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Purpose: Clinical evidence suggests radiation induces changes in the brain
microenvironment that affect subsequent response to treatment. This study investigates
the effect of previous radiation, delivered six weeks prior to orthotopic tumor implantation,
on subsequent tumor growth and therapeutic response to anti-PD-L1 therapy in an
intracranial mouse model, termed the Radiation Induced Immunosuppressive
Microenvironment (RI2M) model.

Method and Materials: C57Bl/6 mice received focal (hemispheric) single-fraction, 30-
Gy radiation using the Leksell GammaKnife® Perfexion™, a dose that does not produce
frank/gross radiation necrosis. Non-irradiated GL261 glioblastoma tumor cells were
implanted six weeks later into the irradiated hemisphere. Lesion volume was measured
longitudinally by in vivo MRI. In a separate experiment, tumors were implanted into either
previously irradiated (30 Gy) or non-irradiated mouse brain, mice were treated with anti-
PD-L1 antibody, and Kaplan-Meier survival curves were constructed. Mouse brains were
assessed by conventional hematoxylin and eosin (H&E) staining, IBA-1 staining, which
detects activated microglia and macrophages, and fluorescence-activated cell sorting
(FACS) analysis.

Results: Tumors in previously irradiated brain display aggressive, invasive growth,
characterized by viable tumor and large regions of hemorrhage and necrosis. Mice
challenged intracranially with GL261 six weeks after prior intracranial irradiation are
unresponsive to anti-PD-L1 therapy. K-M curves demonstrate a statistically significant
difference in survival for tumor-bearing mice treated with anti-PD-L1 antibody between
RI2M vs. non-irradiated mice. The most prominent immunologic change in the post-
irradiated brain parenchyma is an increased frequency of activated microglia.
June 2021 | Volume 11 | Article 6931461

https://www.frontiersin.org/articles/10.3389/fonc.2021.693146/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.693146/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.693146/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.693146/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:garbow@wustl.edu
https://doi.org/10.3389/fonc.2021.693146
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.693146
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.693146&domain=pdf&date_stamp=2021-06-24


Garbow et al. Irradiation-Immunosuppression of Murine Brain Microenvironment

Frontiers in Oncology | www.frontiersin.org
Conclusions: The RI2M model focuses on the persisting (weeks-to-months) impact of
radiation applied to normal, control-state brain on the growth characteristics and
immunotherapy response of subsequently implanted tumor. GL261 tumors growing in
the RI2M grew markedly more aggressively, with tumor cells admixed with regions of
hemorrhage and necrosis, and showed a dramatic loss of response to anti-PD-L1 therapy
compared to tumors in non-irradiated brain. IHC and FACS analyses demonstrate
increased frequency of activated microglia, which correlates with loss of sensitivity to
checkpoint immunotherapy. Given that standard-of-care for primary brain tumor following
resection includes concurrent radiation and chemotherapy, these striking observations
strongly motivate detailed assessment of the late effects of the RI2M on tumor growth and
therapeutic efficacy.
Keywords: MRI, radiation, tumor, microenvironment, immunotherapy, checkpoint inhibitors, microglia
INTRODUCTION

Radiotherapy combined with immunotherapy is an active area of
investigation in the treatment of brain tumors. Active areas of study
include investigations of (i) radiation dose and fractionation
required to induce immunologic cell death (1); (ii) concurrent vs.
sequential therapies (2–4); and (iii) outcomes following whole brain
radiation therapy vs. stereotactic radiosurgery.

Clinical evidence suggests radiation induces changes in the
brain microenvironment that affect subsequent response to
treatment. Studies of patients with metastatic brain tumors
noted metastatic lesions that progress after initial irradiation
are often less responsive to subsequent treatment. Previously
irradiated melanoma and NSCLC brain metastases failed to
respond to pembrolizumab, while non-irradiated lesions had
similar response rate to those of extracranial disease (5). Similar
observations were noted in a separate cohort of patients with
melanoma brain metastases, in which the cohort with lesions
that progressed following prior irradiation had a substantially
lower response rate to immunotherapy compared to the cohort
with irradiation-naïve lesions (6). In recurrent glioblastoma, PD-
1 monotherapy and PD-1/CTLA-4 combination therapy alone
failed to demonstrate clinical benefit or objective response rates
(7–9). These patients were all treated previously with
chemoradiotherapy per standard-of-care. Together, these
clinical observations suggest that late effects of prior irradiation
to the brain microenvironment may be associated with resistance
to immune checkpoint inhibition (ICI) therapy.

