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Background:With a constantly increasing number of diagnostic images performed each
year, Artificial Intelligence (AI) denoising methods offer an opportunity to respond to the
growing demand. However, it may affect information in the image in an unknown manner.
This study quantifies the effect of AI-based denoising on FDG PET textural information in
comparison to a convolution with a standard gaussian postfilter (EARL1).

Methods: The study was carried out on 113 patients who underwent a digital FDG PET/
CT (VEREOS, Philips Healthcare). 101 FDG avid lesions were segmented semi-
automatically by a nuclear medicine physician. VOIs in the liver and lung as reference
organs were contoured. PET textural features were extracted with pyradiomics. Texture
features from AI denoised and EARL1 versus original PET images were compared with a
Concordance Correlation Coefficient (CCC). Features with CCC values ≥ 0.85 threshold
were considered concordant. Scatter plots of variable pairs with R2 coefficients of the
more relevant features were computed. A Wilcoxon signed rank test to compare the
absolute values between AI denoised and original images was performed.

Results: The ratio of concordant features was 90/104 (86.5%) in AI denoised versus 46/104
(44.2%) with EARL1 denoising. In the reference organs, the concordant ratio for AI and
EARL1 denoised images was low, respectively 12/104 (11.5%) and 7/104 (6.7%) in the liver,
26/104 (25%) and 24/104 (23.1%) in the lung. SUVpeak was stable after the application of
both algorithms in comparison to SUVmax. Scatter plots of variable pairs showed that AI
filtering affected more lower versus high intensity regions unlike EARL1 gaussian post filters,
affecting both in a similar way. In lesions, the majority of texture features 79/100 (79%) were
significantly (p<0.05) different between AI denoised and original PET images.

Conclusions: Applying an AI-based denoising on FDG PET images maintains most of the
lesion’s texture information in contrast to EARL1-compatible Gaussian filter. Predictive
features of a trained model could be thus the same, however with an adapted threshold.
Artificial intelligence based denoising in PET is a very promising approach as it adapts the
denoising in function of the tissue type, preserving information where it should.
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INTRODUCTION

Imaging modalities are nowadays an essential diagnostic tool in
medicine. From 2009 to 2019 the number of exams in the USA
has increased by about 18%, 42% and 105% for CT, MRI and
PET respectively (1). This increasing demand has exceeded the
actual offer leading to unreasonable delay, weeks or even months
for MRI and PET scans in France/Europe (2). An appropriate
image denoising may help to reduce scanning time or even
reduce injected dose for PET. It may allow to increase the
number of examinations without impacting too much working
hours or requiring the installation of new medical imaging
devices. Deep learning as a subdivision of artificial intelligence
(AI) allows to build promising denoising models.

We focused on PET imaging as it will benefit of denoising
because of its long scanning time. Although many studies are
actually investigating the clinical performance of this method, it
may also impact other emerging fields such as imaging based
predictive models, radiomics and other AI applications (3).

Medical images are basically a visual representation of
different grey levels based on their density (CT), magnetic
properties (MRI) or functional information (PET/SPECT). The
distribution of the grey values characterizes the heterogeneity of
the information. A fast-evolving field called radiomics provide a
methodology to extract different features based on intensity,
shape, texture from images in order to build predictive models
(4). This approach holds great promises as being able to predict
patient outcomes. They might allow personalized treatment. As
an example, an overall survival predictive model including
radiomics features was computed in lung cancer (5) This field
is increasing with an annual growth rate of published papers of
177.82% between 2013 and 2018 (6). The models are very
promising but there are still some efforts to be made to
translate and implement them in a routine clinical setting (7).

