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Immunotherapy has revolutionized care for many solid tissue malignancies, and is being
investigated for efficacy in the treatment of malignant brain tumors. Identifying a non-
invasive monitoring technique such as metabolomics monitoring to predict patient
response to immunotherapy has the potential to simplify treatment decision-making
and to ensure therapy is tailored based on early patient response. Metabolomic
analysis of peripheral immune response is feasible due to large metabolic shifts that
immune cells undergo when activated. The utility of this approach is under investigation. In
this review, we discuss the metabolic changes induced during activation of an immune
response, and the role of metabolic profiling to monitor immune responses in the context
of immunotherapy for malignant brain tumors. This review provides original insights into
how metabolomics monitoring could have an important impact in the field of tumor
immunotherapy if achievable.
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INTRODUCTION

Immunotherapy for cancer has gained increasing enthusiasm with certain high-profile examples of
success in traditionally resistant solid tissue tumors (1–5). Immunotherapy can be delivered with
various platforms and all of them lead to anti-tumor adaptive immune responses systemically and
within the tumor microenvironment. These strategies include but not limited to dendritic cell (DC)
vaccines (6, 7), peptide vaccines (EGFRVIII and heat shock protein) (8), chimeric antigen receptor
(CAR)-T cells (9), use of hematopoietic stem cells (10), and of course immune checkpoint inhibitors
[e.g. programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) (11, 12) and
CTLA-4 (13)]. However, the efficacy of these therapies relies on the ability to induce an adaptive
immune response. Early determination of an effective immune response during the treatment
course would allow identification of non-responders prior to tumor progression and an early change
in treatment. This approach would prevent patients from receiving ineffective treatment, and
potentially result in better clinical outcomes.

Several methods have been developed to evaluate adaptive antigen responses including delayed-
type hypersensitivity (14, 15), tetramer analysis (16), ELISA (15, 17) (enzyme-linked
immunosorbent assay) for measuring bulk cytokine production, ELISPOT (18) (enzyme-linked
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immune absorbent spot assay) for measuring individual
cytokine-producing T cells, flow cytometry-based (19) analysis
of cytokine expression, and PCR (20) (polymerase chain
reaction) based detection of T-cell receptor gene usage or
cytokine production (21). Limitations to these approaches are
the magnitude of T cell proliferation necessary to measure
response, and measurement of only antigen specific T cell
responses. Moreover, these measures have not been shown to
have robust and reproducible correlations with patient outcomes
(16, 21–23).

An alternative to traditional immune assays is the use of
metabolomics to assess the dynamic immune related changes
that ensue after immunotherapy. In the last decade, most cancer-
related metabolomic studies focused on the tumor
microenvironment for use as a diagnostic or prognostic tool
(24, 25). Using metabolomic profiling to evaluate immune
responses is a novel area of cancer research with the potential
to develop methods for measurement of global dynamic changes
that may correlate with treatment response or overall outcome.
This review will discuss metabolomics methodology, changes in
the metabolism of immune cell subsets that can be measured in
the context of malignant brain tumors, and the use of
metabolomics to evaluate patients receiving immunotherapy
for brain tumors.
METABOLOMICS METHODOLOGY

Metabolites are most commonly measured using mass
spectrometry (MS) or nuclear magnetic resonance
spectroscopy (NMR). Less common techniques include Fourier
transform infrared spectroscopy (FT-IR), ultraviolet-visible
spectroscopy (UV) and Raman spectroscopy.

• Nuclear magnetic resonance spectroscopy (NMR)
NMR is a spectroscopic technique that uses spin properties

of the nucleus of atoms to detect metabolites. NMR is fast and
ideal for screening. It requires minimum sample preparation
and generates structural information (25). NMR has been used
in brain tumor studies to identify the tumor related and
treatment related metabolic shifts in patients body fluids
including urine and blood (26–28).

