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Background: Liver cancer is a leading cause of cancer death worldwide, and novel
prognostic factor is needed for early detection and therapeutic responsiveness
monitoring. The orphan nuclear receptor NR0B2 was reported to suppress liver cancer
development in a mouse model, and its expression levels were reduced in liver cancer
tissues and cell lines due to hypermethylation within its promoter region. However, it is not
clear if NR0B2 expression is associated with cancer survival or disease progression and
how NR0B2 gene expression is regulated at the molecular level.

Methods: Multiple cancer databases were utilized to explore NR0B2 gene expression
profiles crossing a variety of human cancers, including liver cancers, on several publicly
assessable bioinformatics platforms. NR0B2 gene expression with or without kinase
inhibitor treatment was analyzed using the qPCR technique, and NR0B2 protein
expression was assessed in western blot assays. Two human hepatocellular carcinoma
cell lines HepG2 and Huh7, were used in these experiments. NR0B2 gene activation was
evaluated using NR0B2 promoter-driven luciferase reporter assays.

Results: NR0B2 gene is predominantly expressed in liver tissue crossing human major
organs or tissues, but it is significantly downregulated in liver cancers. NR0B2 expression
is mostly downregulated in most common cancers but also upregulated in a few intestinal
cancers. NR0B2 gene expression significantly correlated with patient overall survival
status in multiple human malignancies, including lung, kidney, breast, urinary bladder,
thyroid, colon, and head-neck cancers, as well as liposarcoma and B-cell lymphoma. In
liver cancer patients, higher NR0B2 expression is associated with favorite relapse-free and
progression-free survival, especially in Asian male patients with viral infection history. In
addition, NR0B2 expression negatively correlated with immune infiltration and PIK3CA
and PIK3CG gene expression in liver cancer tissues. In HepG2 and Huh7 cells, NR0B2
expression at the transcription level was drastically reduced after MAPK inhibition but was
significantly enhanced after PI3K inhibition.
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Conclusion: NR0B2 gene expression is altered mainly in most human malignancies and
significantly reduced in liver cancers. NR0B2 is a prognosis factor for patient survival in
liver cancers. MAPK and PI3K oppositely modulate NR0B2 expression, and NR0B2 gene
upregulation might serve as a therapeutic responsiveness factor in anti-PI3K therapy for
liver cancer.
Keywords: NR0B2, liver cancer, survival, PI3K - AKT pathway, MAPK (ERK1/ERK2)
INTRODUCTION

Liver cancer is the fifth (male) or seventh (female) most common
cause of cancer death now in the United States (1). However,
liver cancer has a much higher incidence in Africa and Asia, and
its fatality rate has been on the rise in the past two decades
worldwide (2). The incidence of liver cancer is about 2-7 times
more in men compared to women depending on their
geographical area, but the mechanism behind this sexual
dimorphism is still unclear (3). Although male hormone and
its cognate androgen receptor (AR) were considered as
significant contributors (3), clinical trials with antiandrogen or
anti-AR treatment did not yield a favorite outcome (4).

Hepatocellular carcinoma (HCC) is the predominant form of
liver cancer, and chronic viral infection from hepatitis B/C
viruses (HBV/HCV) has been the major risk factor (5). On the
other hand, chronic liver inflammation due to metabolic
syndrome and nonalcoholic fatty liver disease after long-term
high-calorie food intake is becoming the prime causes for HCC
incidence in western countries (6). However, it is conceivable
that genetic/ethnic diversity also contributes to the difference in
HCC pathogenesis. Understanding the molecular risk factors in
HCC development and progression will be critical for improving
early detection and developing effective targeted therapies to
combat this deadly disease.

NR0B2 (nuclear receptor subfamily 0 group B member 2),
also called small heterodimer partner (SHP), is an orphan
nuclear receptor without a conventional zinc-finger DNA
binding domain (7). It acts as a transcriptional repressor by
binding to other nuclear receptors to regulate various metabolic
pathways, including glucose, bile acid, cholesterol, and fatty acid
homeostasis in the organs of the liver, pancreas, and kidney (8).
It was reported that NR0B2 gene expression was significantly
reduced in liver and kidney cancers and that overexpression of
NR0B2 protein suppresses liver cancer development, indicating
it is a tumor suppressor (9, 10). However, it is not clear if NR0B2
expression is also altered in other human cancer types and if the
alteration is associated with patient disease history or outcome.
In addition, there are only very few reports related to the
involvement of cellular signaling pathways in the regulation of
NR0B2 gene expression in cancer cells.

