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The accurate, objective, and reproducible evaluation of tumor response to therapy is
indispensable in clinical trials. This study aimed at investigating the reliability and
reproducibility of a computer-aided contouring (CAC) tool in tumor measurements and
its impact on evaluation of tumor response in terms of RECIST 1.1 criteria. A total of 200
cancer patients were retrospectively collected in this study, which were randomly divided
into two sets of 100 patients for experiential learning and testing. A total of 744 target
lesions were identified by a senior radiologist in distinctive body parts, of which 278 lesions
were in data set 1 (learning set) and 466 lesions were in data set 2 (testing set). Five image
analysts were respectively instructed to measure lesion diameter using manual and CAC
tools in data set 1 and subsequently tested in data set 2. The interobserver variability of
tumor measurements was validated by using the coefficient of variance (CV), the Pearson
correlation coefficient (PCC), and the interobserver correlation coefficient (ICC). We
verified that the mean CV of manual measurement remained constant between the
learning and testing data sets (0.33 vs. 0.32, p = 0.490), whereas it decreased for the CAC
measurements after learning (0.24 vs. 0.19, p < 0.001). The interobserver measurements
with good agreement (CV < 0.20) were 29.9% (manual) vs. 49.0% (CAC) in the learning set
(p < 0.001) and 30.9% (manual) vs. 64.4% (CAC) in the testing set (p < 0.001). The mean
PCCs were 0.56 ± 0.11 mm (manual) vs. 0.69 ± 0.10 mm (CAC) in the learning set (p =
0.013) and 0.73 ± 0.07 mm (manual) vs. 0.84 ± 0.03 mm (CAC) in the testing set (p <
0.001). ICCs were 0.633 (manual) vs. 0.698 (CAC) in the learning set (p < 0.001) and
0.716 (manual) vs. 0.824 (CAC) in the testing set (p < 0.001). The Fleiss’ kappa analysis
revealed that the overall agreement was 58.7% (manual) vs. 58.9% (CAC) in the learning
set and 62.9% (manual) vs. 74.5% (CAC) in the testing set. The 80% agreement of tumor
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response evaluation was 55.0% (manual) vs. 66.0% in the learning set and 60.6%
(manual) vs. 79.7% (CAC) in the testing set. In conclusion, CAC can reduce the
interobserver variability of radiological tumor measurements and thus improve the
agreement of imaging evaluation of tumor response.
Keywords: tumor measurements, evaluation agreement, response evaluation criteria in solid tumors (RECIST),
measurement variability, treatment assessment
INTRODUCTION

Radiological imaging examination plays an important role in
monitoring of tumor progression or evaluation of tumor
response to treatment in oncological clinical trials and clinical
care (1–4). Cancer patients may undergo longitudinally
radiological imaging examinations, such as CT (computed
tomography), MRI (magnetic resonance imaging), and/or PET
(positron emission tomography), to quantify tumor burden for
assessment of tumor response to treatment (4). The criteria for
evaluation of tumor response vary in terms of tumor types and
treatment methods. In 1981, the World Health Organization
(WHO) published the first criteria for solid tumor response
evaluation, which adopted bidimensional measurement as the
tumor imaging biomarkers for quantifying tumor burden (5).
The Response Evaluation Criteria in Solid Tumors (RECIST)
published in 2000 and its revised version (RECIST 1.1) in 2009
adopted the unidimensional instead of bidimensional
measurement as the tumor imaging biomarkers to quantifying
tumor burden (6). Nowadays, oncology clinical trials
increasingly rely on image-based surrogate endpoints. RECIST
represents the internationally recognized evaluation criteria for
solid tumors (5, 6). With the advent of oncologic therapies
(targeted therapy, immunotherapy, etc.), the radiological
response assessment criteria are also evolving, for instance, the
modified RECIST (mRECIST) for evaluating the response of
primary hepatocellular carcinoma (HCC) to targeted therapy (5,
7) and the modified RECIST for assessment of cancer
immunotherapy (iRECIST) (8). Moreover, the FDA published
guidelines in 1994, with updates in 2004 (9) and 2019 (10) for
standardizing the radiological assessment of tumor responses as
a primary endpoint in clinical trials.