• Gas chromatography/mass spectrometry (GC/MS)
GC/MS is more sensitive compared to NMR, but is also

more time intensive and expensive. GC/MS allows for detection
of small concentrations. GC/MS is often used for more detailed
analysis after initial screening with NMR (29). GC/MS has been
used in brain tumor studies to identify the tumor-associated
metabolites in serum (30), Cerebrospinal fluid (CSF) (31),
extracellular fluid (32) and tumor (33) samples.

• Liquid chromatography-mass spectrometry (LC-MS)
LC is the most versatile separation method. LC-MS can

separate compounds in a broad spectrum of polarity with less
hassle in sample preparation. Liquid chromatography is used to
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separate metabolites to overcome problems associated with
direct mass spectrometry analysis of complex biological
samples. LC-MS was used for metabolomics analysis in brain
tumors to phenotyping the glioma tumors (34).

• Seahorse XF technology
Seahorse XF measures dissolved oxygen and proton

excretion to calculate rate of mitochondrial respiration and
glycolysis. This technology allowing real time functional
monitoring of the metabolic profile of cells, represent an
innovative tool to interrogate T cell proliferation, activation
and phenotype for example (35, 36).

• Sample preparation
Sample preparation is incredibly important formetabolomics

and can impact overall conclusions. In all biological systems,
metabolites of a broad spectrum of chemical diversity exist in a
variable range of concentrations. A typical biological cell contains
about 5000 metabolites at varying concentrations, which can
make identification of most of the metabolites challenging (37).
Therefore, the quality of sample preparation technique,
environment, and quantity of prepared sample may
significantly affect the spectrum of the detected metabolome
(38). One strategy to improve sample preparation includes
sequential extractions and concentrations to favor a particular
class of compound that may be of interest (37). Attention to
sample preparation is key to identifying the metabolomic
changes as these responses may be of small overall magnitude
within the host.
OVERVIEW OF CELLULAR METABOLISM

Immune cells undergo large metabolic shifts as they mature and
activate during an immune response. These changes can be
profound during a robust immune response and can be
detected from blood, urine or tumor samples. Cellular energy
production is achieved through metabolism of fats, sugars and
proteins in the mitochondria in the presence of oxygen or
through the breakdown of just sugars in the absence of oxygen
in the cytoplasm. Oxidative metabolism in the mitochondria
produces 20 times more ATP compared to anaerobic metabolism
(39). The mitochondria uses three enzymatic processes to
generate ATP: the tricarboxylic acid (TCA) cycle, oxidative
phosphorylation (OXPHOS), and fatty acid-beta oxidation
(FAO). Generation of acetyl-CoA through glycolysis and FAO
leads to intermediates necessary for the TCA cycle and ultimately
OXPHOS. On the other hand, anaerobic glycolysis in the
cytoplasm is often utilized by cells that are actively
proliferating or acquiring effector function. Glycolysis is
characterized by high utilization of glucose and glutamine, and
shunting of pyruvate to produce lactate in the cytosol, even in the
presence of abundant oxygen. This program requires high
nutrient input but also allows metabolic intermediates to be
June 2021 | Volume 11 | Article 691246
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used for biosynthesis. Overall, aerobic glycolysis is less efficient
for ATP production than OXPHOS however it is a faster process
supporting cell proliferation and activation (40) (Figure 1).

Generally, cells have the ability to switch cellular metabolism
between oxidative and anaerobic based on their metabolic
demands. The metabolic demands of immune cell subsets in
circulation and within the tumor microenvironment shift
depending on their functional status. Cells important for innate
and adaptive immunity produce metabolites that can be detected
in the peripheral blood or urine using metabolomic analysis.
Frontiers in Oncology | www.frontiersin.org 3
METABOLOMICS OF INNATE IMMUNITY