In this study, we sought to investigate if NR0B2 gene expression
is altered crossing the spectrum of human cancers. We utilized
multiple publicly available bioinformatic platforms to obtain and to
analyze the data of clinical parameters, gene expression profiles,
and pathological diagnosis. Our study revealed that NR0B2 gene
expression is mainly downregulated in many common cancers,
2

while its upregulation is only seen in fewer cancer types. Survival
data showed that NR0B2 expression is a favorite prognosis factor in
patients with liver, kidney, lung, urinary bladder cancers but is a
negative factor in patients with colon, thyroid, uterine, and head-
neck cancers. Patient stratify analysis revealed that NR0B2
expression is a favorite factor in liver cancer patients of Asian
males with viral infection history. Correlation analysis discovered
that NR0B2 expression is negatively correlated with PI3K pathway
genes PIK3CA and PIK3CG in liver cancer tissues. Consistently,
PI3K inhibition significantly enhanced NR0B2 expression at the
transcription level in human liver cancer HepG2 and Huh7 cells.
These data demonstrated NR0B2 as a prognosis factor in human
cancer with a diverse clinical significance. It is feasible that NR0B2
expression might serve as a biomarker for anti-PI3K therapeutic
responsiveness in human liver cancers.
MATERIALS AND METHODS

Cell Lines, Culture Condition, and
Experimental Reagents
Human HCC HepG2 cell line was obtained from ATCC
(Manassas, VA), and Huh7 cell line was obtained from Health
Science Research Resources Bank (JCRB0403, Osaka, Japan).
Cells were cultured in DMEM media with 10% fetal bovine
serum (FBS) and 1% penicillin and streptomycin at 37°C in a 5%
CO2 setting. All kinase-selective small chemical inhibitors for
MAPK, MEK1/2, PI3K JNK, and p38MAPK, as well as GW4064,
were purchased from Cayman Chemicals (Ann Arbor, MI).
Chemicals were initially dissolved in DMSO and then diluted
with cell culture media into the final concentration at a 1000-fold
dilution. Chemical treatment time and final concentrations was
indicated in the figure legends.

Antibodies for NR0B2 (clone N2C3) were obtained from
GeneTex (Irvine, CA). Antibodies for ERK (clone 137F5),
phosphor-ERK (clone D13.14.4E), AKT (clone 40D4),
phospho-AKT (clone D9E), FXR (clone E4B8P), and Actin
(clone E4D9Z) were purchased from Cell Signaling Tech
(Danvers, MA). HRP-conjugated secondary antibodies and
luminol reagents were purchased from Santa Cruz Biotech
(Dallas, TX).

Western Blot, qPCR, and Luciferase
Reporter Assays
For western blot assays, cells were harvested in cold PBS solution,
and protein lysates were extracted using RIPA buffer as
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described (11, 12). After protein assay, equal amounts of proteins
from each treatment were subjected to western blot assay with
the antibodies indicated in the figure.

For real-time quantitative RT-PCR (qPCR) assays, cells were
harvested in cold PBS solution, and total RNAs were extracted
using the TRIzol™ reagent (Invitrogen). After the cDNA
synthesis, the qPCR reaction was conducted with an SYBR
Green-based PCR master mix (Bio-Rad) described in our
publications (13, 14). The house-keeping gene GAPDH was
used as an internal control for data normalization.

For luciferase assay, cells were seeded in a 6-well plate
overnight and then transfected with an empty reporter
construct pGL3 or the human NR0B2 promoter-driven
luciferase construct (hSHP-LUC) as described in our
publication (14). After treatment with kinase inhibitors or
GW4064 overnight, cells were harvested for luciferase
measurement, and the final readings were normalized with
the relative levels of total proteins, as described in our
publication (15).

Bioinformatic Data Platforms
Oncomine™ data processing platform (www.oncomine.org) was
used to obtain gene expression data derived from cDNA
microarray analysis, and the comparison between cancer and
its normal counterpart tissues was conducted to generate a fold-
change ratio.

Tumor Immune Estimation Resource (TIMER™, cistrome.
shinyapps.io/timer) is a multi-modular platform for comprehensive
analysis (16, 17). Its Gene module provides visualization of target
gene expression and tumor infiltration level of immune cells. Its
Diff Exp module also provides gene expression comparison
between tumor and adjacent normal tissues for any gene of
interest across all TCGA tumors. Its Correlation module
conducts a Spearman analysis of a pair of the interested genes
in each cancer type.