Artificial intelligence is in the early phase of application in
medical imaging. In this article, we used deep learning and more
specifically convolutional neural network approaches which
represent a subdivision of AI techniques. Today deep learning
has a key role in image reconstruction, processing (denoising,
segmentation), analysis and predictive modelling. These
applications will develop even more in the future (8). In most
of these tasks, they often outperformed a more traditional
approach (9). A comparison of this type of AI based denoising
algorithm on a PET/MR with clinical data show an increase of
the contrast over noise ratio by 46.80 ± 25.23% compared to
18.16 ± 10.02% for a Gaussian filter only (10)]. Other methods
studied in (10) like guided nonlocal means, block matching 4D
or deep decoder improve the CNR oby24.35 ± 16.30%,
38.31 ± 20.26% and 41.67 ± 22.28% respectively. Denoising may
also be performed during reconstruction, however this cannot be
implemented on an existing machine. The most important
limitation is the lack of FDA or CE certification of all those
approaches. We focus our study on Subtle PET™ (Subtle
Medical, Stanford, USA provided by Incepto, France). It is a post-
processing FDAandCEapproved denoising software for FDGPET
(11), based on convolutional neural networks (CNN), the most
common deep learning architecture for image processing.
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AI denoising and radiomics are two very promising fields in
medical imaging. However, we are the first, to the best of our
knowledge, to try to combine these two approaches for PET
Imaging. We question whether a radiomics model using PET
[18F] FDG trained on classical data is still valid after an AI
denoising method. This study measured the stability of basic and
radiomics PET features in lesions and normal reference organs
when applying an AI denoising solution. We also wanted to
provide an intuitive understanding on how images are affected by
AI compared to a reference gaussian post filter routinely used in
our center to generate EARL1 compatible PET series.
MATERIALS AND METHODS

This retrospective study was approved by the local institution
review board. 113 patients referred to our oncological institution
for an initial or follow-up [18F] FDG PET/CT exam between
January and March 2020 were retrospectively included. We
obtained an informed consent (non-opposition) from all patients.
This observational studywas in linewithMR004, a national French
institution (INDS) defininghealth research conduct guidelines. The
study population characteristics are shown in Table 1.

Our PET center is accredited by EANM research limited
(EARL) (12) and EANM imaging guidelines (13) were respected.
The patients were injected with 4MBq/kg of [18F] FDG IV. PET
images from skull base to mid-thighs were acquired on a digital
TABLE 1 | Description of the patient cohort.

Patients (N) 133 Number

Sex 68% female%

Age(Y) 61.5±13.5 mean±SD

[24-89] [range]

Weight (kg) 74±16 mean±SD

[35-110] [range]

BMI(kg/m2) 27±6 mean±SD

[15-42] [range]

Indication

Oncologic 95 (84%)

Number (%)

Breast 36 (32%)

Lung 17 (15%)

Gynaecologic (except breast) 14 (12%)

other malignancies (lymphoma, anal,
colorectal, bladder, thyroid, head and
neck, melanoma, myeloma) or mixed

28 (25%)

Diagnostic
benign versus
malignant

14 (12%)

Miscellaneous 5 (4%)
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PET/CT (VEREOS 2018, Philips Healthcare) during 1min/bed
position. Once acquired, PET images were reconstructed with an
3D OSEM algorithm, 4 iterations, 4 subsets with point spread
function (PSF) correction. Scatter and attenuation correction was
applied. The spacing and matrix size were respectively of
2x2x2 mm3 and 288x288 pixels. An EARL1 reconstruction was
also generated with the same parameters but convolved with a
gaussian post filter of 7.2mm. CT scan parameters were 100-140
kV (BMI adaptive), with variable mAs according to an index
dose right of 14 and an iterative reconstruction I dose 4;
64x0.625mm slice collimation, pitch of 0.83, rotation time 0.5 s,
3Dmodulation, matrix 512x512 and voxel size 0.97x0.97x 3 mm3.
The PET mean dose was 5.32 mSv for a patient of 70 Kg. CT had
a CTDI median value of 4.8 mGy and a DLP of 431.5 mGy.cm.