Tumor-Associated Macrophages
Tumor-associated macrophages (TAMs) represent the majority of
tumor-infiltrating myeloid cells in most solid malignancies and
are identified by CD68 (41, 42). TAMs support tumor progression
and provide an environment that promotes tumor growth (41,
43). Macrophages can be polarized to an M1 (pro-inflammatory,
infection-response) or M2 (anti-inflammatory, tissue-repair) state
(44). In general, M1- macrophages are characterized by a
glycolytic metabolism with high lactate secretion as well as
biosynthesis of NADPH, lipids, and nucleotides. M1
macrophages also vigorously produce reactive oxygen species
(ROS) (40) that leads to cytocidal function. Alternatively, M2
macrophages use oxidative metabolism for bioenergetics
purposes, which allows for tissue repair (40) (Figure 2). M2
macrophages have elevated glutamine and fatty acid
consumption. Interestingly, TAMs have alternative metabolic
programs including lipid metabolism that results from
dysregulated enzymes including acetyl-CoA dehydrogenase
medium chain and monoglyceride lipase (45–47). This lipid
metabolism is a sign of their metabolic fitness.

The data on the metabolism of tumor-infiltrating TAMs is
mixed. In some studies, TAMs utilizing OXPHOS was associated
with increased immunosuppression and poor patient outcomes
(43). In other studies, mostly in in vitro or murine experiments,
found that exposure to tumor cells cause TAMs to shift to
glycolysis with a more immunosuppressive phenotype. These
TAMs secrete lactate, TNF and IL6 (48–50). Moreover, the
canonical markers of M1 or M2 activation can be co-expressed
by TAMs (43), explaining the conflicting studies on TAM
metabolism within the TME. Single-cell RNA sequencing and
deconvolution platforms can address these challenges and
identify the macrophage clusters (51). However, due to the
complexity of macrophage metabolism in patients with cancer,
the use of metabolomics to determine macrophage proliferation
or effector function has many challenges.
FIGURE 2 | Metabolic relationship between tumor-associated macrophages and tumor cells. Macrophages can be polarized to an M1 or M2 state. M2 tumor-
associated macrophages support tumor progression by providing nutritional demands for tumor cells proliferation and suppressing the immune response in the
tumor microenvironment.
FIGURE 1 | Cytoplasmic and mitochondrial metabolic pathways. Cellular
energy is produced through metabolism of fats, sugars and proteins in the
mitochondria in the presence of oxygen or the breakdown of glucose in the
absence of oxygen in the cytoplasm. Oxidative metabolism in the
mitochondria produces more ATP compared to anaerobic metabolism.
Despite, glycolysis is less efficient but it is one hundred times faster than
oxidative metabolism. In total, 38 ATP is derived from one molecule of
glucose including 8 ATP from cytoplasmic metabolism and 30 ATPs from
mitochondrial metabolism.
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Natural Killer Cells
Natural killer (NK) cells are cytotoxic innate lymphocytes that
play a major role in the primary immune response (52). NK cells
are a potential source of interferon-gamma (IFN-g) production
and NK cell effector function is directly related to metabolism
(53). NK cells utilize low levels of glycolysis and OXPHOS when
they are resting (54), which is enough for IFN-g production.
Stimulation of NKs results in significant increases in the level of
both glycolysis and OXPHOS (55, 56) along with an increase in
mitochondrial mass (57).