Reliable evaluation of tumor response depends on two
aspects: the correct selection of target lesions and the accurate
and reproducible measurement of tumor burden. Although the
concept concerning the measurement of the maximal tumor
diameter is undoubtedly simple and convenient for physicians,
has a long history of clinical applications, and is familiar to
management agencies (FDA), the methodology of measuring
lesions is poorly defined in RECIST or WHO. The subjective
linear measurement has been criticized for its low reproducibility
and high inter- and intra-observer variabilities of the tumor
response assessment. Several studies observed that the
intraobserver variability was among 6% to 14%, and the
interobserver variability was approximately 10% to 25% (11).
These measurement variabilities may lead to a misinterpretation
of tumor response, in particular the large interobserver
2

variability. Some studies found that the misclassification of
tumor responses caused by the interobserver measurement
variabilities was as high as 43% (WHO) and 30% (RECIST)
(12). A meta-analysis summarized the RECIST-based observer
variability of manual measurements on CT images (13): relative
measurement differences ranged from 17.8% to 16.1% for the
same observers (5 studies, 648 lesions measured), −22.1% to
25.4% between two observers (8 studies, 1,878 lesions measured),
and −31.3% to 30.3% among multiple observers (3 studies, 575
lesions measured). It has been reported that even for expert
radiologists, there was considerable variability in interpretation
of lesion boundaries, in particular for irregular lesions, with the
interobserver variability accounting for 40% of a lesion size (14),
which may inevitably result in significant difference in tumor size
measurements (12). Because this interobserver variability in
tumor measurements may lead to a misclassification of tumor
growth rate or response even for the same selected target lesions,
the methodology for measuring lesions needs to be
improved (15).

The aims of this study therefore were (1) to develop a
computer-aided contouring (CAC) tool for interactive
measurement of maximum tumor diameter required by
RECIST or WHO criteria, (2) to validate the interobserver
agreement of the CAC tool in tumor diameter measurements,
and (3) to assess the consistency of the CAC tool in the
evaluation of tumor response in terms of RECIST 1.1 criteria.
MATERIALS AND METHODS

The institutional ethics committee has approved this
retrospective study, in which informed consent was waived,
but patient confidentiality was protected. The study design is
illustrated in Figure 1.

Patient Cohort
This study was approved by the ethics committee of the Sir Run
Run Shaw Hospital, Zhejiang University School of Medicine
(Scientific Research No.2020617-33). The clinical information
used in this study was previously archived data, files, records,
pathological specimens, and diagnostic specimens, and was
approved of exempting informed consent by Institutional
Review Board (IRB). Two hundred patients with pathological
confirmed cancers between January 1, 2015 and December 31,
2019 enrolled in several Phase I or II oncology clinical trials
evaluating systemic therapies in lung, liver, and colorectal cancer
patients were retrospectively selected in a random sample from
January 2022 | Volume 11 | Article 691638
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the hospital medical records system. Inclusion criteria for this
study were as follows: (1) an adult patient over 18 years old;
(2) pathological confirmed malignant solid tumors in head and
neck, lung, liver, abdomen, lymph nodes, and other body parts;
(3) received anti-cancer treatment such as radiotherapy,
chemotherapy, targeted therapy, etc.; (4) performed contrast-
enhanced CT examinations before and after treatment; and
(5) had at least one measurable lesion ≥10 mm in terms of
RECIST 1.1 criteria.

The exclusion criteria were as follows: (1) patients had no
measurable lesions defined by RECIST criteria; (2) patients had
different image modalities other than CT before or after
treatment; (3) the imaging examination did not cover the
entire lesion; and (4) incomplete clinical records, for instance,
the date of treatment and missing CT images.

Imaging Examination
Contrast-enhanced CT examinations were acquired on multi-
detector CT scanners (GE, Siemens) with a tube voltage of 120
kVp, an automatic tube current, a slice collimation of 0.6 to 1.5
mm, and standard reconstruction kernel and slice thickness
ranging from 1.25 to 5 mm defined in the clinical trial protocols.