The originally reconstructed PET images (with PSF
modelling) were denoised with a convolutional neural network
(CNN) approach by a commercially available software, Subtle
PET® by Subtle Medical. SubtlePET™ uses a multi-slice 2.5D
(5 slices) encoder-decoder U-Net DCNN to perform denoising.
The software takes a low count PET image as the input and
generates a high-quality PET image (close to full dose image) as
the output. Accreditation from FDA and CE required robustness.
The denoising model was trained on PET images from different
centers and vendors. It employs a CNN-based method in a pixel’s
neighborhood to reduce noise and increase image quality. Using
a residual learning approach and optimized for quantitative (L1
norm) as well as structural similarity (SSIM), the software learns
to separate and suppress the noise components while preserving
and enhancing non-noise components. The images were directly
sent from the PET console to a specific local server. Once
transferred they were anonymized, denoised, deanonymized
and pushed back to a clinical viewer. The mean treatment time
was 45 s on a NVIDIA 1080 GPU processor.

All contours were performed in 3D slicer version 4.10 (14) on
original PSF PET images and copied on AI denoised and EARL1
PET series. Spherical volumes of interest (VOI) were drawn in the
reference organs: liver (3 cm radius, avoiding upper parts, tissue
boundaries andmajor vessels) and lung (1.5 cmradius, drawn in the
upperparts).Up tofiveFDGavid lesionsperpatient (includingonly
the most intense ones), in total 101 lesions, were segmented by an
experienced nuclear medicine physician. Segmented lesions
consisted only of authentic malignant primary and metastatic
lesions in solid tumors or lymphoma. A semi-automatic tool was
employed to segment lesions. A VOI was created by clicking on the
original PET image. This 3DSlicer module (PETTumors
Segmentation) is based on a highly automated optimal surface
segmentation approach, which is a variant of the layered optimal
graph image segmentation of multiple objects and surfaces
segmentation (15). The VOI was than inspected and manually
adjusted with a brush if needed. An automatic donut of 2 voxels
diameters was grown around the lesion to calculate the lesion over
background ratio. The mean analyzed metabolic volume was 20
(1-162) ml. The same VOI were used for original, AI denoised and
EARL1like images.

The extraction of radiomics features was automatically
carried out with the pyradiomics package (16) thus mostly
Frontiers in Oncology | www.frontiersin.org 3
complying with the Image Biomarker Standardisation Initiative
(17). Images had a native isotropic spacing of 2x2x2 mm3 so an
interpolation step was not necessary. As there is no consensus
about the intensity discretization, a fixed bin number of 64 was
used (18). A python code using simpleITK (19) was developed to
extract all the radiomics features and is accessible in the
supplementary information. Eight groups of radiomics features
were computed. The intensity class contains first-order data,
describing the distribution of voxel intensities within the image
region defined by the VOI. They are commonly used and basic
images metrics. The shape class is constituted of the 3D size and
shape of the VOI. These shape features were excluded as the VOI
was the same in all the images. A Grey Level Co-occurrence
Matrix (GLCM) class describes the second-order joint
probability function of an image region. Grey Level Size Zone
Matrix (GLSZM) features quantify grey level zones in an image.
A grey level zone is defined as the number of connected voxels
that share the same grey level intensity (3D). The Grey Level Run
LengthMatrix (GLRLM) class testifies of grey level runs, which are
defined as the length in number of pixels, of consecutive pixels that
have the same grey level value (1D). Neighboring Grey Tone
Difference Matrix (NGTDM) is a descriptor of the difference
between a grey value and the average grey value of neighbors. A
Grey Level DependenceMatrix (GLDM) characterizes the number
of connected voxels within a distance from the center voxel in
function of their grey level. Most features used in this study are in
compliance with Imaging Biomarker Standardization Initiative
(IBSI) (IBSI reference manual).IQ wavelets class contains two
features, a local analyzing just the VOI and a global of the whole
image.Thesemetrics characterize imagequality as the ratio between
high and low wavelet frequencies.

