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Background: Predicting hepatocellular carcinoma (HCC) prognosis is important for
treatment selection, and it is increasingly interesting to predict prognosis through gene
expression data. Currently, the prognosis remains of low accuracy due to the high
dimension but small sample size of liver cancer omics data. In previous studies, a transfer
learning strategy has been developed by pre-training models on similar cancer types and
then fine-tuning the pre-trained models on the target dataset. However, transfer learning
has limited performance since other cancer types are similar at different levels, and it is not
trivial to balance the relations with different cancer types.

Methods: Here, we propose an adaptive transfer-learning-based deep Cox neural
network (ATRCN), where cancers are represented by 12 phenotype and 10 genotype
features, and suitable cancers were adaptively selected for model pre-training. In this way,
the pre-trained model can learn valuable prior knowledge from other cancer types while
reducing the biases.

Results: ATRCN chose pancreatic and stomach adenocarcinomas as the pre-training
cancers, and the experiments indicated that our method improved the C-index of 3.8% by
comparing with traditional transfer learning methods. The independent tests on three
additional HCC datasets proved the robustness of our model. Based on the divided risk
subgroups, we identified 10 HCC prognostic markers, including one new prognostic
marker, TTC36. Further wet experiments indicated that TTC36 is associated with the
progression of liver cancer cells.

Conclusion: These results proved that our proposed deep-learning-based method for
HCC prognosis prediction is robust, accurate, and biologically meaningful.
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1 INTRODUCTION

Liver cancer is the sixth most frequent cancer globally (4.7%) and
the second leading cause of death from cancers (8.2%) (1). The
most common type of liver cancer is hepatocellular carcinoma
(HCC), which makes up 80% of cases (2). Clinical research has
found that the survival rate of HCC varies greatly in different
patients (3). Hence, it is important to predict the prognosis of
HCC for choosing suitable treatment options, which include
surgery, targeted therapy, and radiation therapy.

Many methods have been developed to predict cancer
prognosis for understanding the clinical heterogeneity among
patients. The proportional hazards model proposed by Cox was
the first method used in medical research for cancer survival
analysis, which can assess the impact of small numbers of clinical
features on patients’ survival (4). However, clinical features
cannot reflect the inherent status in patients and cannot
achieve high accuracy. With the development of high-
throughput sequencing technology, the reduction of the
sequencing costs led to the rapid growth of high-quality
datasets shared for cancer research, enabling predicting
patients’ risks based on gene expression data. Unfortunately,
such data with thousands of features cannot be processed well by
traditional Cox methods, and different regularization algorithms
were added to the Cox proportional hazards model for
dimensionality reduction (5, 6). For example, the elastic net
was the most widely used regularization method by combining
the advantages of L1-norm and L2-norm regularization
(Cox_en) (7). Wang et al. improved the proportional hazards
model by utilizing the bootstrapping method and proposed the
random survival forest (RSF) for the prediction of cancer
outcomes (8). Albeit a few successful cases, the accuracy
remains low due to the limited ability within traditional
machine learning techniques.