We have developed a novel, GammaKnife® (GK) enabled, focal
(hemispheric) brain-irradiation mouse model (10), termed the
Radiation-Induced Immunosuppressive Microenvironment
(RI2M) model, that provides a powerful platform for investigation
into the late effects of irradiation on the brain parenchyma
microenvironment. Earlier studies of GK-enabled focal-
irradiation of mouse brain from this laboratory employed
substantially greater radiation doses and were purposefully
designed to reliably elicit late-time-to-onset radiation necrosis in
an experimentally tractable time frame, with radiation necrosis
consistently appearing approximately four to eight weeks post-
2

irradiation (11–17). Importantly, the resultant radiation necrosis in
the mouse brain recapitulated all of the key histologic hallmarks of
the clinically observed pathology, giving strong confidence
regarding the platform’s clinical relevance.

In a recent study (10), we observed that non-irradiated DBT
glioblastoma cells, implanted into the RI2M of syngeneic mice six
weeks post-irradiation – thus, absent acute radiation effects –
showed remarkable changes in growth characteristics.
Specifically, tumors displayed aggressive, invasive growth,
characterized by viable tumor and large regions of hemorrhage
and necrosis, resulting in decreased survival compared to tumors
growing in non-irradiated brain. Importantly, for these studies,
we employed irradiation doses that elicit no frank/gross evidence
(MRI and H&E histology) of radiation necrosis, or other outward
pathology (e.g., behavior), in the post-irradiation setting. Thus,
these data suggest that orthotopic tumors originating from naïve
(non-irradiated) glioblastoma cells growing in the previously (six
weeks) irradiated brain show many of the histologic hallmarks of
recurrent GBM in patients.

Utilizing this model, we are able to evaluate the effects of prior
irradiation of the brain parenchyma on the efficacy of a known
immune checkpoint sensitive orthotopic transplant glioblastoma
model, GL261.We demonstrate thatmice challenged intracranially
with non-irradiated (naïve) GL261 cells after prior (six weeks)
intracranial irradiationwith a dose eliciting no frank/gross evidence
of radiation necrosis or other pathology are unresponsive to anti-
PD-1/PD-L1directed therapy.Theobservationsofenhanced tumor
growth and resistance to checkpoint inhibitors for tumors growing
in RI2M are distinct from studies employing combined radiation
and immunotherapy to treat existing tumors (18, 19). The most
prominent immunologic change in the post-irradiated brain
parenchyma is an increased frequency of activated microglia,
suggesting they may play a role in the immunosuppressive effects
observed. These striking findings have important implications
regarding the clinical effects of prior, standard-of-care irradiation
on the brain parenchyma and on the subsequent use of ICI therapy
inpatientswithbrain tumors. Specifically, a betterunderstanding of
the delayed effects of irradiation on the brain/tumor
microenvironment will be crucial to identifying effective therapies
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that can safely synergize with immune checkpoint inhibitors to
enhance immune responsiveness and improve outcome for brain
tumor patients.
MATERIALS AND METHODS

Animals
All experiments were performed in accordance with the
guidelines of Washington University’s Institutional Animal
Care and Use Committee and were approved by that
committee. Seven-to eight-week-old female C57Bl/6 mice
(Envigo Laboratories, Indianapolis, IN), housed five per cage in
a light- and temperature-controlled facility, were used in this
study. These mice were observed daily to ensure that
interventions were well tolerated. A subset of healthy-
appearing mice was sacrificed for histology, and mice were also
euthanized if they lost more than 20% body weight or suffered
obvious behavioral deficits (e.g., ataxia).

Gamma Knife Irradiation
Mice were anesthetized and restrained on a custom-built
platform mounted to the stereotactic frame that attaches to the
treatment couch of the Leksell GK Perfexion™ (Elekta,
Stockholm, Sweden), a device used for stereotactic radiosurgery
of patients with malignant brain tumors. Mice were anesthetized
with a mixture of ketamine (25 mg/kg) and xylazine (5 mg/kg),
injected intraperitoneally (IP) five minutes before the start of
irradiation. Single 30-Gy radiation fractions (50% isodose),
generated using the GK’s 4-mm collimator, were focused on
the left cortex at a site ~ 3 mm posterior to bregma.