The Concordance Correlation Coefficients (CCC) (20) were
evaluated comparing the post processing IA denoised and EARL1
images to the original PET. CCC values of +/-1 describe a perfect
positive/negative correlation and 0 no correlation. Features with a
minimum CCC of 0.85 were considered as statistically reproducible
and concordant (21). Scatter plots of variable pairs with R2 value was
displayed for the coefficient of variation (CV) andmean SUV values
to understand the difference of CCC’s in lesions and in liver when an
AI denoising or EARL1filter are used on original images.Mean SUV
in lesions is presented using boxplots withminimum,maximum, 1st
quartile and 3rd quartile to highlight the difference between the 3
series. A paired Wilcoxon signed rank test was used to compare
features in original andAI denoised, andoriginal andEARL1 images.
P-values <0.05 were considered statistically significant. All the
statistical analyzes were performed using python (22) and
scipy.stats library. All the data and the python code of the analysis
are available on https://github.com/AurelienCD/RadiomicsIA_
PET_Depository_Manuscript-ID-692973.
RESULTS

A visual comparison of AI denoised (B) versus original images
(A) shows that the AI approach seems to decrease noise in
healthy tissues while preserving the intensity distribution in the
August 2021 | Volume 11 | Article 692973
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lesion in Figure 1. In the EARL1-PET image (C) background
noise is reduced, but also in the lesion the uptake intensity and
distribution are affected. Similar observations can be deduced
from the second patient’s images (Figures 1D–F).

The concordance correlation coefficient (CCC) testifying of the
stability of the features comparing denoised to original images is
presented in Figure 2. In lesions, 90/104 (86.5%)with AI and 46/104
(44%) with EARL1 denoising stayed stable. All stable features in the
EARL1 images were also stable in AI images. For the basic intensity
class parameters, SUVpeak, SUVmean and SUVmedian kept a
CCC≥0.85 in the two denoising approaches. SUVmax and
SUVmin CCC values stayed stable for the AI denoised images in
the lesions, but fell below the significant threshold for EARL1 images.
The NGTDM features were less affected by both denoisingmethods.
In the reference organs, for AI and EARL1 respectively, 12/104
(11.5%) and 7/104 (6.7%) in liver and 26/104 (25%) and 24/104
(23.1%) in lung had a CCC value at least of 0.85. The majority of the
features in reference organs are less stable then in lesions for the two
denoising methods. For the basic intensity parameters, SUV mean
wasoverall stable forbothdenoisingmethodswhileSUVpeak inboth
liver and lung for AI denoising, versus only in the lung for EARL1.

Concerning AI denoising, CV values in lesions before and after
processing were very similar. In the lesions the values were slightly
below and parallel to the identity line with R2 = 0.992. EARL1
Frontiers in Oncology | www.frontiersin.org 4
showed a lower correlation and greater distance from the identity
line(Figure 3A). In healthy liver (Figure 3B), the behavior was
different. CV was reduced by a magnitude order of 2 for both
denoising methods. With IA denoising, the points were also more
scattered for liver (R2 = 0.884) than for lesions (R2 = 0.992). EARL1
denoising showed less differences (R2 = 0.851 vs 0.893). The SUV
mean value displayed in Figures 3C, D showed high correlation in
lesions as well as in the healthy tissue. In Figure 3D SUV mean in
liver is notmodified by a EARL1 gaussian postfilter (R2 = 1). Scatter
plots of variable pairs for all the features are accessible in the
supplementary materials.

Figure 4 testifies of the difference of SUV mean in lesions
between AI and EARL1 denoising compared to the original
images. AI denoising not significantly modified the SUV mean
values with a p=0.06. EARL1 post filter led to a significantly
lower mean SUV in lesions (p<0.001).

The results of the paired Wilcoxon signed rank test between
original andAIdenoised images are presented inTable2.Almost all
the features 79/100 (79%) were significantly different. Wavelets
features were not studied. In the intensity class only 4/27 were not
significantly different. SUV mean and median values were not
significantly different between the AI denoised image and the
original one. Table 2 shows in blue the 18 features that had a
CCC>0.85 and were not significantly different.
A B C

D E F

FIGURE 1 | Representative PET imaging of two lesions in different patients with a SUV windowing of (0–5). (A, D) [red], (B, E) [green], (C, F) [yellow] for original, AI
and EARL images respectively. A Zoom is added on each image with SUV windowing between (0–25) and (0–30) for the first and second patient.
August 2021 | Volume 11 | Article 692973
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DISCUSSION

We evaluated the impact of AI denoising on the stability of
radiomics features computed in FDG PET images, the standard
being the clinical images. We also concurrently evaluated the
effect of EARL1 gaussian filtering. To the best of our knowledge,
it is the first clinical study on the impact of artificial intelligence
denoising on PET radiomics.