With the development of deep learning techniques, many
methods have been designed based on deep neural networks (9).
For example, Chaudhary et al. employed Autoencoder to rebuild
representative composite features in the clustering of cancer
subtypes (3). Katzman proposed a deep survival method
(Deep_surv) for the estimation of cancer outcomes with a
three-hidden-layer deep neural network (10). Yet, these
methods are limited due to cancer data from small sample
sizes (11, 12). One common strategy to solve this problem is
transfer learning, where models are pre-trained based on similar
cancer types and then fine-tuned on the target cancer type (13,
14). For example, Vanacker used the messenger RNA (mRNA)
expression data collected from The Cancer Genome Atlas
Abbreviations: ATRCN, adaptive transfer-learning-based deep Cox neural network;
BLCA, bladder urothelial carcinoma; BRCA, breast invasive carcinoma; Cox_en, Cox
regression model with elastic net regularization; Deep_surv, deep Cox neural network;
DEGs, differentially expressed genes; ESCA, esophageal carcinoma; GEO, Gene
Expression Omnibus; HCC, hepatocellular carcinoma; HNSC, head and neck
squamous cell carcinoma; LIHC, liver hepatocellular carcinoma; LUAD, lung
adenocarcinoma; LUSC, lung squamous cell carcinoma; OV, ovarian serous
cystadenocarcinoma; PAAD, pancreatic adenocarcinoma; RSF, random survival
forest; SKCM, skin cutaneous melanoma; STAD, stomach adenocarcinoma; TCGA,
The Cancer Genome Atlas.
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(TCGA) to train the initial deep neural network and fine-tune
it for patient risk estimation (15). While the transfer learning
strategy improved the models by learning other cancer types, the
differences within other cancer types might bring some biases. It
is necessary to balance the signal and biases from other cancer
types. Therefore, it is promising to use adaptive transfer learning
for the prediction of liver cancer prognosis.

Here, we propose an adaptive transfer-learning-based deep
Cox neural network (ATRCN) for the prediction of HCC
prognosis. By using 12 phenotype and 10 genotype features to
describe the survival of different cancers, ATRCN selected
pancreatic and stomach adenocarcinomas as the pre-training
cancers for the prediction of HCC outcomes. In comparison to
the transfer learning method, the results showed that our method
averagely improved the concordance index (C-index) by 3.8% in
the experiments. As independent tests, three HCC datasets were
collected from the Gene Expression Omnibus (GEO) database,
and our prediction model was able to separate the high-risk
patients from the low-risk ones significantly (p < 0.05) with high
accuracy (C-index > 0.6). Based on the divided risk subgroups,
we identified 10 HCC-related prognostic markers, among which
the function of one new prognostic marker, TTC36, was proven
by wet experiments. These results indicated that the identified
genes play important roles in the function regulation of
HCC cells.
2 MATERIALS AND METHODS

2.1 Datasets
In this study, we used TCGA datasets (https://tcga-data.nci.nih.
gov/tcga/) for training, and three HCC datasets in GEO (https://
www.ncbi.nlm.nih.gov) were applied for independent tests.
TCGA Data
All RNA sequencing (RNA-seq) data were downloaded by using
the R package “TCGA-assembler2” (16), where the RNA-seq
were generated using the UNC Illumina HiSeq_RNASeq v2
(Illumina, San Diego, CA, USA). We normalized the data by
log transformation and removed the genes whose missing values
were more than 20%. For the remaining samples, the missing
values were imputed based on the median values by using the R
package “imputeMissings” (17). The full names of TCGA cancer
datasets used are given in the list of abbreviations.
GEO Data
Three HCC datasets collected from GEO were used for the
independent tests. GSE10143 contains RNA-seq data and
survival information of 82 HCC samples shared from the
University of Texas Southwestern Medical Center. In GSE14520,
we downloaded information of 221 HCC patients shared from the
National Cancer Institute. GSE54236 contains samples from 81
HCC patients submitted by the University of Modena and Reggio
Emilia. The batch effect from all the datasets was removed using
the R package “limma” (18).
September 2021 | Volume 11 | Article 692774
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2.2 ATRCN for HCC Survival Analysis
In this study,wepropose anovel deep-learning-basedATRCNfor the
prediction of HCC outcomes (Figure 1A). We selected 11 candidate
cancer datasets with uncensored patients >50 and sample size >100 in
TCGA [bladder urothelial carcinoma (BLCA), breast invasive
carcinoma (BRCA), esophageal carcinoma (ESCA), head and neck
squamous cell carcinoma (HNSC), liver hepatocellular carcinoma
(LIHC), lung adenocarcinoma (LUAD), lung squamous cell
carcinoma (LUSC), ovarian serous cystadenocarcinoma (OV),
pancreatic adenocarcinoma (PAAD), skin cutaneous melanoma
(SKCM), and stomach adenocarcinoma (STAD)]. From these
cancer type datasets, we extracted 12 phenotype and 10 genotype
features andperformed clustering through k-means (details in Section
2.3). The cancer typesmost similar toHCCwere selected to pre-train
models, which were then fine-tuned on our HCC cancer data. The
deep neural network structure and hyper-parameters were optimized
by 10-fold cross-validation (CV). The optimized models were
independently tested on the three culled GEO datasets (Figure 1B).
According to the divided risk subgroups,we identified the liver cancer
prognosticmarkers by conducting differential expression analysis and
weighted gene co-expression network analysis (WGCNA). The
selected genes were finally validated by wet experiments
(Figure 1C). In addition, we computed the enriched Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways through
the identified differentially expressed genes (DEGs) (Figure 1D).
Frontiers in Oncology | www.frontiersin.org 3
2.3 Pre-Training Data Searching With
Cancer Description Characteristics
As given in Table 1, we selected 12 phenotype and 10 genotype
characteristics to describe the overall survival situations of
patients with different cancers. Considering that kernel
principal component analysis (KPCA) performs better than
PCA when reducing the dimensionality of nonlinear data (19),
we used KPCA to construct the low-dimensional representation
of the gene expression data. Here, we used the rbf kernel, and the
number of reconstructed features was set 2.