Tumor Implantation
Tumor cells were implanted in mice, as described previously
(20). Briefly, mice were anesthetized with isoflurane and secured
in a stereotactic head holder. Murine GL261 glioblastoma cells
were implanted (~50,000 cells suspended in 10 mL per mouse)
over three minutes in the striatum at a site 2-mm posterior and
3-mm to the left of bregma, 2-mm below the cortical surface.

Experimental Scheme
These experiments were designed to assess tumor growth and
response to anti-PD-L1 immunotherapy in the setting of
previously irradiated brain tissue. Cohorts of mice received a
single fraction dose of 0 or 30 Gy (50% isodose), respectively, of
GK radiation. At a radiation dose of 30 Gy, no frank radiation
necrosis is observed, visualized by either anatomic MR imaging
or standard H&E staining, up to 20 weeks post irradiation (19).
Naïve (non-irradiated) GL261 tumor cells were implanted into
the ipsilateral hemisphere six weeks post-brain-irradiation – thus
obviating acute radiation effects – to evaluate the consequences
for tumor growth and immuno-therapeutic response imposed by
the RI2M. Mice treated with anti-PD-L1 antibody received IP
injections on days 3, 6, 9, 12, and 15 post tumor implantation;
untreated mice received injections of PBS vehicle on these same
days (21).
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Magnetic Resonance Imaging
Imaging was performed with a 4.7-T small-animal MR scanner
(Agilent/Varian, Santa Clara, CA) employing an actively
decoupled coil pair: a 9-cm inner diameter volume coil
(transmit) and a 1.5-cm outer diameter surface coil (receive).
Before all imaging experiments, mice were anesthetized with
isoflurane/O2 [2% (vol/vol)] and maintained on isoflurane/O2

[1% (vol/vol)] throughout the experiment. Mice were restrained
in a laboratory-built, three-point, Teflon head holder and were
placedonawaterpadwith circulatingwarmwater tomaintainbody
temperature at approximately 37±1°C.Before beingplaced into the
magnet, eachmouse was injected intraperitoneally with 0.25 mL of
MultiHance (gadobenate dimeglumine; Bracco Diagnostics Inc,
Princeton, NJ) contrast agent, diluted 2:10 in sterile saline. This
procedure highlights regions of impaired blood brain barrier
integrity via vascular leakageof contrast agent into the parenchyma.

Mice were imaged on post-implantation (GL261 cells) days
10, 14, and 18, and then, every two-to-three weeks, until they
were sacrificed, or died due to disease progression. Post-contrast
T1-weighted images were acquired with the following
parameters: time-to-repetition (TR) = 650 ms, time-to-echo
(TE) = 11 ms, number of transient (NT) = 4, field of view = 15 x
15 mm2, matrix size = 128 x 128, slice thickness = 0.5 mm, 21 slices
to cover the whole brain. T2-weighted images were collected with
time-to-repetition (TR) = 1200 ms and time-to-echo (TE) = 50 ms,
with all other parameters the same as for the T1W images.

Histology
Mice were sacrificed and their brains were immediately removed
from the skulls and immersed in formalin. After 24 hours, brains
were transferred to a 20% alcohol solution. A 3-mm thick
transaxial block, centered at the irradiation site (~3 mm
behind the bregma), was obtained from each brain. The blocks
were then processed through graded alcohols and embedded in
paraffin. All paraffin-fixed blocks were sectioned from the center,
at a thickness of five microns. Tissue sections were stained with
hematoxylin and eosin (H&E) according to standard protocols.

To measure levels of activated microglia, 5-micron thick
tissue sections were immunostained using a rabbit monoclonal
anti-IBA-1 antibody (1:1000; Abcam, Cambridge, MA USA),
followed by incubation with SuperPicture Polymer Detection Kit,
HRP (Life Technologies, Frederick, MD, USA). Slides were
viewed with a Hamamatsu NanoZoomer 2.0-HT whole slide
imaging system (Hamamatsu Photonics, Bridgewater Township,
NJ USA). All histologic and immunohistochemical analyses were
performed by a board-certified neuropathologist (S.D.).