The Kaplan-Meier Plotter (kmplot.com) is a meta-analysis
tool to assess the effect of gene expression at the mRNA, miRNA,
and protein levels on patient survival outcomes in 21 types of
human cancers (18). The database was built on the GEO, EGA,
and TCGA resources. All available datasets for human cancers
were processed for NR0B2 gene expression. The survival data
with statistical significance were downloaded for presentation
and discussion.

The PrognoScan (PrognoScan.org) is a database built for
analyzing the prognostic significance of a candidate gene in an
extensive collection of publicly available cancer microarray
datasets with clinical outcomes such as overall survival and
disease-free survival (19). It uses the minimum P-value
approach to define an optimal cut-point in gene expression
levels for survival comparison.

Data Presentation and Statistical Analysis
All experiments were carried out in triplicates and repeated two
or three times. The real-time RT-PCR results and luciferase data
are presented as the mean plus the stand error of the mean
(SEM) from three separate experiments. The luciferase assay
Frontiers in Oncology | www.frontiersin.org 3
results are shown as fold induction compared to the DMSO
control. The images from the western blot assay were
representative of multiple blots. Statistical analysis for the
differences between groups was carried out using the Student t-
test (SPSS software, Chicago, IL), and the p < 0.05 was
considered significant.
RESULTS

NR0B2 Gene Is Aberrantly Expressed in
Multiple Human Cancers
To obtain a complete image of the NR0B2 gene expression
pattern in human organs/tissue, we re-analyzed the microarray
data collected by the Oncomine database. Two large datasets
were available for NR0B2 gene expression containing 45 (20)
(Figure 1A) and 95 (11) (Figure S1) benign tissues, respectively.
Both datasets showed that liver tissues expressed the highest
levels of NR0B2 gene, followed by kidney, adrenal gland,
stomach, spleen, and heart. These data are in agreement with
the published literature in the field that the primary function of
NR0B2 gene-coded protein SHP is in bile acid metabolism,
innate immune response, and gene regulation (7, 21–23).

We then compared NR0B2 gene expression in cancer tissues
with their matched benign counterparts. The Oncomine
database has more than 30 datasets showing a significant
reduction of NR0B2 gene expression in human cancers,
including liver, renal, lung, and gastric carcinomas (Table S1).
Meanwhile, about ten datasets showed a significant increase of
NR0B2 gene expression in human cancers, such as the esophagus
and colorectal adenocarcinoma, ovarian serous surface papillary
carcinoma, and brain medulloblastoma (Table S2).

To verify the NR0B2 gene expression pattern obtained from the
Oncomine database, we used a secondary dataset from the TCGA
collection. We found a similar expression pattern (Figure 1B),
NR0B2 gene downregulation in liver, kidney, and lung carcinomas
but upregulation in the colon and rectal adenocarcinomas. These
data suggest that NR0B2 gene expression is differently regulated in
various human organs/tissues and that the aberrant NR0B2
expression in human cancers is opposite to the patterns in their
benign counterpart tissues.

NR0B2 Expression Is a Favorite Prognosis
Factor in Liver Cancers
To explore the clinical significance of NR0B2 gene expression in
human cancers, we analyzed the correlation between patient
survival and NR0B2 gene expression, with an emphasis on liver
cancers. As shown in Figures 2A–C, NR0B2 gene expression is
reduced about 1.8-2.5 folds in hepatocarcinoma tissues
compared to the benign counterparts. Survival analysis
revealed that higher NR0B2 expression is significantly
associated with a favorite recurrent-free (Figure 2D) and
progression-free (Figure 2E) survival in a cohort of 316-370
patients. Although NR0B2 expression had no significant
correlation with overall survival (Table 1), the higher NR0B2
expression level was significantly associated with worse overall
May 2021 | Volume 11 | Article 691199
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survival in early-stage (HR = 2.84), well-differentiated cancers
(HR = 2.94), as well as alcohol consumption (HR = 2.18) and
male patients without viral hepatitis history (HR = 1.9).
Interestingly, higher NR0B2 expression is a favorite factor for
overall survival in patients with viral hepatitis history (Figure
2F), especially for those without alcohol consumption and Asian
male patients. These data were supported by a previous report
that SHP protein suppressed HCV replication in human liver
cancer HuH7 cells (27).