Lesion Selection and Lesion
Size Measurement
According to the requirements of target lesion selection in
RECIST 1.1 (6), a senior radiologist selected up to 5
measurable lesions per patient with a maximum of 2 lesions
per organ as the target lesions. Although RECIST 1.1 defines that
the target lesions at baseline should be ≥10 mm in the longest
diameter for extranodal disease and ≥15 mm in the short-axis
diameter for nodal disease, some target lesions may be smaller
than 10 mm on follow-up examinations due to treatment effects.
Frontiers in Oncology | www.frontiersin.org 3
For the purpose of treatment response evaluation, those <10 mm
lesions in follow-up examinations were also included in the study
to assess the variability. Each selected lesion was independently
measured using a manual tool and a CAC tool by five image
analysts, respectively. Furthermore, to reduce the variability
caused by subjective selection of target lesions, we recruited a
senior radiologist (ZN) to identify these target lesions using an
arrow to enable the recognition by the image analysts. The image
analysts were informed that the arrow was randomly marked on
one of the slices of the lesion and thus did not indicate the slice
with the longest lesion diameter. The image analysts were
required to determine the slice for longest lesion diameter
based on their own judgements after examining all the slices of
the lesion.

In terms of the RECIST 1.1, the longest diameter of a target
lesion was measured on the transverse (axial) plane in CT by
manual method first. Each image analyst examined each target
lesion selected by the senior radiologist and determined the
transverse (axial) plane with the longest diameter based on
visual assessment. Standard window/level (HU) settings were
applied in terms of organs or body parts, for instance, lung
(1500/−500), liver (310/80), abdomen (400/60), and neck (250/
30). The longest diameter of each lesion was measured by placing
two endpoints of the diameter on the edge of the lesion without
crossing normal tissues.

Following the manual measurement, each image analyst was
required to measure the lesion by using the CAC tool, which
detected the optimal boundaries in terms of the initial contours
given by the image analyst. An image analyst reviewed the CAC-
generated contour and corrected it if it was unsatisfactory. The
longest diameter (for extranodal disease) or the longest
perpendicular diameter (nodal disease) of the lesion was
automatically estimated by the CAC tool in either 2D/3D
FIGURE 1 | The flow chart of the study. Data collection and the design of the study.
January 2022 | Volume 11 | Article 691638
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mode: if only one slice of a lesion was contoured, the longest
diameter of the contour was directly calculated; if multiple slices
of a lesion were contoured, the contour with the maximum cut-
plane area was first selected and the longest diameter of that
contour was calculated. This diameter served as the CAC
measurement of a lesion.

Computer-Aided Contouring Method
CAC is a computer-aided contouring toolkit that we developed
based on the optimal path search using the dynamic-
programming techniques in graph theory (15). A transversal
image can be represented by a 2D weighted bi-directed graph, in
which one node corresponds to a pixel in the image. Each node
(pixel) has 8 connecting links (edges) to its neighboring nodes
(pixels), and each node and link has an associated cost. The local
boundary of a region-of-interest (ROI) on a 2D transversal image
is defined as the optimal path with the minimum cost between
two corresponding nodes in the graph, as illustrated in Figure 2.

Dynamic-programming theory indicates that the optimal
path between node u and v is either a direct link between u
and v, or going from u to some node w and then directly from
node w to v, which is also named Dijkstra’s observation (16).
Based on this theory, Dijkstra’s algorithm first computes the
minimum cost path from the seed node u to every node in the
entire graph. This set of minimum paths can be represented as a
tree structure. Once this tree is established, the optimal path
from any node to the seed node u can be extracted in the tree in
real time by traversing from root u to any node in the tree. For a
512 × 512 image, it takes less than 1 s to establish the tree
structure from the seed node to the entire image. As long as the
tree structure is established, the traversing from the root to a
node in the tree structure is very efficient, less than 1 ms. This
ensures the real-time interactivity of the CAC algorithm.

Because an optimal path corresponds to a segment of ROI
boundaries, pixels or links between neighboring pixels that
exhibit strong edge features are made to have low local costs.
Edge features such as Laplacian zero-crossing SZX(v), gradient
Frontiers in Oncology | www.frontiersin.org 4
magnitude Sg(v), and gradient direction Sd(u,v) (17) are
incorporated into the computation of local cost. The cost going
from node (pixel) u to node (pixel) v is a weighted sum of each
corresponding local cost defined as c(u, v) = wZX · SZX(v) + wg · Sg
(v) + wd · Sd(u,v), where wZX, wg, and wd, are constants to weight
features. In Figure 3, we demonstrate these cost functions.