After extracting the description features of different cancers, we
chose the most appropriate pre-training cancer datasets by using k-
means clustering. The k was selected as the one with the largest
silhouette coefficient between [1/4*N, 3/4*N], where N is the
number of the candidate cancer datasets. Too small a value of k
will cause ATRCN to select too many pre-training cancers, while a
large value may cause ATRCN to fail to find any pre-training data
belonging to the same cluster. In this study, the kwas set to 6, and 11
datasets with uncensored patients >50 and sample size >100 in
TCGA (BLCA, BRCA, ESCA, HNSC, LIHC, LUAD, LUSC, OV,
PAAD, SKCM, and STAD) were used as the candidate datasets.

2.4 Deep Cox Neural Network
In our study, we used a deep Cox neural network with three
hidden layers to predict the outcomes of cancer patients. The
A

C D

B

FIGURE 1 | Proposed adaptive transfer-learning-based deep Cox neural network (ATRCN) used for hepatocellular carcinoma (HCC) survival analysis. (A) Architecture of
the proposed ATRCN. (B) Independent tests for the HCC prognosis prediction model obtained by ATRCN. (C) Identifying HCC prognostic markers. (D) Enriching the
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways that are associated with HCC prognosis.
September 2021 | Volume 11 | Article 692774

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Chai et al. Survival Analysis for Liver Cancer
deep Cox neural network was implemented using the python
package “DeepSurv” (10). We found that, when the number of
hidden layers is less than three, the high-dimensional data
cannot be well trained, and when the number of layers is
larger than three, we observed gradient disappearance when
training deep neural networks in many datasets. The Relu
function was used as the activation function for all layers.
Assuming the survival function S(t) = Pr(T > t) represents the
probability that the patient will survive before time t, and the
time interval T is the time elapsed between data collection and
the patient’s last contact (the end of the study/death of the
patient). The risk function of the death probability at time t is
written as:

l(t) = lim
d!0

Pr (t ≤ T < t + d jT ≥ t)
d

(1)

The proportional hazard function is expressed as:

l(tjx) = l0(t) ∗ exp(h(x)) (2)

where h(x) = bXi, l0(t) is used to describe the basic risk function
at time t, and the maximum partial likelihood function can be
defined as:

Lc(b) =
Y
i : Ei=1

exp(hb(xi))

Sj∈ℜ(Ti)exp(hb (xi))
(3)

where Ei = 1 represents patient i as not censored and ℜ(Ti)
represents patients who died after time Ti.