When NKs are activated, they produce pyruvates which do
not enter the tricarboxylic acid (TCA) cycle (57). These
pyruvates are metabolized to mitochondrial-citrate by entering
the citrate–malate shuttle (CMS) (57). CMS is an alternative for
TCA in the mitochondria to produce NADH as an energy source
for OXPHOS and ATP synthesis. CMS also generates cytosolic
NAD+, which is a necessary cofactor to increase the rate of
glycolysis (57). NK cells are well-known effector lymphocytes
against cancer. However, tumor-associated NKs can be
dysfunctional due to metabolic derangements. In a lung cancer
model, NKs were found to have increased expression of fructose-
1,6-bisphosphatase (FBP1) which regulates gluconeogenesis (58)
and inhibits glycolysis. Upregulation of FBP1 in tumor-
associated NKs decreased glycolysis and resulted in less
cytotoxicity and viability. Therefore, metabolic markers of
glycolysis and CMS would be signatures of NK activation after
immunotherapy, but may be blunted in patients with tumor
associated immune dysfunction.
Dendritic Cells
Dendritic cells (DCs) are professional antigen presenting cells
(APCs) and regulators of innate and adaptive immunity. The
presence of DCs in the TME has been shown to increase the
efficacy of immune blockade immunotherapy (59) and adoptive
T cell therapy (ACT) (60). These findings demonstrate the
importance of DCs in the anti-tumor immune response and
support the relevance of their monitoring. DCs recognize
pathogens through Toll-like receptors (TLRs) (61), retinoic
acid-inducible gene I (RIG−I)−like receptors (RLRs), C−type
lectins (62) and nucleotide-binding oligomerization domain
(NOD)-like receptors (NLRs) (63). Binding to one of the
pathogen recognition receptors causes a cascade of signaling
pathways that lead to DC metabolic shifts and activation (63).
After activation, DCs mature to present antigen to T cells (64).
Immature DCs and tolerogenic DCs use catabolism of proteins
and triacylglycerols to synthesize fatty and amino acids or
intracellular glycogen for OXPHOS (65, 66). As DCs transition
to maturity and activation, they switch their metabolism from
OXPHOS to glycolysis and lactic fermentation that generate
energy. Inhibition of glycolytic metabolism pathway impairs DC
maturation and antigen presenting ability, but other functions of
DCs such as phagocytosis are not affected by inhibition of
glycolysis (66). Similar to NKs, markers of glycolysis could be
used to identify maturing and activated DCs.
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Myeloid-Derived Suppressor
Cells (MDSCs)
Myeloid cells originate from the bone marrow and when they
are found in the brain TME they have profound
immunosuppressive functions (67–69). MDSCs inhibit T cell
function through three main mechanisms: 1) arginine
depletion, 2) reactive oxygen and nitrogen species production
and 3) expressing ligands of T cell inhibitory receptors such as
programmed death-ligand 1 (PDL-1) (67, 70). Generally,
myeloid cells use glycolysis to supply their metabolic
demands. However, tumor-associated MDSCs reprogram
their metabolism and undergo fatty acid oxidation (FAO)
with significantly increased rates of oxygen consumption (67,
69, 71). MDSCs overexpress the lipid uptake receptors such as
CD36, Msr1, Fabp5, CD68, Acsl3 and Acsl4 (67, 69, 71).
These markers of MDSCs have the potential to serve as
biomarkers of MDSC function and can also serve as
therapeutic targets (70).
METABOLOMICS OF
ADAPTIVE IMMUNITY

T cells need glucose and amino acids during their life cycle to
differentiate, proliferate, and activate (72). Naïve T cells uptake
glucose as their main source of carbon and through glycolysis
produce pyruvate (72). Naïve T cells that do not actively
proliferate and shuttle pyruvate through the tricarboxylic acid
(TCA) cycle to generate ATP using OXPHOS. Acetyl-CoA
undergoes a series of reactions in TCA cycle to generate citrate
(72). Citrate undergoes reactions to produce donor electrons,
which pass through the electron transport chain by NADH and
FADH2. Finally, these electrons undergo the process of
OXPHOS to generate ATP. Once T cells are activated, they
rely more heavily on an anaerobic pathway to generate ATP
resulting in more lactate as a byproduct to replenish metabolite
intermediates (i.e. NAD+) (73, 74). This process is less efficient;
only two ATP per molecule of glucose but it is one hundred times
faster, thereby serving rapidly proliferating T cells (73, 74).