Texture features used in radiomics models describe the pattern
distribution of voxels and quantify intra-tumor heterogeneity in all
Frontiers in Oncology | www.frontiersin.org 5
3 dimensions (4). 86.5% showed a stable behavior for intensity and
radiomics classes. The stability criteriumwas based on a CCC≥0.85
(20). In lesions, values were significantly different in 71.1% of the
features after AI denoising. An AI denoising approach like CNN
seems to change the absolute values ofmost of the features but keep
the correlation between them.

Advanced applications aim at the correlation of image features,
like radiomics, with clinical endpoints (4, 23). Radiomics models
derived fromCTcorrelatedwith a prognostic value, overall survival
in lung cancer patient (5). In baseline PETof locally advanced rectal
FIGURE 2 | CCC of all the features from AI and EARL versus original images. A threshold is display by a line with a CCC = 0.85. Blue bar indicates a CCC≥0.85, red bar CCC < 0.85.
August 2021 | Volume 11 | Article 692973
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cancer 18F-FDG PET/CT texture features provide strong
independent predictors of survival in patients (24). These models
are very promising however there are several pitfalls to overcome
(25) such as study design, data acquisition, segmentation, features
calculation andmodeling by the radiomics community. This study
allows a better understanding of the behavior of predictive models
when an AI denoising method is employed. A predictive model
basedon this typeof informationcanbebuilt fromMRI, PET,CTor
a combination of image modalities.

Deep learningAI techniqueshavebeenused toperformdenoising
on PET images for example by generating a full-dose PET images
Frontiers in Oncology | www.frontiersin.org 6
from low-dose images (26) or to directly filter reconstructed PET
images (27). We used an AI denoising approach based on DCNN
(11). This approach seems to be able to reduce the acquisition time
activity product by a factor of 2 to 4.Weused it directly on the studied
PET image without activity or time reduction because we want to
characterize the effect of AI denoising while not compensating for
count losses.

Denoising will be more and more used but may also generate
pitfalls to build a radiomics predictive model as the 3d texture
informationmaybemodified. Studying the stability offeatureswith
a test-retest approachhas beenperformed inPET (28). The number
A B

C D

FIGURE 3 | Coefficient of correlation plot with R2 value in lesions (A, C) and healthy liver (B, D). (A–D) show respectively coefficient of variation (CV) and mean SUV
calculated from AI and EARL1-like image in function of original images. Dotted line represents the identity line.
FIGURE 4 | Box plot of the mean SUV value in lesion in Original, AI and EARL1-like images. The distribution difference between the original images and AI is not
significant (p=0.06) while it is significant (p<0.001 ***) between original and EARL1-like images.
August 2021 | Volume 11 | Article 692973
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of features selected based on their stability was 71% (CCC>0.8) in
PET NSCLC patients. In this study the stability of FDG PET
radiomics features in lesions was 86.5% (CCC≥0.85) between AI
denoised and original images. These values are at least of the same
order of magnitude highlighting the performance of AI for
denoising in PET imaging. As a consequence, a predictive model
built on standard PET images could be transposed on AI denoised
images, especially concerning the features we have shown as stable
Frontiers in Oncology | www.frontiersin.org 7
in this study. However, the threshold values will have to be
recomputed. On the other hand, in healthy tissues as liver and
lung most of the features were unstable. Stable features were even
less frequent in the liver (11.5%) than in the lung (25%).The effect of
denoising on these tissues seems more drastic than on lesions. We
hypothesize that the AI algorithm recognizes similar healthy
features and changes their intensity value and distributions. As a
consequence, the ratio of the lesion over liver uptake should be
TABLE 2 | Result of Wilcoxon signed rank test of all the features between AI denoised and original images in lesions.
*p < 0.05, **p < 0.01 and ***p < 0.001. Yellow filling means that the features are not significantly different p>0.05 and have a CCC>0.85.
August 2021 | Volume 11 | Article 692973
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transposed with care in clinical PET evaluation, as this ratio is
altered for AI denoised versus original PET images.

