
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which is agreement with our target prediction results (Table S3),
and this up-regulated miR-1180-3p can involve in the regulation
of apoptosis via targeting NF-KB in HCC (58), as well as miR-
3677-3p was significantly up-regulated in cirrhotic patients with
antral vasodilation (59). These previous studies further support
that miR-452-3p, miR-1180-3p and miR-3677-3p can serve as
prognostic miRNAs for HCC patients. Although the roles of
other four miRNAs in HCC are yet not reported to date, several
other studies have demonstrated that miR-9-5p could increase
cancer cells stemness to enhance their resistance to therapy in
breast cancer (60), and could promote the proliferation and
metastasis of cancer cells in non-small cell lung cancer (61), as
well as the highly expressed miR-452-5p was associated with a
poor prognosis of patients with renal cell carcinoma (62).
Especially, miR-4746-5p was a newly identified prognostic
miRNA in our work, which was also found to be significantly
up-regulated in more than eight cancer types (63). These above
results seemed to imply that miR-9-5p, miR-452-5p and mir-
4746-5p can act as new prognostic biomarkers for HCC patients.
However, the relationship between miR-4661 and tumors has
rarely been reported, which needs further study.

In contrast, the other 7 down-regulated miRNAs could serve as
tumor suppressors (Figures 2A–G and S2C). Especially, miR-99a
had been confirmed to be significantly down-regulated in HCC
and be appraised as an independent prognostic factor for inhibiting
the growth of HCC by inducing cell cycle arrest (64), as well as miR-
139-5p as a tumor suppressor gene could target ETS1, VEGFR
and SPOCK1 to inhibit cell proliferation and invasion in HCC (19,
65, 66). Moreover, the down-regulated miR-125b-5p could induce
the up-regulation of its target CD16 to promote tumor progression
and lead to a poorly clinical prognosis for HCC patients (67), as well
as miR-101-3p had been proved to be down-regulated and could
target SOX9 to inhibit cell proliferation and metastasis in HCC (68,
69). Although the roles of miR-139-3p in HCC are yet not reported,
it could act as a tumor suppressor gene to involve in HPV-16-
induced head and neck cancer, in particular its high expression
could reduce the expression of HPV-16 oncogene (70). Considering
that viruses could be served as independent risk factors for HCC,
and thus we suggest that miR-139-3p might have the similar
regulatory mechanism in HCC. Remarkably, miR-5589-5p and
miR-5589-3p, as newly identified miRNAs, are still rarely studied
and are expected to become new prognostic markers for
liver cancer.

At present, targeted miRNA therapy is mainly divided into
miRNA silencing and anti-miRNA also called miRNA recovery.
Interestingly, silencing several oncogenic miRNAs (e.g. miR-221)
by specific antigomirs or anti-miRNA oligonucleotides can play a
very good antitumor activity in the prostate (71), and that the
oligonucleotides against the miR-221 mouse liver cancer model
has demonstrated that its silencing can significantly inhibit
tumor cell proliferation and increase apoptosis (72). In
addition to the silencing miRNAs, enhancing the expression of
tumor suppressor miRNAs is also an effective treatment for HCC
patients. For example, increasing miR-26a expression with
adeno-associated virus (AAV) can significantly suppress the
proliferation of cancer cells, and induce tumor cell apoptosis,
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as well as protect the treatment group from tumors without side
effects (73). The restored expression of miR-375 can also play a
good therapeutic effect in a mouse xenograft model (74).
Especially, as the first clinical miRNA mimic for HCC,
restoring miR-34 expression can inhibit the expression of at
least 24 known oncogenes (75). These studies have suggested that
targeted miRNA therapy might be an effective treatment for
HCC patients.

It is difficult to rebuild the post-transcriptional homeostatic
system by normalizing individual miRNA. However, in our
study, we found that most dysregulation expression miRNAs
can be caused by 23 disordered transcription factors
(Figures 1D, E). This seems to provide a new opportunity for
this awkward situation, i.e. it is conceivable to recover the
expression levels of dysfunctional miRNAs via restoring the
expression levels of several dysregulated transcription factors
in HCC, which has at least the following two advantages. First,
restoring the normal expression of transcription factors not only
can solve its own imbalance, but can control the expression of
multiple oncogenic and/or tumor suppressor miRNAs to
maintain a new homeostasis. Second, compared with drugs
that target miRNAs, the current drug design of proteins is
more mature and complete, and people can also make full use
of many existing resources. Therefore, we here suggested that
targeted transcription factor therapy should be an effective
treatment for HCC patients. Interestingly, our study had
revealed that this transcription factor FOXO1 can activate 26
disordered tumor suppressor miRNAs to inhibit most
carcinogenic genes to promote the survival of HCC patients.
This means that the recovery of FOXO1 expression may be a
good idea for reconstructing the post-transcriptional regulation
of miRNAs to suppress tumorigenesis. A previous study had
demonstrated that the overexpression of FOXO1 can
significantly increase the expression levels of many target
miRNAs (e.g. miR-125b, miR-99, miR-101, miR-let-7c, miR-
675, miR-199a) to suppress nasopharyngeal carcinoma cell
proliferation (76). Taken together, our study suggested that
FOXO1 should serve as an effective therapeutic target for
HCC patients.