The deep Cox neural network updates h(x) by the network
weight q, and the loss function is expressed as:

l(q) = − o
i : Ei=1

hq(x) − log o
j∈ℜ(Ti)

exp(hq(xj))

 !
(4)

After obtaining the predicted risks with the deep Cox neural
network, the patients were divided into two risk subgroups based
on the median predicted risk value. All the hyper-parameters in
ATRCN were optimized by 10-fold CV. The number of nodes in
hidden layer 3 was set [50, 20, 10], and the learning rate was
selected from [0.001, 0.0001, 0.00001]. The pre-training epoch
Frontiers in Oncology | www.frontiersin.org 4
was set to 200, and the epoch was set to 500 in the fine-
tuning phase.

2.5 Model Evaluation
In this study, we show the average C-index values of the 10-fold
CV for method comparison and compared the robustness of the
prediction model in independent datasets collected from the
GEO database. To evaluate the prediction performances of
ATRCN in more cancer data, we selected five TCGA cancers
with uncensored patients >150 and sample size >300 as the target
cancer dataset.

Two commonly used metrics were used to evaluate the
prediction performance: the C-index and log-rank p-values. The
C-index represents the fraction of all pairs of individuals whose
predicted survival timeswere correctly orderedbasedonHarrell’sC
statistics (20). A C-index of 0.5 means a random prediction, and a
higher C-index means a better predictive performance. The log-
rank p-value is obtained fromsignificance in separating the patients
into a high-risk group and a low-risk group.

Based on the predicted risk subtypes of HCC patients,
differential expression analysis was applied by using the R
package “limma,” and the genes with corrected p-values <0.05
and |log2 fold change| ≥0.7 were considered as DEGs. We also
applied WGCNA by the R package “WGCNA” for identifying
function modules and genes related to liver cancer. In WGCNA,
we used the unsigned network, the least genes in each module
was set to 30, and the height cutoff parameter used to merge
similar modules was set to 0.25. The genes that have higher
relevance scores (>0.8) were defined as hub genes (HGs).
Subsequently, the genes that were both DEGs and HGs were
considered as candidate genes highly related to HCC prognosis.
Lastly, the enriched KEGG pathways were obtained by using the
KOBAS online tool (21).

2.6 Cancer Prognostic Marker Validation
Wet experiments were conducted to demonstrate the reliability
of our approach in predicting cancer prognostic markers.
Among the predicted genes, TTC36 was identified as a new
prognostic marker for liver cancer. We performed in vitro studies
in the human hepatocellular carcinoma cell line Huh7 to
TABLE 1 | The features used for describing the survival situations of cancer patients.

Phenotype features Genotype features

Y3 Three-year survival rate AVE1 Mean of Fe1
Y5 Five-year survival rate MID1 Median of Fe1
SAVE Mean of the survival time STD1 Standard deviation of Fe1
STD Standard deviation of survival time KURT1 Kurtosis of Fe1
T1 First quartile of the survival time SKEW1 Skewness of Fe1
T2 Second quartile of the survival time AVE2 Mean of Fe2
T3 Third quartile of the survival time MID2 Median of Fe2
T4 Max value of survival time STD2 Standard deviation of Fe2
S1 % patients in [0, 0.25*T4] KURT2 Kurtosis of Fe2
S2 % patients in [0.25*T4, 0.5*T4] SKEW2 Skewness of Fe2
S3 % patients [0.5*T4, 0.75*T4]
S4 % patients in [0.75*T4, T4]
September 2021 | Vo
Fe1 and Fe2 are the two compressed features of the mRNA constructed using kernel principal component analysis (KPCA).
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characterize the biological function of TTC36 in hepatocellular
carcinoma. Cells were cultured in Dulbecco’s modified Eagle’s
medium (Gibco, Waltham, MA, USA) supplemented with 10%
fetal bovine serum at 37°C with 5% CO2. The cells were
transiently transfected with plasmid by using Lipofectamine
3000 (Thermo Fisher Scientific, Waltham, MA, USA) for 48 h.
Further details of the materials and methods used in this study
are described in Supplementary Materials and Methods.
3 RESULTS