The difference of behaviors in lesions and healthy tissue is one
of the main advantages of AI based methods compared to an
EARL1 gaussian post filter method. AI denoising maintains in
the lesion the textural information and FDG uptake more stable
while modifying healthy tissue. CV measures noise but also grey
levels and is correlated to NECR/image quality in PET (29). As
shown in Figures 3A, B, AI denoising had almost no effect on
CV in lesions but reduced it in liver. On the contrary, EARL1
Gaussian postfilter reduced CV similarly in lesions and liver.
Gaussian post filter will apply denoising accounting for neighbor
all over the images whereas AI may be more selective in
amplitude of denoising depending on noise vs non-noise
components. The distribution of SUV mean in lesions has a
different behavior between AI (paired t-test p=0.06) and EARL1
post filter (paired t-test p<0.001) compared to original images.

Interestingly EARL1 gaussian postfilter led to no modification
of SUV mean values in liver (Figure 3D). It is mainly due to the
increase of point spread function caused by the application of a
gaussian postfilter. In a large homogenous area SUVmean was not
modified while the noise (CV) was reduced. In smaller, more
heterogeneous areas it will melt the grey levels of the different
neighbors, lesions and healthy voxels (30). The modification of all
the tissues in the image by the gaussian postfilter also appeared in
Figure 2. Even in lesions only 44% of the features remained stable
in EARL1 compatible versus original PET images.

In this analysis we tried to minimize the bias inherent of a
radiomics workflow. We use pyradiomics which is mostly
compatible with IBSI initiative. Each AI and EARL1 denoised
images were extracted from the same images. The same VOI were
used on all the series. One could however point out the use of the
same contours for lesions in the 3 images as a possible study
drawback. Re-segmentation of lesions on each image could have
led to different contours and feature values. There is no gold
standard for a segmentation method in PET radiomics. It remains
also unclear to which extent this can affect radiomics values and
predictivemodels (31).We chose a resampling of 64 bins instead of
a fixed bin width (32) even if it showed a better reproducibility. As
we directly compared images before and after denoising (minimum
andmaximumvaluesof the image changed) resamplingwithafixed
bin width could lead to a different number of bins just due to noise
reduction andnot to texture based information. In a futureworkwe
would apply the same methodology with bin width resampling to
strengthen our outcome. We didn’ t split the data into training,
validation and test cohorts in this study due to the relatively small
number of patients and lesions (33). A test-retest radiomics study
onpatient inCTshowed that 446/542 featureshad ahigherCCC for
patientswith lung cancer than for thosewith rectal cancer (34).Our
study was based on 113 patients, which is a small number. Pooling
howeverdifferent primarymalignancies and lesions’nature and size
might have helped to reduce overfitting. The main next
challenge will be to validate our findings on different and
heterogenous patient cohorts and other PET protocols and
systems. It might be very risky to apply the same selection of
features on other PET or even MRI or CT systems (25). Also, the
Frontiers in Oncology | www.frontiersin.org 8
mechanism of AI denoising recognizing successfully non noise
versus noise components has to be further investigated on other
camera types and PET protocols.

Numerical PET/CT’s have a better spatial and temporal
resolution leading to a more contrasted activity distribution in
lesions than analog systems (35). As this study was carried out on a
digitalPET/CTwe can expect that itwill havebeenmore sensitive to
variations in texture compared to one on an analog system.

CONCLUSION

Applying an AI, CNN denoising on FDG PET images maintains
most of the lesion’s texture information in contrast to a EARL1-
compatible Gaussian postfilter. The predictive texture features of
a trained model could be transposed, however with an adapted
threshold. Artificial intelligence in PET is a very promising
approach as it adapts the denoising for noise versus non-noise
components preserving information where it should.
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