We also analyzed the survival significance of NR0B2
expression in breast, lung, colon, eye, and soft tissue cancers.
Higher NR0B2 expression is significantly associated with a
favorite overall survival, metastasis-free and relapse-free
survival in breast cancer patients (Figures 3A–C). Higher
Frontiers in Oncology | www.frontiersin.org 4
NR0B2 expression levels were significantly associated with
favorite overall and relapse-free survival (Figures 3D, E).
Interestingly, higher NR0B2 expression levels were also a
favorite prognostic factor in liposarcoma (Figure 3F) and eye
uveal melanoma patients (Figure 3G). In agreement with a
significant upregulation of NR0B2 gene expression in colon
and B-cell lymphoma (Table S2), higher NR0B2 expression
levels were significantly associated with worse overall survival
in these patients (Figures 3H, I). These correlations of NR0B2
expression with patient overall survival status for renal cancers
and lung cancers were consistent with the data obtained from a
different bioinformatic platform except in breast cancer patients,
as shown in Figure S2. In addition, NR0B2 is a favorite survival
factor in bladder cancers but a worse factor in thyroid cancers,
A

B

FIGURE 1 | NR0B2 expression profiles in benign and malignant tissues. (A) NR0B2 gene expression profiles in human tissues were queried from the Shyamsundar
cDNA microarray dataset (20) in the Oncomine database. Box plot was generated based on the log2 median-centered ratio in each organ/tissue type. (B) The
differential profiles of NR0B2 gene expression between malignant and adjacent benign tissues were queried from the TCGA tumor database on the Tumor Immune
Estimation Resource (TIMER) platform (16, 17). Data are displayed using box plots. The statistical significance of differential expression was analyzed using the
Wilcoxon test. *p < 0.05, **p < 0.01, ***p < 0.001.
May 2021 | Volume 11 | Article 691199
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lung squamous cancers, uterine corpus endometrial cancers, and
head-neck squamous cancers. These data suggest that NR0B2
plays a diverged role in different human cancers.
NR0B2 Expression Is Negatively
Associated With Tumor-Infiltrating
Lymphocytes and PI3K Genes in
Liver Cancers
Recently, we and others reported that NR0B2 expression
suppressed inflammation (13, 34, 35) and innate immune
response (36). We, therefore, analyzed the correlation between
NR0B2 expression and tumor-infiltrating lymphocytes using the
TIMER database. Our analysis discovered a partial but significant
correlation between lower NR0B2 expression levels and higher
tumor infiltration of B cells, CD8+ T cells, and dendritic cells
(Figure 4A). NR0B2 expression has no correlation with other
tumor-infiltrating lymphocytes, including CD4+ T cells,
macrophages, and neutrophils (Figure 4B). These data are
consistent with recent reports that NR0B2 is a negative regulator
of host immune response.
Frontiers in Oncology | www.frontiersin.org 5
PI3K/AKT pathway was recently identified as cancer
biomarkers in liver cancer patients, especially for those patients
with viral infection history (37). Our data mining analysis revealed
a significant but negative correlation of gene expression between
the NR0B2 gene and two class IA PI3K genes PIK3CA and
PIK3CG (Figure 4C). NR0B2 gene expression had no significant
correlation with PIK3CB and AKT genes (Figure 4D). These data
are in agreement with a recent report showing a negative
correlation between FXR/NR0B2 action and PI3K pathway in
liver regeneration (38).
NR0B2 Expression Is Differently
Modulated by MAPK and PI3K Pathways
in Liver Cancer Cells
NR0B2 expression is mainly regulated by NR1H4 gene-encoded
FXR protein and other co-factors (23, 39, 40). Meanwhile,
cellular signal pathways including MAPK, JNK, and PI3K were
involved in regulating NR0B2 expression after growth factor,
metformin, or bile acid stimulation (41, 42). To explore the
cellular pathways involved in regulating NR0B2 gene expression,
A B C