3.1 Adaptively Searching Cancer for
Pre-training
Figure 2A shows the normalized cancer description matrix of 11
TCGA cancers by using 12 phenotype and 10 genotype
characteristics; the corresponding clustering results obtained by
k-means (k=6)are given inFigure2B. Consistentwith theprevious
study, three gastrointestinal cancers, including liver cancer, are
clustered in the same group (C2), two pan-gynecological cancers
with similar molecular expressions (breast cancer and ovarian
cancer) are clustered in C6 (22), and two squamous cell
carcinomas (HNSC and LUSC) both belong to C3. It is worth
noting that LUSC and LUAD were divided into different classes.
The reason may be that the survival rates of these two cancers are
Frontiers in Oncology | www.frontiersin.org 5
different (23).Toverify the impact of selecting different pre-training
cancerclusters on the accuracyof themodel,we selectedfivecancers
(LIHC, BRCA, HNSC, LUAD, and STAD) as the targets and tested
the transfer-learning-based deep Cox neural network (TRCN) by
using different pre-training data clusters with different cluster
distances (Figure 2C). The C-index values obtained by ATRCN
using different pre-training data clusters are given in Figure 2D.
The x-axis represents the different cancer clusters arranged
according to distance from near to far. X = 1 represents the target
cancer using pre-training cancer datasets that belong to the same
cluster, and X = 6 means that the target cancer used pre-training
cancer datasets in the farthest cluster. The results indicated that the
closer the cancer cluster used for pre-training, the higher the
accuracy of cancer outcome prediction obtained.

3.2 Method Comparison
Six methods were applied to evaluate performance in cancer
outcome prediction: Cox regression model with elastic net
regularization (Cox_en), the random survival forests (RSF), deep
Cox neural network without transfer learning (Deep_surv), deep
Cox network using the specified pre-training model (TRCN*), the
transfer-Cox neural network using all pre-training datasets
(TRCN), and ATRCN that adaptively selected the pre-training
data. Here, TRCN* selected the cancer cluster that is farthest from
the target for pre-training.
A

C D

B

FIGURE 2 | Survival characteristics for matching appropriate pre-training cancer data adaptively. (A) Normalized cancer description matrix of 11 different cancers in
The Cancer Genome Atlas (TCGA) by using 12 phenotype and 10 genotype characteristics. (B) Corresponding clustering results obtained by k-means (k = 6).
(C) Distances between the centers of the different clusters. (D) C-index values obtained using different pre-training data combinations based on cluster distances.
The points on the x-axis represent the combination of pre-training data arranged according to distance from near to far.
September 2021 | Volume 11 | Article 692774
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Table 2 shows the average C-index values obtained by the
different methods in 10-fold CV. The traditional methods achieved
an average C-index value of 0.555, which is much lower than that
obtained by the deep-learning-based methods (0.602). Compared
with Deep_surv, TRCN* only increased the C-index value by an
average of 1.4%. The improvement is not as obvious as that of TRCN
(3.6%) and of ATRCN (7.5%). Due to the mutual influence of the
different survival situations of different pre-training cancers, the C-
index values obtained by TRCN were lower than those obtained by
ATRCN.ComparedwithTRCN, the averageC-index value obtained
by ATRCNwas improved by 3.8%, on average. These results proved
the necessity and advantage of selecting the appropriate pre-trained
data in the prediction of liver cancer prognosis.

3.3 Independent Test in HCC
After applying the ATRCN to construct the prognosis prediction
model of liver cancer, we validated this model with three external
Frontiers in Oncology | www.frontiersin.org 6
HCCdatasets collected fromGEO:GSE10143 (24),GSE14520 (25),
and GSE54236 (26). Figure 3 indicates that the C-index values
obtained in these GEOdatasets are larger than 0.6, and the p-values
in these datasets are less than 0.05. The corresponding survival
curves in Figure 3 show significant survival differences in the
different risk groups predicted by our model. These results proved
the robustness of the constructedHCCprognosis predictionmodel.