In CAC, we assume that the boundary of a ROI is located
within the neighborhood of the mouse moving trajectory. This
neighborhood is defined as a band on the transversal images
centered by the mouse moving trajectory, as shown in Figure 4A.
The width of the band can be adjusted in terms of the size of the
segmented ROIs. In our study, we set the band width to be 20
pixels or 10 pixels on both sides of the initial mouse moving
trajectory. The local boundary of a ROI will be searched within
this local band. The use of a local band significantly reduces the
searching space of optimal path. More importantly, it may
improve the stability of CAC detected boundary by converging
to the optimal tumor boundary and ignoring nodes or links
outside the band, as demonstrated in Figures 4C1–C4.

To reduce the influence of inaccurate positions of initial seed
points (such as u, v given by a user) and ensure that the selected
seeds are at or near the boundary of the ROI, we applied a seed
selection process via a two-pass optimal path searching scheme:
after the first optimal path searching using initial given seeds, the
points with the lowest cost in every segments of the optimal path
between two initial seed points are selected as the new seed
points for the second searching of the optimal path. This seed
selection process significantly reduces the inaccuracy and the
interobserver variability of seed positioning. Because the path is
piece-wise optimal (i.e., optimal between seed points), the
detected boundary using selected seed points is stable and
reproducible, as demonstrated in Figure 4 wherein the
different trajectories in Figures 4C1–C4 result in the exact
same contour shown in Figure 4B.

CAC provides the ability to detect (searching and snapping)
the ROI boundaries between key slices that have user-defined
ROI contours. In general, the user contoured a lesion at the first
A B C

FIGURE 2 | The local boundary is defined as the optimal path with the minimum cost between two corresponding nodes in the graph. (A) An image can be represented as a
2D weighted bi-directed graph, in which one node corresponds to a pixel in the image. Each node (pixel) has 8 links (edge) connecting to its neighborhood pixels. Both node
(u or v) and link (C) have a related cost. (B) A contour on a 2D transversal image is defined as the optimal path with the minimum cost between two corresponding nodes in the
graph, which can be searched by dynamic-programming methods such as Dijkstra’s algorithm. (C) A contour in the image corresponds to the optimal path in (B).
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and the last slice, and for the middle key slices of a lesion, the user
may contour at every 3–5 slice intervals along the scanning
direction. The exact number of slices between key slices
depended on the complexity (irregularity, infiltration, and
inhomogeneity) of the lesion. The contours between these key
slices were detected in an automated manner by using the
Frontiers in Oncology | www.frontiersin.org 5
scheme of between-slice contour detection in CAC, as
illustrated in Figures 5A, B. This automated between-slice
detection scheme consists of three steps below:

(1) Interpolate seed points on each of the between-slices using a
pair of neighboring key slices;
A B

C D

FIGURE 3 | Edge features such as zero-crossing and gradient are incorporated into the computation of local cost. (A) Original axial image. (B) Zero-crossing: points
with local maximal gradient magnitude corresponds to a local boundary point with lower cost. (C) Gradient magnitude: a point with a large gradient magnitude tends
to indicate a local boundary and thus a lower cost. (D) Gradient direction: a local boundary is perpendicular to the gradient direction. Cost is low if the direction of a
link (uv) is perpendicular to the gradient direction [▽(v)] of the pixel.
A

C1 C2 C3 C4

B

FIGURE 4 | Computer-aided contouring (CAC) tool. (A) Tumor boundary is searched within a band centered by the mouse moving trajectory. (B) The resulting
boundary is the optimal path searched in terms of the minimum cost of local edges. (C1–C4) Different mouse moving trajectories result in the same tumor boundary
shown in (B) after applying the CAC tool.
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(2) Estimate initial contours by connecting these interpolated
seed points; and

(3) Search the local boundary using the two-pass optimal path
searching scheme (described above) within the band of the
estimated contour.