T cell activation is strongly dependent on nutrient uptake and
glucose metabolism (75). Decreased availability of glucose or
glutamine dramatically reduces T cell expansion and cytokine
production (75). Additionally, effector T cell differentiation is
suppressed by decreasing glucose or glutamine (75). The uptake
of glucose and glutamine and the rate of production of
byproducts of their metabolism (e.g. lactate) are directly
correlated with T cell activation and growth (73, 74). T cell
activation begins with the engagement of T cell receptor (TCR)
and its interaction with APCs. TCRs bind specific antigens by
interacting with a short fragment of peptide bound to MHC
(major histocompatibility complex) class I/II molecules on the
surface of APCs. MHC class I and II present endogenous and
exogenous antigens respectively. TCR signaling is initiated upon
binding to its ligand triggering a cascade of molecular events
June 2021 | Volume 11 | Article 691246
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initiating differentiation of naïve T cell into effector T cells. TCR
activation relies on several known co-stimulatory receptors
including CD2, CD28, CD4, CD8, and integrin molecules.
CD28 binding to B7-1 or B7-2 on APCs allows for T cell
binding. CD28 also generates a co-stimulatory signal in T cells
to increase IL-2 production, leading to T cell proliferation.
Consequently, CD28 and CD45 phosphorylate the linker for
activation of T cells (LAT), which leads to phosphorylation and
activation of the TCR-CD3 complex (76, 77).

T cell metabolic demands change during the differentiation
process. After differentiation, each T cell subset shows different
metabolic shifts. Effector T cells which are typically antigen-
specific and can cause cytolysis of cells expressing foreign
antigens, rely mostly on the glycolytic pathway. The dramatic
consumption of glucose and glutamine and high production of
lactate has been observed in the early stage of T cells activation in
rats (78). This phenomenon is indicated by changes in surface
transporters such as GLUT1. CD8+ T effector cells and Th17
cells up-regulate the glycolysis and glucose transporter 1
(GLUT1) (79). Conversely, immunosuppressive regulatory
T cells (Tregs) that are a subset of CD4+ T cells have lower
needs for glycolysis that leads to less consumption of glucose and
glutamine and less production of lactate compared to effector T
cells (80). Treg differentiation is not dependent on GLUT1 (81)
(Figure 3). Alternatively, memory T cells rely on OXPHOS and
increase the consumption of the fatty acids to promote this
pathway (82, 83). Memory T cells live longer than other subsets
Frontiers in Oncology | www.frontiersin.org 5
and their survival relies on the metabolites which are synthesized
through fatty acid oxidation. Also, these metabolites are essential
for the memory T cells prompt recall after infection (82, 83).
Instead, exhausted T cells express the inhibitory receptors that
are known as exhaustion markers such as PD-1, Lag-3 and Tim-3
(84). In the exhaustion process, glucose uptake is reduced, and
fatty acid oxidation, and OXPHOS slow down, resulting in
overall reduction of metabolite production (84).

Transitioning from the resting G0 to G1, T cells switch
temporarily to an oxidative state and mainly utilize OXPHOS
related proteins such as mitochondrial ATPase to produce
adequate biomass and ATP (74). During G1 glutamate is
highly taken up and citrate is used for phospholipid synthesis,
which is needed for cell growth (74). Citrate is also used to
produce cholesterol which is used to create the cell membrane
(74). In S phase, T cells require increased nucleotide biosynthesis
for genome duplication before undergoing cell division. S phase
is also marked by increased serine metabolism for generation of
N5, N10-methylenetetrahydrofolate, which are key byproducts
in the tetrahydrofolate cycle regulating nucleotide biosynthesis
(85). Cells need purines to enter into G1 and S phase but
pyrimidine synthesis is required only in S phase (86). T cells
then pass through phase G2 and M to complete the cell division
process. For G2/M phases, T cells increase in cell size and need
more energy (Figure 4). Therefore, acetyl-CoA is utilized during
these phases. The above-described metabolic shifts can serve as
reliable markers of immune responsiveness to treatment. These
FIGURE 3 | Different T cell subsets and metabolic shifts. Naïve T cells uptake fewer glucose molecules and produce a lower amount of lactate. Tregs uptake more
fatty acids compared naïve T cells. Effector T cells express more GLUT1, consume more glucose and glutamine and produce more lactate.
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metabolic changes can indicate the state of host T cells and
dominant subsets of T cells after differentiation.
CLINICAL METABOLOMICS
AND IMMUNOTHERAPY