Here, we also realize that this study has certain limitations.
We identify transcription factors regulating miRNAs based on
direct activation effects, which may have a certain deviation
because some transcription factors may exert inhibitory
functions. Therefore, we also predicted the inhibitory effect of
transcription factors on miRNAs (Figure S9). We found that
some down-regulated transcription factors (e.g. JUN and JUNB)
may lead to the up-regulation of miR-224-5p, miR-3677-3p and
miR-182-5p, and other up-regulated transcription factors can
also bind multiple promoter region of negatively correlated
miRNAs, but these prediction results need to be carefully
verified. Compared with these activated transcription factors,
there are yet very few reports on transcription factors directly
inhibiting miRNAs to date. In particular, genome mutations,
copy number variations, histone modifications, RNA
modifications and changes in key proteins, such as DROSHA,
DGCR8, XPO5 and AGO2, may also affect miRNA expression
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(77–80). Therefore, these factors may also drive miRNA
dysregulation, which need further study.
CONCLUSION

In conclusion, our study not only identified novel prognostic
factors and revealed functional roles of prognostic miRNAs in
HCC, but systematically illuminated the dysregulated
mechanisms of miRNA in HCC. And thus our findings have
provided several new and accurate biomarkers for the diagnosis
and detection of HCC patients, as well as new insights and
methods for targeted therapy for HCC patients.
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Supplementary Figure 1 | Volcano and heat maps of differentially expressed
genes. (A, B) Volcano plots of differentially expressed miRNAs and mRNAs.
(C, D)Unsupervised clustering heat map of differentially expressedmiRNA andmRNA of
matchedtumorandadjacent tissues.Rowsrepresentgenes,columnsrepresentsamples,
blue represents low expression and red represents high expression in tumor tissue.

Supplementary Figure 2 | Use H3K4me3 and H3K27ac ChIP-seq data to verify the
promoter activity of 10 miRNAs driven by methylation. (A) The chromatin modification of
H3K4me3 and H3K27ac in the promoter regions of miR-323a, miR-376c and miR-154.
(B) Chromatin modification of H3K4me3 and H3K27ac in the promoter region of miR-
1180. (C) Chromatin modification of H3K4me3 and H3K27ac in the promoter region of
miR-4746. (D) Chromatin modification of H3K4me3 and H3K27ac in the promoter
region of miR-10a. (E) Chromatin modification of H3K4me3 and H3K27ac in the
promoter regions of miR-200b, miR-200a and miR-429. The red arrow represents the
direction of transcription, and the transcription start sites (TSSs) of the prognostic
miRNAs refer to Table S1. The gray shading represents the promoter region.

Supplementary Figure 3 | 14 miRNAs related to HCC patient survival.
(A) Seven up-regulated miRNA expressions in matched tumors and normal tissues.
(B) Expressions of seven down-regulated miRNAs in paired tumors and normal
tissues. (C) Forest value map of the risk of 14 prognostic miRNAs affecting the survival
time of HCC patients. A HR greater than 1 means that this increasing miRNA
expression is not conducive to patient survival, while a HR less than 1 means that this
increasing miRNA expression is conducive to patient survival. The absolute value of
HR represents the intensity of the effect of miRNA on the survival time of patients.

Supplementary Figure 4 | ROC curves of 14 prognostic miRNAs and AFP
distinguish early tumor tissue from normal tissue.

Supplementary Figure 5 | ROC curves of 14 prognostic miRNAs and AFP
distinguish advanced tumor tissue from normal tissue.

Supplementary Figure 6 | The expression changes of 14 independent prognostic
miRNAs in 12 other tumors types. Onlymatched tumor and adjacent tissues are used for
calculation. The threshold of differentially expressed genes is |logFC| > 1 and FDR< 0.05.
Red represents up-regulation, blue represents down-regulation, and gray represents no
difference of gene expression. The full name of tumor types are as follows. BLCA,
Bladder Urothelial Carcinoma; BRCA, Breast invasive carcinoma; CHOL, Cholangio
carcinoma; ESCA, Esophageal carcinoma; HNSC, Head and Neck squamous cell
carcinoma; KICH, Kidney Chromophobe; KIRC, Kidney renal clear cell carcinoma; KIRP,
Kidney renal papillary cell carcinoma; LUAD, Lung adenocarcinoma; LUSC, Lung
squamous cell carcinoma; PRAD, Prostate adenocarcinoma; THCA, Thyroid carcinoma.

Supplementary Figure 7 | KEGG pathway enrichment analysis of 14 prognostic
miRNA target genes. (A) KEGG pathway enrichment analysis of up-regulated target
genes. (B) KEGG pathway enrichment analysis of down-regulated target genes.

Supplementary Figure 8 | Interaction between FOXO1 and miRNAs. Red
represents up-regulation of expression, and green represents down-regulation
of expression.

Supplementary Figure 9 | Network diagram of predicted transcription factor
suppression miRNA. The circles represent transcription factors, and the triangles
represent miRNAs. Red represents up-regulation and blue represents
down-regulation.
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