Figure 5C shows an initial estimated contour created by
interpolation step, and Figure 5D is the resulting contour
generated by the two-pass optimal path searching scheme in
the band of the initial contour in Figure 5C. Because our two-
pass optimal path searching scheme can find accurate and stable
ROI boundaries in an automated manner, the between-slices
contour detection can significantly reduce the user time and
effort in interactive contouring while still achieving an accurate
segmentation. This volumetric contouring ensures that CAC can
estimate the longest diameter of the contour with the maximum
cut-plane area of a lesion, which is called the 3Dmode for longest
diameter estimation.

Based on this theory, we developed a CAC toolkit for
interactive segmentation of tumors and organs, which includes
(1) real-time searching of the local boundary on a 2D transversal
image, (2) automated detection of between-slice contours for
volumetric contouring, and (3) automated calculation of the
longest diameter (RECIST criteria) or the product of
perpendicular longest diameters (WHO criteria) of a tumor on
either one transversal image (2D mode) or multiple transversal
images (3D mode).
Frontiers in Oncology | www.frontiersin.org 6
Validation Scheme
These 200 patients were randomly divided into two data sets of
100 patients for experiential learning set (data set 1) and testing
(data set 2) of tumor measurement using manual and CAC tools.
Five image analysts who had no prior knowledge of tumor
measurements and RECIST criteria were first instructed how
to measure a lesion diameter in terms of the RECIST 1.1 criteria
in the learning set, and then tested in the second data set by using
manual and CAC tools on the V3D platform (Quantilogic
Healthcare). Tumor responses were evaluated in terms of
RECSIT 1.1 criteria by using the resulting measurements of the
manual and CAC tools, respectively. The reliability and
reproducibility of tumor measurement and response evaluation
were compared between manual and CAC tools.

Data Analysis
To evaluate the agreement of the measurement, we calculated the
coefficient of variance (CV) of five measurements of each tumor,
the correlation between any two pairs of analysts [Pearson
correlation coefficient (PCC)], and the interobserver
correlation coefficient [interclass correlation coefficient (ICC)]
of five image analysts. To evaluate the agreement of tumor
response evaluation, we calculated the Fleiss’ kappa coefficients.

Statistical analysis was conducted by R software, version 3.3.2
(https://www.R-project.org/), and SPSS Statistics for Windows,
version 17. 0 (SPSS Inc., Chicago, Ill., USA), of which
correlations were calculated by SPSS and other statistics were
A B

C D

FIGURE 5 | Detection of between-slices contours by interpolation and optimization. (A) A 3D shape of a liver with contours on several non-adjacent key slices. CAC
toolkit can detect the contours between key slices. (B) The interpolation of control points on slices between the key slices. (C) The initial contour estimated by using
interpolated control points. (D) The resulting contour generated by the two-pass optimal path searching scheme using the estimated contour in (C).
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calculated by R. Quantitative variables were shown as mean ±
SD. Statistical group comparisons of data were analyzed by
Wilcoxon rank-sum (continuous variables) test and c2

(categorical/dichotomous variables) test. A Student’s t-test was
used for the continuous variable. A p-value less than 0.05 was
considered statistically significant.
RESULTS

Clinical Data
Two hundred patients were randomly separated into two sets of
100 patients: data set 1 (71 males; 29 females; mean age 58.7
years; range 34 to 73 years) and data set 2 (67 males; 33 females;
mean age 57.1 years; range 21 to 74 years). A total of 249 CT
examinations were retrieved from PACS in the first data set, and
573 CT examinations were retrieved in the second data set.

A total of 384 and 583 reported tumors were identified by a
senior radiologist (ZN) in data sets 1 and 2, respectively. Because
of one or more missing measurements in the resulting
measurements by the five image analysts, 76 and 94 tumors
were excluded in data sets 1 and 2, respectively. This resulted in
308 lesions in data set 1 and 489 lesions in data set 2 in the
measurement study. In the tumor response evaluation study, we
excluded patients caused by one time point and missing target
lesions in the follow-up examinations. This resulted in 80
evaluations (48 patients) and 231 evaluations (89 patients) in
data sets 1 and 2, respectively. Figure 6 shows the patient
selection and distribution in data sets 1 and 2 for the learning
and testing studies.