D E F

FIGURE 2 | NR0B2 expression is significantly reduced and associated with recurrent-free and progression-free survival in liver cancer patients. (A–C) NR0B2
expression data were queried from three representative datasets in the Oncomine™ database; A-Wurmbach (24), B-Roessler (25), and C-Chen (26). Statistical
information is inserted in the plot, and the case numbers for each group were listed below the plot. (D–F). The Kaplan Meier plotter was used to assess the effect of
NR0B2 gene expression (RNAseq data for the mRNA level) on liver cancer patients’ survival status (n = 364). The data sources for the analysis include GEO, EGA,
and TCGA. The prognostic value of NR0B2 gene expression levels was compared by splitting the patient cohort into two groups according to the quantile
expressions of the NR0B2 gene. The Kaplan-Meier survival plot was used to calculate the hazard ratio with 95% confidence intervals and log-rank p-value.
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we first used a pharmacological approach coupled with a qPCR
technique for endogenous NR0B2 mRNA levels. Kinase-specific
inhibitors for MAPK kinase (PD98059 and U0126), JNK kinase
(SP600125), p38 kinase (SB203580), and PI3K (LY294002) were
used to treat liver cancer cells HepG2 and Huh7, followed by
qPCR-based NR0B2 mRNA measurement. As shown in Figure
5A, MAPK inhibitors drastically suppressed NR0B2 expression
in both cell lines, with a predominantly strong effect on HepG2
cells. Next, we verified this effect with an NR0B2 promoter-
driven luciferase reporter assay. MAPK kinase inhibitors (U0126
and PD184161) blocked the basal reporter activity and abolished
bile acid analog GW4064-induced reporter activity (Figure 5B).
Thirdly, we confirmed the MAPK involvement in modulating
NR0B2 protein levels by western blot (Figures 5C, D).
Consistently, GW4064 stimulated MAPK pathway activation as
evidenced by ERK phosphorylation (Figures 5C, D). MAPK
inhibition did not affect FXR protein levels. These data
demonstrated the essential requirement of MAPK activity in
NR0B2 expression at the transcriptional level.

In contrast to MAPK inhibitors, PI3K and JNK inhibitors
vastly enhanced NR0B2 expression (Figure 6A), of which PI3K
inhibitor had a more profound effect in HepG2 cells. This PI3K
inhibition-induced NR0B2 upregulation was further explored in
Frontiers in Oncology | www.frontiersin.org 6
NR0B2 promotor-driven luciferase reporter assays. A novel
PI3K inhibitor BKM120 significantly enhanced basal and
serum-stimulated but not GW4064-induced NR0B2 reporter
activity (Figures 6B, C). This enhancing effect was also
evidenced at the protein levels after BKM120 or AKT inhibitor
treatment at both dose- and time-dependent manner (Figures
6D G). Although BKM120 treatment slightly increased ERK
phosphorylation levels, it did not affect GW4064-stimulated ERK
phosphorylation (Figures 6H, I). Conversely, GW4064
treatment moderately reduced AKT phosphorylation, which
was further reduced by BKM120 treatment, as expected. These
data indicate that bile acid-induced NR0B2 expression requires
ERK but not PI3K/AKT activity and that PI3K/AKT activity
prevents NR0B2 expression at the basal condition.
DISCUSSION

In this study, we re-analyzed several public datasets for NR0B2
expression patterns in human benign and malignant tissues and
investigated the involvement of MAPK and PI3K pathways in
human liver cancer cells. Our data revealed that NR0B2 gene
expression was highly expressed in liver, kidney, and gastric
tissues but was significantly reduced in malignant tissue derived
from these organs. Meanwhile, lung adenocarcinomas exerted a
downregulation, but colorectal adenocarcinomas upregulated
NR0B2 expression. Survival analysis showed that higher
NR0B2 expression levels were associated with better survival
status in liver, lung, breast, soft tissue (liposarcoma), and eye
cancers. Conversely, higher NR0B2 expression is a worse
prognosis factor in colon cancers and B-cell lymphomas.
NR0B2 expression is conversely correlated with tumor-
infiltrating B-cells, CD8+ T cells, and dendritic cells, as well as
PIK3CA and PIK3CG gene expression in liver cancer tissues.
Gene expression analysis determined that the ERK pathway was
essential for basal and GW4064-induced NR0B2 expression
while the PI3K/AKT pathway only prevented NR0B2
expression at the basal but not bile acid stimulation condition
in liver cancer cells.

There is a paucity of NR0B2 expression from human cancer
specimens, and so far, only two reports showed NR0B2
downregulation in 10 cases of liver cancers (HCC) (14) and 24
cases of renal cancers (RCC) (10). With the advance of
bioinformatic technologies, many public databases are
assessable to analyze gene expression profiles in a variety of
human cancers. This study took advantage of these bioinformatic
resources and systemically explored the NR0B2 expression
profiles in benign and malignant tissues. Our data confirmed
the predominant expression profile of the NR0B2 gene in benign
liver and kidney tissues. Interestingly, NR0B2 expression was
significantly downregulated in malignant tissues derived from
these organs, consistent with previous reports (10, 14, 43),
indicating a dramatic alteration in regulating NR0B2 gene
expression after malignant transformation. Higher NR0B2
expression is associated with fewer disease relapse and
progression in liver cancer patients and is also associated with
TABLE 1 | The Kaplan Meier plotter was used to calculate the hazard ratio with
95% confidence intervals and log-rank p-value after stratifying the cohort into
different subgroups based on the clinical and pathological parameters.