As discussed, as immune cell subsets (DCs, NKs and T cells)
activate, metabolic shifts to glycolysis are pronounced. These
metabolic profile changes have the potential to identify immune
responses after treatment with immunotherapy. Metabolomics
lends itself to serial analyses as these changes can be detected
through NMR analyses of urine or blood samples (87, 88).
Therefore, the kinetics of immune responses can be followed.
This approach is being tested in human clinical trials. The
ATTAC II (NCT02465268) study is a randomized, placebo-
controlled trial testing a pp65 CMV RNA DC vaccine platform
in patients with newly diagnosed GBM. Part of the analysis
includes metabolomic analysis of urine samples over time to
correlate with imaging and clinical outcomes.

Most published studies of metabolomics and gliomas revolve
around the intra-tumoral metabolic profiles and methods
for distinguishing between tumor subtypes and monitoring for
recurrence. There are limited studies of the use of metabolomics
in the prediction of human patient’s clinical outcomes with brain
tumors by using blood samples. A list of several metabolomics
studies with a different type of samples and analytical techniques
in brain tumor is provided (Table 1). In one study, plasma
samples were collected from 70 glioma patients with grade III
Frontiers in Oncology | www.frontiersin.org 6
and grade IV (28). NMR spectra of collected plasma samples
were analyzed to identify the metabolomics changes associated
with glioma in comparison with healthy subject samples as the
control group (28). Twenty metabolites were identified, which
are related to the presence of glioma. Glioma was associated with
a lower level of isoleucine, leucine, valine, lactate, alanine,
glycoprotein, glutamate, citrate, creatine, Myo-inositol, choline,
tyrosine, phenylalanine, 1-methylhistidine, a-glucose, b-glucose
(28). And the higher concentration of very-low-density
lipoprotein (VLDL), low-density lipoprotein (LDL),
unsaturated lipid, and pyruvate were identified with a
significant correlation to the presence of glioma (28).
Metabolomic analysis has also been utilized to differentiate
glioma grade. Plasma samples were collected from 87 glioma
patients and liquid chromatography triple quadrupole mass
spectrometry (LC-QQQ-MS) was used to analyze the
metabolomics differences which is applicable as host biomarker
candidates to classify glioma in patients (34). Five plasma
metabolites significantly differed between high grade and low-
grade gliomas including uridine, uracil and ornithine which
increased in high-grade gliomas, and N-acetylputrescine and
trimethylamine-N-oxide (TMAO) which decreased in high-
grade gliomas (34). Of note, TMAO is reduced in patients with
IDH1 mutation (34). Arginine/proline metabolism was the
pathway with the most significant impact (34). In another
study, serum samples were used to identify the metabolomics
shifts during radiotherapy in glioma patients (30). Serum
samples collected from 11 patients in the initial phase of
radiotherapy and serum metabolites were identified by using
gas-chromatographic- time-of-flight-mass spectroscopy (30).
Patients underwent radiotherapy within 2 to 5 days post-
surgery and fasting serum samples were collected just before
the first radiotherapy session and at days 1, 2 and 5 after
radiotherapy fraction (30). A total of 84 serum metabolites
differed significantly in the samples after radiotherapy in
comparison to before radiotherapy samples as control samples.
Among those metabolites, sixteen metabolites increased after
radiotherapy while sixty-eight metabolites decreased after
radiotherapy in comparison with before treatment samples
(30). Citric acid and dehydroascorbic acid dimer were the top
metabolites which showed increased level in serum after
treatment and ornithine, tyrosine, glutamine, creatinine and
glyceric acid were the top significant metabolites that decreased
in serum after radiotherapy (30). Clinically relevant
metabolomics signatures were studied in other malignancy
with brain metastasis, in melanoma and renal cell carcinoma
patients treated with nivolumab (PD-1 inhibitor), blood samples
were analyzed with LC-MS. Samples from two phase I trials
including 78 patients with advanced melanoma and 91 patients
with metastatic renal cell carcinoma (RCC) as well as samples
from a large randomized phase III trial in which 394 RCC
patients received nivolumab and 349 received everolimus.
Post-treatment serum samples were compared to pre-treatment
(baseline) serum samples. Kynurenine, which is a product of
tryptophan catabolism, was the most significant metabolic
difference between groups (96). Kynurenine/tryptophan ratios
FIGURE 4 | Lymphocyte metabolic pathway during the cell cycle. T cells go
through glycolysis metabolic pathway in phase G1 and consume glutamate
and citrate to generate phospholipids. In phase S, T cells need to duplicate
their genome and serine to synthesize nucleotides. Pyrimidine synthesis
occurs only in the S phase and it is required to enter into G2. IN phase G2
and M, T cells need more energy to grow in size and consume acetyl-CoA to
generate more ATP.
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TABLE 1 | In vivo metabolomics studies in brain tumor patients.
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TABLE 1 | Continued