Overall, the lesion diameters ranged from 10.0 to 105.0 mm
(mean: 30.7 ± 19.0 mm, median 25.5 mm) in data set 1 and 5.0 to
88.0 mm (mean: 22.5 ± 15.1 mm, median 18.0 mm) in data set 2.
In the tumor response evaluation study, the average number of
follow-up examinations was 1.6 and 2.6 in the learning and
Frontiers in Oncology | www.frontiersin.org 7
testing study, and the average number of lesions per patient was
1.94 and 1.92 in two sets, respectively.

The details of the patient characteristics and lesion statistics
are summarized in Table 1. The example case displayed in
Figure 7 demonstrates a significant reduction of interobserver
variability by the CAC tool.

Agreement of Measurement and Analysis
of Coefficient of Variance
Figures 8A–C show that the CV in the learning set was reduced
by CAC compared to manual measurements, and the percentage
of measurements with a CV of <0.2 were 29.9% (manual) vs.
49.0% (CAC), which was statistically significant (p < 0.001).
Figures 8D–F show the CV in the testing set after experiential
learning. It indicates that while the mean CV of manual
measurement remained constant between the first and second
data sets (0.33 vs. 0.32, p = 0.490), it decreased for the CAC
measurements after learning (0.24 vs. 0.19, p < 0.001) as the
image analysts became familiar with the CAC tool. In addition,
we measured lesions from different body parts in the study to
demonstrate the generalizability of the CAC tool. Overall, the
CAC tool outperformed manual measurement at all six body
parts: CV between manual and CAC tools were 0.27 vs. 0.20 (p =
0.004) (lung), 0.23 vs. 0.17 (p = 0.046) (liver), 0.30 vs. 0.25 (p =
0.240), (abdomen), 0.30 vs. 0.20 (p < 0.001) (lymph), and 0.37 vs.
0.27 (p = 0.003) (other), respectively. This demonstrated that the
CAC tool is a general-purpose imaging tool for tumor
measurements, indicating the great potentials for the clinical
adoption of the CAC tool.

Analysis of Interobserver Correlation
Table 2 presents the PCmatrix among five image analysts in data
sets 1 and 2, respectively. After experiential learning, we observed
that the agreement of each analyst with four other image analysts
was improved. However, the CAC tool still outperformed the
A B

FIGURE 6 | The patient selection and distribution. The patient selection and distribution in (A) the learning study and (B) the testing study.
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manual tool. In addition, the two-way mixed interobserver
correlation analysis revealed the ICC values of 0.633 (manual)
vs. 0.698 (CAC) in data set 1, and 0.716 (manual) vs. 0.824
Frontiers in Oncology | www.frontiersin.org 8
(CAC) in data set 2. After experiential learning, the CAC tool
achieved “excellent” level of agreement (ICC > 0.75).

Agreement of Tumor Response Evaluation
Tumor response was evaluated in four categories: complete
response (CR), partial response (PR), stable disease (SD), and
progressive disease (PD). As shown in Table 3, the total numbers
of RECIST evaluations were 80 and 231 in the two data sets,
respectively. The Fleiss’ kappa analysis revealed that the
percentage overall agreement (K) was 58.7% (manual) vs. 58.9%
(CAC) in the first learning set, whereas it was 62.9% (manual) vs.
74.5% (CAC) in the second testing set. The agreement increased
approximately 4.2% in manual and 15.6% in CAC. The CAC tool
approached “excellent” agreement (K > 0.75), whereas the manual
method remained in “good” agreement.

Among five tumor response evaluations by five image analysts
for each patient, we calculated the “excellent” patient-level
agreement, which was defined as the same response category as
assessed by more than four image analysts assessed the same
response categories, i.e., more than 80% evaluation results were
the same. The manual measurements achieved a constant level of
agreement: 55.0% (learning) and 60.6% (testing) (p < 0.001),
whereas CAC measurements improved from 66.0% (learning) to
79.7% (testing) (p < 0.001). It indicates that when image analysts
became familiar with the CAC tool after experiential learning,
the difference of agreement between two tools on tumor response
evaluation becomes more significant, increasing from 11.0%
[learning: 66.0% (CAC) vs. 55.0% (manual), p < 0.001] to
19.1% [testing: 79.7% (CAC) vs. 60.6% (manual), p < 0.001].
DISCUSSION
This study shows the improvements in unidimensional tumor
measurements that can be gained by utilizing a CAC tool
TABLE 1 | The demographic and clinical characteristics of the experiential
learning data set (data set 1) and testing data set (data set 2).