3.4 Associations of HCC Survival With
Clinical Covariates
We further performed the chi-square test between the divided risk
subgroups and eight clinical variables in LIHC. The p-values given
in Table 3 indicated that there is little correlation between the
survival of HCC patients and age, race, prior malignancy, and
treatment type. The survival time and tumor stage were two of the
most relevant features with predicted risk subgroups. Gender was
found to be associated with survival of HCC patients (p = 0.033),
FIGURE 3 | Survival curves of the different risk groups divided by the adaptive transfer-learning-based deep Cox neural network (ATRCN) prediction model on
different liver cancer datasets. Red lines represent the high-risk patients and green lines are the low-risk ones.
TABLE 3 | Correlations between the predicted risk subgroups and clinical covariates.

Clinical Squared p-value Feature types

Tumor stage 19.02 5.0E−4 Stage I; stage II; stage III; stage IV
Treatment or therapy 9.15 0.006 Yes; No
Gender 4.73 0.033 Male; Female
Survival time 67.42 4.9E−4 Four intervals (<25%; 25%–50%; 50%–75%; >75%)
Race 6.35 0.163 White; Black or African American; Asian
Age 3.47 0.336 Four intervals (<30; 30–50; 50–70; >70)
Treatment type 0.19 0.735 Radiation therapy; Pharmaceutical therapy
Prior malignancy 0.22 0.745 Yes; No
TABLE 2 | Prediction performance obtained in the different cancer datasets.

Cox_en RSF Deep_surv TRCN*a TRCN ATRCN

BRCA 0.553 (±0.081) 0.571 (±0.075) 0.588 (±0.103) 0.596 (±0.091) 0.617 (±0.082) 0.652 (±0.078)
HNSC 0.539 (±0.071) 0.547 (±0.064) 0.565 (±0.077) 0.573 (±0.072) 0.585 (±0.056) 0.602 (±0.064)
LIHC 0.570 (±0.074) 0.582 (±0.070) 0.636 (±0.095) 0.654 (±0.088) 0.667 (±0.073) 0.696 (±0.079)
LUAD 0.552 (±0.067) 0.555 (±0.062) 0.572 (±0.083) 0.580 (±0.074) 0.590 (±0.068) 0.605 (±0.070)
STAD 0.542 (±0.054) 0.541 (±0.048) 0.560 (±0.058) 0.555 (±0.060) 0.564 (±0.055) 0.583 (±0.051)
Average 0.551 0.559 0.584 0.592 0.605 0.628
Septe
mber 2021 | Volume 11 |
BRCA, breast invasive carcinoma; HNSC, head and neck squamous cell carcinoma; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; STAD, stomach adenocarcinoma;
Cox_en, Cox regression model with elastic net regularization; Deep_surv, deep Cox neural network without transfer learning; RSF, random survival forest; ATRCN, adaptive transfer-
learning-based deep Cox neural network.
aTRCN* selected the farthest cancer cluster from the target for pre-training.
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which was also proven in (27). Besides, the feature of the treatment
or therapy was shown to be related to HCC outcomes.

3.5 Cancer Prognostic Marker
Identification
Based on the divided high-risk and low-risk groups of HCC
patients, we identified DEGs by using the “limma” package in R.
Two hundred and ninety-eight genes with |log2 fold change| >0.7
Frontiers in Oncology | www.frontiersin.org 7
and corrected p-values <0.05 were discovered as DEGs in liver
cancer, which included 103 downregulated genes and 195
upregulated genes (Figure 4A). The heat map based on the
expressions of these DEGs in the LIHC data is shown in
Figure 4B. To further reduce the number of analysis of HCC
prognostic markers, we performedWGCNA using the R package
“WGCNA.” Genes with similar expression patterns were
clustered into seven modules based on the histological grade of
A