tabolites Result

HG) • 2HG detected non-invasively in glioma patients with IDH1 mutation
• two-dimensional (2D) correlation magnetic resonance spectroscopy

(MRS) was capable to detect 2HG in vivo.

tone,
te, 2,3-
id, Indole.3-

• 39 metabolites significantly changed in the CSF of the malignant
gliomas vs. the control samples (p < 0.05)

• The identified metabolites originate from several metabolic pathways
such as amino acid, lipid, pyrimidine, and central carbon metabolism

id,
, Arabinose,
ic acid, etc.

• 67 metabolites were identified
• There were distinct metabolic differences
• between the intracranially collected samples from tumor and the brain

adjacent to tumor
• (BAT) region
• There were the systematic metabolic changes induced by

radiotherapy treatment among both tumor and
• BAT samples

mpounds (Cho) • Cho + 0.1L was the only independent predictor of survival (likelihood
ratio test = 10.27, P<0.001; Cox regression, P=0.004)

• Accuracy and specificity for Cho + 0.1L were 80% and 86%,
respectively

holine & • The significant increased ratios of phosphoethanolamine to
glycerophosphoethanolamine (PE/GPE) and phosphocholine to
glycerophosphocholine (PC/GPC) were associated with primitive
neuroectodermal tumors (PNET) (16.30 ± 5.73 and 2.97 ± 0.93)
when compared with controls (3.42 ± 1.62, P < 0.0001 and 0.45 ±
0.13, P < 0.0001) and with other tumors (3.93 ± 3.42, P < 0.001 and
0.65 ± 0.30, P < 0.0001).

• Choline significantly increased (4.78 ± 3.33 versus 1.73 ± 0.56 mmol/
kg, P < 0.05), and creatine decreased in tumors (4.89 ± 1.83 versus
8.28 ± 1.50 mmol/kg, P < 0.05)
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Author & year Patients# Samples Metabolomics analytical
method

Conditions Identified me

Andronesi, 2012 (92) 10 In vivo
imaging

optimized spectral-editing
and two-dimensional (2D)
correlation magnetic
resonance spectroscopy
(MRS)

Glioma patient with
IDH1 mutation

2-hydroxyglutarate (2

Locasale, 2012 (93) 10 CSF Targeted mass-
spectrometry

Malignant gliomas Biotin, glucono.d-lac
dihydroorotate, orota
dihydroxybenzoic ac
carboxylic acid, etc.
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fluid
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Gas chromatography-
time-of-flight mass
spectrometry (GC-TOF
MS)
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Marcus, 2007 (94) 76 In vivo
imaging

Proton magnetic
resonance spectroscopic
imaging (MRSI)