Group Data set 1
(n = 100)

Data set 2
(n = 100)

p-value

Sex
Female 29 33 0.647
Male 71 67

Enrolled age
Mean 58.7 57.1 0.268
Range (Min–Max) 34–73 21–74

Treatment
Chemotherapy only 8 12 0.505
TKIs based regimes 33 36
Antibodies based regimes 59 52

Target lesions
Total 198 208
Lung 66 78 0.052
Lymph nodes 60 58
Liver 38 20
Body wall 10 16
Soft tissue 7 7
Other 17 29

Adrenal gland 1 11 /
Peritoneum 5 5
Brain 3 2
Breast 3 2
Kidney 1 2
Annex 0 2
Pancreas 2 0
Spleen 1 1
Bone 0 1
Diaphragm 0 1
Limbs 0 1
Parotid gland 0 1
Pharynx 1 0
A

B

FIGURE 7 | An example case of manual and CAC measurements. In terms of RECIST 1.1 criteria, the longest diameter of a target lesion is measured on the image
acquisition plane (axial plane in CT). (A) Upper row: five manual measurements showed the mean value 96.5 ± 4.1 mm, range 92.7 mm to 103.3 mm, CV (coefficient
of variance) 4.3%. (B) Lower row: five CAC measurements showed the mean value 98.1 ± 0.3 mm, range 97.8 mm to 98.1 mm, CV 0.3%. The agreement of CAC
measurements was substantially better than that of manual measurements.
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compared to manual methods and its impact on response
evaluation. In order to prevent bias from prior knowledge or
practice, we recruited five image analysts who were unfamiliar
with tumor measurement and response assessment, and were
instructed to learn and subsequently tested independently the
measurement of longest lesion diameter in terms of RECIST
criteria using manual and CAC tools. For this purpose, we
divided the 200 patients into two sets of 100 patents for learning
and testing.

This study demonstrated that the interobserver agreement of
the manual measurement had approximately 1/3 of the cases,
whereas the CAC tool achieved twice the better performance,
which was also indicated by the “excellent” level of ICC of the
CAC tool. The novelty of the CAC method is its reproducibility
and consistency of segmentation, which can significantly reduce
the interobserver variability in tumor measurement, thereby
ensuring the quality and repeatability of tumor response
evaluation among different radiologists and institutions. Manual
Frontiers in Oncology | www.frontiersin.org 9
contouring tools are easy to use but very time-consuming, whereas
semi-automated interactive tools (such as snake and speedline) are
less labor-intensive but highly unstable. We thus developed the
CAC tool in the context of tumor response assessment for the
purpose of an efficient and consistent tumor measurement.
Compared with other open-source segmentation tools in ITK
Snap (www.itksnap.org) and Seg3D (www.sci.utah.edu/cibc-
software/seg3d.html), the CAC tool has certain advantages on
accuracy and reproducibility. A comparison of image contouring
tools with the CAC tool is given in Table S1.

This study had several limitations. The first limitation was the
single CT modality that we used in the validation study. We
selected CT examinations for the experiential learning and testing
in order to demonstrate the feasibility of the CAC tool. However,
the CAC tool is not limited to CTmodality. We will investigate the
reliability and reproducibility of the CAC tool in MRI and PET/
CT examinations. Another limitation is that our study used single-
center data from one institute. We plan to collect multi-center
A

B

C

D

E

F

FIGURE 8 | Analysis of coefficients of variance (CV) in the experiential learning and testing study. Analysis of coefficients of variance (CV) in the experiential learning
study (data set 1, A–C) and in the testing set (data set 2 D–F). The standard deviation (STD) and CV of the manual and CAC measurements (mean and median
values given in a and d, respectively) and the CV distribution (B, E, respectively) are shown before and after learning. The boxplots in (C, F) show the fractions of
measurements with good agreement (<0.2). In data set 1, this was 29.9% vs. 49.0% for manual and CAC measurement, respectively, and in data set 2, this was
30.9% vs. 64.4% for manual and CAC measurements, respectively.
January 2022 | Volume 11 | Article 691638

http://www.itksnap.org
http://www.sci.utah.edu/cibc-software/seg3d.html
http://www.sci.utah.edu/cibc-software/seg3d.html
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Li et al. Computer-Aided Radiologic Tumor Measurement
cases to validate the reproducibility of the CAC tool for tumor
measurements and evaluation. The CAC tool needs multi-center
and prospective data for further validation and improvements.
Although the clinical significance of the CAC tool warrant
validation by larger multi-center studies, it may provide a
reliable and reproducible solution for radiological tumor
measurement, which may further affect the imaging endpoints
in tumor response evaluation.