high vs low comparison cases HR (95%CI) p value FDR

overal surival 364 1.2 (0.83-1.73) n.s. 100%
disease-specific survival 357 1.3 (0.82-2.08) n.s. 100%
stage-1 170 1.24 (0.67-2.29) n.s. 100%
stage-2 83 2.84 (1.23-6.54) 0.0103 50%
stage-3 83 0.62 (0.32-1.21) n.s. 100%
stage-4 3 n.a. n.a. n.a.
grade-1 55 2.94 (1.09-7.94) 0.026 50%
grade-2 174 1.63 (0.97-2.74) n.s. 100%
grade-3 118 0.49 (0.23-1.05) n.s. 100%
grade-4 4 n.a. n.a. n.a.
AJCC-T2 90 2.2 (1.05-4.63) 0.033 >50%
AJCC-T3 78 0.76 (0.4-1.42) n.s. 100%
AJCC-T4 13 n.a. n.a. n.a.
Vascular invasion –none 203 0.71 (0.42-1.2) n.s. 100%
Vascular invasion –micro 90 1.8 (0.84-3.38) n.s. 100%
Vascular invasion -macro 14 n.a. n.a. n.a.
Male 246 0.73 (0.47-1.15) n.s. 100%
Female 116 1.67 (0.91-3.06) n.s. 100%
White 184 1.56 (0.97-2.51) n.s. 100%
Asian 155 0.54 (0.29-1.02) n.s. 100%
Black 17 n.a. n.a. n.a.
Alcohol consumption-yes 117 2.18 (1.14-4.14) 0.0151 >50%
Alcohol consumption-no 202 0.75 (0.42-1.32) n.s. 100%
Hepatitis virus-yes 150 0.52 (0.27-0.99) 0.0416 >50%
Hepatitis virus-no 169 1.38 (0.87-2.2) n.s. 100%
Alcohol consumption-no
plus Hepatitis virus-yes 111 0.3 (0.12-0.8) 0.0103 50%
Male Hepatitis virus-yes 153 0.44 (0.21-0.89) 0.0199 >50%
Male Hepatitis virus-no 96 1.9 (1.01-3.58) 0.044 >50%
Asian Hepatitis virus-yes 93 0.33 (0.13-0.85) 0.0157 >50%
Asian Hepatitis virus-no 49 1.56 (0.64-3.84) n.s. 100%
Highly significant parameters were highlighted in bold font. n.s., not signiificant.
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a favorite overall survival prognosis in human breast cancers,
lung adenocarcinomas, liposarcomas, and eye uveal melanomas.
However, higher NR0B2 expression is a worse survival factor in
colon cancers and B-cell lymphomas.

Currently, NR0B2 gene regulation is not fully clear, especially
in human cancers. It was reported that the NR0B2 gene
promoter region is hypermethylated in human liver cancer
tissues and cell lines, and treatment of liver cancer cells with
DNA demethylation agent 5-Aza-2′-deoxycytidine vastly
enhanced NR0B2 expression (14). Besides, the PI3K/AKT
pathway was upregulated in liver cancers (37), and PI3K/AKT
inhibitors have been utilized as an anticancer agent for liver
cancer treatment (44). Interestingly, in this study, we found that
NR0B2 expression negatively correlated with the expression
levels of two PI3K genes PIK3CA and PIK3CG, while PI3K
inhibition significantly enhanced NR0B2 expression in liver
Frontiers in Oncology | www.frontiersin.org 7
cancer cells. These data suggest that PI3K/AKT pathway
overactivation during liver cancer development or progression
might be a potential mechanism for NR0B2 downregulation.

In this study, we discovered the opposite effect of ERK
inhibition on NR0B2 gene expression than PI3K inhibition. It
was reported that ERK kinase activity is essential for the basal but
not FGF15-stimulated NR0B2 gene expression inmouse liver (41).
We found that ERK activity is essential for NR0B2 gene expression
at the basal and GW4064-stimulated conditions. As a FXR agonist,
GW4064 was reported to have a mixed effect on ERK
phosphorylation/activation. It was shown to enhance ERK
phosphorylation in bone marrow-derived macrophages (42) but
to suppress ERK phosphorylation in rat vascular smooth muscle
cells (45), human colon cancer SNU-C4 cells (46), and liver cancer
HLE cells (47). In this study, GW4064 treatment increased ERK
phosphorylation in HepG2 and Huh7 cells, in parallel with a
A B C