Pediatric CNS
tumors

choline-containing co

Albers, 2004 (95) 8 In vivo
imaging
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untreated pediatric
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correlated with worse overall survival for patients treated with
nivolumab. The kynurenine pathway (KP) breaks down
tryptophan leading to production of NAD+. In the presence of
pro-inflammatory cytokines, KP is induced by activation of its
first enzyme, indoleamine 2,3-dioxygenase (IDO-1) (97).
Increased IDO-1 activity (as reflected by higher K/T ratios) is
known to suppress the T-cell mediated response. In disease states
where K/T ratio is increased, it is thought that there is T cell-
mediated response suppression (97). Glioma patients with
Isocitrate dehydrogenase 1 (IDH1) mutation have significantly
prolonged median survival in comparison to glioma patients
with wild-type IDH1 (98). Previously it was shown that glioma
tumor cells with IDH1 mutation highly produce 2-
hydroxyglutarate (2HG) and considered as a biomarker for
IDH1 mutation (99). Therefore, in vivo detection of 2HG is
critical for the prediction of clinical outcomes. In one study,
metabolic changes were studied in gliomas patients with IDH1
Frontiers in Oncology | www.frontiersin.org 9
mutation (89). Surgical resection samples were obtained from ten
glioma patients with grades II-IV including IDH1 positive and
negative. Samples compared with U87 glioblastoma cells which
overexpress IDH1. Metabolomics analysis through Capillary
electrophoresis time-of-flight mass spectrometry (CE-TOFMS)
revealed that levels of D-2-hydroxyglutarate (D-2HG) were
significantly increased in the glioma patients with an IDH1
mutation (89). It is shown that T cells import extracellular
2HG which is exported by IDH mutant glioma cells, resulting
in the suppression of T cell activation and penetration in TME
(100, 101). Moreover, it is shown that 2HG effectively blocks an
ATP-dependent T cell receptor (TCR) signaling pathway, which
results in suppression of T cell proliferation and function (100).
Despite the immune suppression role of IDH1 mutation, it is
still unknown why patients with IDH-mutant glioma have
prolonged overall survival and better clinical outcome (100, 101).
Therefore, it is important to monitor 2HG as the direct metabolite
FIGURE 5 | Key metabolism of immune cells in the tumor microenvironment. In response to the tumor microenvironment, immune cells undergo specific metabolic
reprogramming regulating their function.
June 2021 | Volume 11 | Article 691246
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of IDH1 mutant glioma along with metabolomics monitoring of
immune cells in glioma patients.

Overall, metabolomics has the potential to measure robust
immune cell changes from OXPHOS to glycolysis in multiple
compartments in a serial fashion. This approach also has the
potential for identifying host immune factors that would prevent
effective anti-tumor immunity. This field is still in its infancy and
further studies in human patients are necessary to determine if
the sensitivity and specificity of these techniques will lend
themselves to clinical utility.
CONCLUSION

Metabolomic analysis has the potential to study and monitor
immune activation after treatment with immunotherapy. In
response to the microenvironment, immune cells undergo
metabolic reprogramming regulating their function. Upon
activation, M1- macrophages activate glycolytic metabolism
and secrete lactate, ROS, NADPH, lipids, and nucleotides.
Activated M2 macrophages increase glutamine and fatty acid
consumption. Stimulated NKs significantly increase both
Frontiers in Oncology | www.frontiersin.org 10
glycolysis and OXPHOS, and activated NKs produce pyruvates
as a key metabolite. Tumor-associated MDSCs undergo fatty
acid oxidation. Activated DCs switch catabolic metabolism to
glycolysis as well. Similarly, effector T cells produce lactate upon
activation. Conversely, regulatory T cells produce less lactate.
Memory T cells use OXPHOS and increase the consumption of
the fatty acids. Exhausted T cells reduce the glucose uptake and
decrease the fatty acid oxidations and OXPHOS (Figure 5).
Altogether, these metabolic changes defining specific immune
activities may be used to assess and predict the response to
therapy. Such strategies hold great promises and warrant further
investigations, especially in the context of patients with brain
tumors, and could provide insights into future studies about
metabolomics monitoring of immune response in murine glioma
models or in patients with different types of malignancies.
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