C D

E

F

G

B

FIGURE 4 | Identification of prognostic markers by conducting differential expression analysis and weighted gene co-expression network analysis (WGCNA). (A) The
298 identified differentially expressed genes (DEGs) with |log2 fold change| >0.7 and corrected p-values <0.05 in the liver cancer data (LIHC) in TCGA. (B). Heat map
using the DEGs with predicted risk subgroups in LIHC. (C). WGCNA for calculating co-expression modules. (D). Computed average gene significance values in
the different modules. (E) Three identified modules that are associated with risk phenotypes in hepatocellular carcinoma (HCC). (F) Differences in the identified
downregulated risk genes in the HCC risk subgroups by gene expression level. (G) Differences in the identified upregulated risk genes in the HCC risk subgroups.
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the LIHC data, as shown in Figure 4C. Subsequently, we
computed the module–trait relationships between the different
modules and risk phenotypes; the average gene significance in
each module is shown in Figure 4D. By combining the results of
module–trait relationships and the average gene significance
values, three modules (black, green, and blue) were identified
as the target modules that are highly associated with risk
phenotypes (Figure 4E). Genes with correlation scores between
the gene expression and target module larger than 0.8 were
considered as the HGs in liver cancer. Lastly, the top 10 genes
belonging to both DEGs and HGs were considered as the
candidate genes that are associated with HCC prognosis. In
Figure 4F, we show the expression levels of the downregulated
risk genes in the different risk subgroups, which indicated that
the expressions of these genes were significantly elevated in the
low-risk group compared with those in the high-risk group
(p < 0.05). On the contrary, Figure 4G shows that the
expression levels of the upregulated risk genes decreased in the
low-risk group compared with those in the high-risk group.

3.6 New Liver Cancer Prognostic
Marker, TTC36
Based on the risk subgroups divided by ATRCN, we identified 10
candidate genes that affect the survival of HCC patients. Among
these genes, TTC36was discovered as a new liver cancer prognostic
marker after reviewing the newest literature in the PubMed
database (28). We upregulated TTC36 in Huh7 cells using a
pcDNA3.1 vector. The efficiency was confirmed at protein levels
through comparisonswith a negative control (Figure 5A).Next, we
performed a variety of in vitro assays to evaluate the effect ofTTC36
Frontiers in Oncology | www.frontiersin.org 8
overexpression onHCC cell proliferation, migration, and invasion.
We assessed the effect of TTC36 upregulation on Huh7 cells. The
CCK-8 and colony formation assays showed that TTC36
significantly suppressed Huh7 cell proliferation (Figures 5B–D).
Results from the Transwell assays demonstrated that TTC36
upregulation impaired the cell migration and invasion of Huh7
cells (Figures 5E, F). The results indicated that TTC36 could have
an influential role in the regulation of the functions of HCC cells.

3.7 KEGG Pathway Enrichment Analysis
With the identified 298 DEGs, we pinpointed the enriched KEGG
pathwaysbyusing theonline toolKOBAS.The table inFigure6 lists
the top 10 downregulated and top 10 upregulated risk pathways
sortedbasedon the correctedp-values.The results indicated that the
interleukin 17 (IL-17) and peroxisome proliferator-activated
receptor (PPAR) signaling pathways belong to different risk path
groups. The PPAR signaling pathway can prevent IL-17-driven
cancer growth (29), and the IL-17 signaling pathway was proven to
play an important role in liver cancer progression (30). Considering
that hepatitis B and hepatitis C are important causes of liver cancer
(31), the viral protein interaction was enriched in the upregulated
risk group. Besides, the central carbon metabolism and
transcriptional misregulation pathways in cancer were also
enriched in the upregulated risk group. Although there is no
direct evidence that the prognosis of liver cancer is related to bile
secretion, abnormal liver function has been proven to affect bile
secretion (32). Figure 6 also shows the enriched pathway–gene
network by using the connectedDEGs. Themetabolic pathwaywas
discovered in both risk groups because it is one of the common
pathways for gene enrichment.Apart from it, different risk subtypes
A