D E F

G H I

FIGURE 3 | NR0B2 expression is significantly associated with patient survival in multiple human cancers. Kaplan-Meier plots were generated on the PrognoScan
platform (19). NR0B2 expression by cDNA microarray analysis in cancer tissues was dichotomized into two groups, high (red) or low (blue), at the optimal cut-point
by the minimum p-value approach (19). Survival curves were plotted as solid lines with 95% confidence intervals for each group by dotted lines. Correct p and HR
values (95% CI) are inserted in the plots. (A–C) NR0B2 expression with HG-U133A microarray chips in 198 breast cancer cases (GSE7390) (28). (D, E) NR0B2
expression with HG-U133plus2 microarray chip in 204 stage I-II lung adenocarcinoma cases (GSE21210) (29). (F) NR0B2 expression with HG-U133A microarray
chips in 140 liposarcoma cases (GSE30929) (30). (G) NR0B2 expression with HG-U133plus2 microarray chip in 63 uveal melanoma cases (GSE22138) (31).
(H) NR0B2 expression with HG-U133A microarray chips in 158 B-cell lymphoma cases (GSE4475) (32). (I) NR0B2 expression with HG-U133plus2 microarray chip
in 55 colon cancer cases (GSE17537) (33).
May 2021 | Volume 11 | Article 691199

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhu et al. NR0B2 Expression in Human Cancers
complete blockage of NR0B2 expression at the transcriptional
level. These data suggest that GW4064 caused a cell-specific effect
on ERK phosphorylation/activation. Considering a previous
report showing ERK activity as a critical factor for NR0B2
protein stability in HepG2 cells (48), we hypothesize that in
human liver cancer cells, ERK activity might be essential for
both NR0B2 gene expression and protein stability.
Frontiers in Oncology | www.frontiersin.org 8
Tumor-infiltrating immune cells are the major parts of the
tumor microenvironment associated with disease progress,
immunotherapy response, and patient survival (49, 50). We and
others reported that NR0B2 has a unique function in suppressing
inflammation and innate immunity in response to liver cell injury
(13, 21, 35, 36). This study discovered a negative correlation of
NR0B2 expression with tumor-infiltrating lymphocytes,
A

B

C

D

FIGURE 4 | Correlation analysis between NR0B2 expression and tumor-infiltrating immune cells, as well as PI3K/AKT gene expression in liver cancers. (A, B) The
Gene module on the Tumor Immune Estimation Resource (TIMER) platform was used to visualize the correlation between NR0B2 gene expression and immune
infiltration levels in liver cancer tissues (16, 17). Scatterplots show a negative correlation of NR0B2 expression with tumor-infiltrating B-cell, CD8+ T cell, and dendritic
cell but not CD4+ T cell, macrophage, and neutrophil. The partial Spearman’s rho value and statistical significance were inserted in the plot. (C, D) The Correlation
module on the Tumor Immune Estimation Resource (TIMER) platform was used to visualize the correlation between NR0B2 gene expression and class IA PI3K
genes in liver cancer tissues (16, 17). Scatterplots show a negative correlation of NR0B2 expression with PIK3CA and PIK3CG gene expression but not with PIK3CB
and ATK1-3 genes. The Spearman’s rho value and statistical significance were inserted in the plot.
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including B cells, CD8+ T cells, and dendritic cells in liver cancer
tissues. Because inflammatory response and tumor-infiltrating
lymphocytes have diverse functions in tumor progression and
anti-tumor immunity (21, 50), the clinical significance of this
negative correlation between NR0B2 expression and tumor-
infiltrating lymphocytes needs more investigation.

Chronic viral hepatitis is a substantial contributing factor
for liver cancer development and progression (51). HCV
infection was shown to increase NR0B2 gene expression in
human liver cells (52), and NR0B2 gene silencing or an excessive
overexpression all reduced HCV replication in Huh7 cells (27).
This study found an interesting correlation of NR0B2 expression
with over survival in liver cancer patients with viral hepatitis
history (HR = 0.52, p = 0.0416), which was more significant in
Asian male patients (HR = 0.33, p = 0.0157). These data indicate
that higher NR0B2 expression has a protective effect in viral
Frontiers in Oncology | www.frontiersin.org 9
hepatitis-related liver cancers. Further investigation with a large
population is needed to verify this correlation.