In conclusion, our study demonstrated that the computer-
aided contouring method can significantly improve the
agreement of radiologic tumor measurements, reduce the
interobserver variability of tumor measurement, and thus
improve the agreement of tumor response evaluation in
oncology clinical trials and clinical care.
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TABLE 2 | Pearson correlation matrix among five image analysts in data sets 1 and 2.

Data Set 1 (Learning)

(A) Manual measurement (B) CAC measurement

Analyst 1 Analyst 2 Analyst 3 Analyst 4 Analyst 5 Analyst 1 Analyst 2 Analyst 3 Analyst 4 Analyst 5

Analyst 1 1 0.385 0.418 0.367 0.401 1 0.538 0.533 0.507 0.565
Analyst 2 0.385 1 0.418 0.367 0.401 0.538 1 0.82 0.702 0.895
Analyst 3 0.418 0.808 1 0.736 0.865 0.533 0.82 1 0.728 0.909
Analyst 4 0.367 0.667 0.736 1 0.673 0.506 0.702 0.728 1 0.752
Analyst 5 0.401 0.871 0.865 0.673 1 0.565 0.895 0.909 0.752 1
Correlation with Others 0.39 0.68 0.61 0.54 0.59 0.54 0.74 0.75 0.67 0.78

Data Set 2 (Testing)

(C) Manual measurement (D) CAC measurement

Analyst 1 Analyst 2 Analyst 3 Analyst 4 Analyst 5 Analyst 1 Analyst 2 Analyst 3 Analyst 4 Analyst 5
Analyst 1 1 0.546 0.672 0.605 0.639 1 0.760 0.815 0.815 0.845
Analyst 2 0.546 1 0.823 0.741 0.796 0.760 1 0.850 0.795 0.828
Analyst 3 0.672 0.823 1 0.796 0.846 0.815 0.850 1 0.830 0.883
Analyst 4 0.605 0.741 0.796 1 0.814 0.815 0.795 0.830 1 0.931
Analyst 5 0.639 0.796 0.846 0.814 1 0.845 0.828 0.883 0.931 1
Correlation with Others 0.62 0.73 0.78 0.74 0.77 0.81 0.81 0.84 0.84 0.87
Janu
ary 2022 | Vo
lume 11 | Artic
(A) The manual measurement: The mean Pearson correlation coefficient (PCC) was 0.56 ± 0.11, range 0.39 to 0.69. (B) The CAC measurement: The mean PCC was 0.69 ± 0.10, range
0.54 to 0.78 in data set 1. The two-way mixed interobserver correlation coefficient (ICC) was 0.633 (manual) vs. 0.698 (CAC). (C) The manual measurement: The mean Pearson correlation
coefficient (PCC) was 0.73 ± 0.07, range 0.62 to 0.78. (D) The CAC measurement: The mean PCC was 0.84 ± 0.03, range 0.81 to 0.87 in data set 2. The two-way mixed interobserver
correlation coefficient (ICC) was 0.716 (manual) vs. 0.824 (CAC). CAC tool was in “excellent” agreement (>0.75), whereas manual method remains in “good” agreement.
TABLE 3 | Agreement of RECIST 1.1 evaluation.

(A) Data set 1 (Learning) (B) Data set 2 (Testing)

Total # Votes% Cases # Cases% Total # Votes% Cases # Cases%

Manual 80 80% 44 55.00% 231 80% 140 60.60%
100% 22 27.50% 100% 77 33.30%

CAC 80 80% 52 66.00% 231 80% 184 79.70%
100% 17 21.30% 100% 113 48.90%
(A) Agreement in data set 1. (B) Agreement in data set 2.
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