C D

E

F

B

FIGURE 5 | Validation of the role of TTC36 in human liver cancer. (A) The efficacy of TTC36 ectopic expression is determined in hepatocellular carcinoma (HCC)
cells. (B) Cell proliferation was assessed with the CCK-8 assay in Huh7 cells. (C, D) The effect of TTC36 overexpression on colony formation was counted in Huh7
cells. (E, F) Representative images and histogram analysis of the Transwell migration and invasion assays after TTC36 upregulation in Huh7 cells. *p-value<0.05.
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have different and disjoint activated pathways, confirming that the
enriched pathways in the different risk subgroups play distinct roles
in HCC prognosis.
4 DISCUSSION AND CONCLUSION

Liver cancer, known for its poor prognosis and high mortality, is
a serious threat to people’s lives. One reason for the high
mortality rate is the survival rate of HCC varying greatly
among different patients. Hence, there is an urgent need to
effectively predict HCC prognosis in order to choose suitable
treatment options to break through this dilemma.

In this study, we proposed an adaptive transfer-learning-based
deep Cox neural network (ATRCN) to predict liver cancer
prognosis. The results proved that our proposed deep-learning-
basedmethod forHCCprognosis prediction is robust, accurate, and
biologicallymeaningful. Firstly, basedon the results of the similarity
search, ATRCN concluded that pancreatic and gastric cancers have
very similarprognoses to liver cancer.As is known, liver, pancreatic,
and stomachcancers are cancers of thedigestive tract,whichmaybe
the reason for the similar prognosis. Therefore, the similar cancers
identified by ATRCN are biologically related. Secondly, the results
of real experiments proved the necessity and advantage of selecting
the appropriate pre-trained data for learning tasks. Compared with
state-of-the-art methods, ATRCN averagely improved the C-index
Frontiers in Oncology | www.frontiersin.org 9
value by 8.62%, indicating a significantly higher chance to separate
high-risk patients for appropriate treatments. As indicated in the
literature (33–35), aC-indexof (0.6, 0.7) is alreadyhelpful for cancer
survival analysis, and our ATRCNwith a C-index of 0.696 in HCC
prognosis prediction is unlimitedly close to adequate medical
decision-making for clinicians. Lastly, the HCC outcome
prediction model validated in three independent datasets proved
that our predictionmodel can separate high-risk patients from low-
risk ones significantly. By conducting differential expression
analysis and WGCNA, we identified 10 candidate genes that are
associatedwithHCCprognosis.We further revealed the functionof
the new prognostic marker (TTC36) in liver cancer progression by
wet experiments.

However, there are still many questions worth discussing.
Firstly, the high censor rate in LIHC (34.5%) is one of the main
reasons for the decreased performance of ATRCN. It affects the
construction of cancer phenotype characteristics and the
calculation of true cancer survival in the proportional hazards
model. In the future, we will try to design an effective
mechanism that can reduce the impact of censored data on
the proportional hazards model and intend to integrate more
multi-omics data (methylation, copy numbers, and slide image)
in order to utilize more useful information for more accurate
estimation. Secondly, as shown in Figure 2D, we found that,
although using cancer pre-training sets with closer clustering
distances is more helpful for model training, in some cases, it is
FIGURE 6 | The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway–gene network enriched by using the connected differentially expressed genes
(DEGs). The ellipse nodes represent the genes and the rectangle nodes represent the enriched KEGG pathways. Red represents the upregulated risk path, green
represents the downregulated risk group, and gray represents the path simultaneously enriched by different risk group genes.
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better to use a pre-training dataset with a longer cluster
distance. This is likely because the remote cluster has a larger
sample size. This may be solved by designing a weight
parameter to weigh the pre-training dataset based on both
the clustering distance and the sample size.

In conclusion, this study has proposed a new strategy to
improve cancer prognosis by borrowing information from
similar disease types. The improved prognosis can be further
used for discovering new biomarkers. The strategy has been
successfully validated on liver cancer through comprehensive
tests including wet experiments. Such success can be extended to
other cancers or diseases in the future.
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