In conclusion, in this study, we discovered that NR0B2
expression is predominantly downregulated in multiple
malignant tissues and upregulated in few cancers. NR0B2
expression is a favorite factor in human cancers from the liver,
kidney, lung, urinary bladder, breast, eye, and soft fat tissues, but is
a worse factor in colon, thyroid, uterine, and head-neck cancers, as
well as B-cell lymphoma. Especially, NR0B2 expression is a
favorite survival factor in Asian male patients with viral
infection-related liver cancers. NR0B2 is also negatively
correlated with PIK3CA and PIK3CG genes in liver cancer
tissues, and PI3K inhibition enhances NR0B2 gene expression in
liver cancer cells. Further investigation is needed to verify the
clinical significance of NR0B2 expression in protecting viral
infection-related liver cancer development and progression.
A B

C D

FIGURE 5 | MAPK activity is essential for NR0B2 gene expression in HCC cells. (A) HepG2 and Huh7 cells were treated with DMSO or MAPK inhibitors PD98059
(50 mM) and U0126 (10 mM) for 24 h. Total RNAs were extracted for qPCR assays. The relative expression levels of NR0B2 gene expression are calculated against
the DMSO treatment (set as 1.0). Error bar indicates the SEM from three independent experiments. The asterisk indicates a significant difference compared to the
DMSO control (Student t-test). (B) HepG2 cells were seeded in 6-well plates and then transfected with human NR0B2 promoter-driven luciferase reporter construct
(hSHP-LUC, 0.5 mg DNA/well). Cells were pre-treated with MEK inhibitors U0126 (10 mM) and PD184161 (10 mM) for 30 min and then stimulated with GW4064
(5 mM) for 24 h. Luciferase assay was carried out as described in our publication (14, 15). The relative reporter activity was calculated against the DMSO control (set
as 1). Error bar indicates the SEM from three independent experiments. The asterisk indicates a significant difference compared to the DMSO control (Student t-test).
(C) HepG2 cells were pre-treated with U0126 (10 mM) and PD184161 (10 mM) for 30 min, followed by GW4064 (5 mM) stimulation for 24 h. Cells were harvested for
western blot assays with the antibodies as indicated. Actin blot served as the protein loading control. (D) Huh7 cells were pre-treated with U0126 (10 mM) for
30 min, followed by GW4064 (5 mM) stimulation for 24 h. Cells were harvested for western blot assays with the antibodies as indicated. Actin blot served as the
protein loading control.
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FIGURE 6 | Inhibition of PI3K activity enhances NR0B2 gene expression in HCC cells. (A) HepG2 cells were treated with DMSO or JNK inhibitor SP600125 (50
mM), p38MAPK inhibitor SB203582 (10 mM), and PI3K inhibitor LY294002 (50 mM) for 24 h. Total RNAs were extracted for qPCR assays. The relative expression
levels of NR0B2 gene expression are calculated against the DMSO treatment (set as 1.0). Error bar indicates the SEM from three independent experiments. The
asterisk indicates a significant difference compared to the DMSO control (Student t-test). (B) HepG2 cells were seeded in 6-well plates and then transfected with
human NR0B2 promoter-driven luciferase reporter construct (hSHP-LUC, 0.5 mg DNA/well). After serum starvation overnight, cells were pre-treated with PI3K
inhibitor BKM120 (10 mM) for 30 min and then cultured with serum-free or 10% FBS for 24 h. Luciferase assay was carried out as described in our publication (14,
15). The relative reporter activity was calculated against the DMSO control (set as 1). Error bar indicates the SEM from three independent experiments. The asterisk
indicates a significant difference compared to the DMSO control (Student t-test). (C) HepG2 cells were seeded in 6-well plates and then transfected with human
NR0B2 promoter-driven luciferase reporter construct (hSHP-LUC, 0.5 mg DNA/well). After pretreatment with BKM120 (10 mM) for 30 min, cells were stimulated with
GW4064 (5 mM) for 24 h. Luciferase assay was carried out as described earlier. (D–G) HepG2 or Huh7 cells were treated with DMSO, BKM120 for 24 h at the
indicated concentrations or AKT inhibitor 8 (AKTi8, 10 mM) for the indicated period. Cells were harvested for western blot assays with the antibodies as indicated.
(H, I) HepG2 cells were pre-treated with BKM120 (10 mM) for 30 min, followed by GW4064 (5 mM) stimulation for 24 h. Cells were harvested for western blot assays
with the antibodies as indicated. Band density for phosphorylated ERK or AKT were normalized against total ERK or AKT, respectively. Each treatment’s relative
density was calculated against the DMSO control (set as 100%) individually and then plotted as a bar graph. Data represent three independent experiments. The
asterisk indicates a significant difference compared to the DMSO control (Student t-test).
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