Isolation of Tumor-Infiltrating Lymphocytes
and Flow Cytometry Analysis
Flow cytometry experiments were performed on a separate
cohort of animals that was not included in the survival study.
Mice were sacrificed at post-implantation day 14 and intracranial
tumors were harvested. Tumor-infiltrating leukocytes (TIL) were
isolated by generating a single cell suspension through
mechanical dissociation of the tumor tissue. Myelin was
removed using a 30% Percoll density gradient. Red blood cells
June 2021 | Volume 11 | Article 693146
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were removed using ACK lysis buffer. The resulting cell pellet
was stained with fluorophore-conjugated antibodies to CD45,
CD3, CD4, CD8, NK1.1, CD11b, Gr-1, and Zombie NIR (live/
dead). All antibodies were obtained through BioLegend (San
Diego, CA). Flow cytometry was performed on a BD LSRFortessa
flow cytometer (BD Biosciences, San Jose, CA). Analysis was
performed through FlowJo software (BD Biosciences). Statistical
analysis was performed using the Student t-test in Prism
(GraphPad Software, San Diego, CA).

Live CD45+ TIL were subgated into lymphoid and myeloid
subsets to determine relative frequency among total TIL. Lymphoid
cell populations were defined as CD4 or CD8 T cells (CD3+NK1.1-

CD11b), NK cells (CD3- NK1.1+ CD11b-), or NKT cells (CD3+

NK1.1+ CD11b-). Myeloid cell populations were defined as CD3-

NK1.1- CD11b+, and further gated on granulocytic MDSC (Gr-
MDSC; CD11blo Gr-1hi), monocytic MDSC (M-MDSC; CD11bhi

Gr-1lo), or tumor-associatedmacrophage/microglia (CD11b+Gr-1-).
Gating on resting microglia (CD45lo), activated microglia (CD45int),
and tumor-associated macrophage (CD45hi) was performed on the
CD11b+ Gr-1- subset.

Antibody Treatment
Monoclonal mouse anti-PD-L1 antibody (InVivoMAb, clone
10F.92G) was purchased from Bio X Cell (West Lebanon, NH)
and diluted in Bio X Cell InVivoPure dilution buffer prior to use.
500 µg of antibody per mouse was injected IP on days 3, 6, 9, 12,
and 15 post-tumor-implantation.

Data Analysis and Statistics
Tumor volumeswere derivedusing ImageJ (https://imagej.nih.gov/
ij/), with regions of interest (ROIs) for the tumor lesions being
drawn manually on the post-contrast T1-weighted images. In
calculating lesion volumes, hypointense regions within the tumor
were also treated as part of the lesions. MR-derived lesion volumes
were calculated as the sumof the numberof lesion voxelsmultiplied
by the voxel volume. Changes in lesion volume over time were
described using a linear mixed model, to account for potential
correlation among multiple measurements from the same mouse,
followed by ad hoc comparisons for between-group differences at
each timepoint. Square-root transformationof lesions volumeswas
performed to better satisfy the normality and homoscedasticity
assumptions for the linear mixed model. Distributions of survival
times were described using the Kaplan-Meier (K-M) product limit
method, and between-group differences were compared using a
weighted log-rank test (22). All tests were two-sided and
significance was set at a p-value of 0.05. Statistical analyses were
performed using SAS 9.4 (SAS Institutes; Cary, NC).
RESULTS

Tumor Implanted Into Previously
Irradiated Brain Grows More Aggressively
and Hemorrhagically
Figure 1A shows representative contrast-enhanced, T1-weighted
images of GL261 tumors growing in RI2M (top panels) and non-
Frontiers in Oncology | www.frontiersin.org 4
irradiated (bottom panels) mouse brain. Irradiated brains
received 30 Gy (50% isodose) of GK radiation six weeks prior
to tumor implantation. As demonstrated in Figure 2, which
shows T2-weighted images and contrast-enhanced, T1-weighted
images of mouse brain collected ten weeks post-GK-irradiation
(30 Gy @ 50% isodose), no acute radiation effects or blood-
barrier breakdown are observed at the time of tumor
implantation (10, 14). Nonetheless, as is evident in the images
in Figure 1A, tumors in previously irradiated brain grow more
aggressively than corresponding tumors in non-irradiated mice
as reflected in the increased size and invasiveness of the lesions.
Figure 1B shows plots of mean lesion volume as a function of
time post-tumor-implantation for cohorts of irradiated (n=9)
and non-irradiated (n=10) mice. A trend in lesion volumes
(irradiated vs. non-irradiated brain) is observed on post-
implantation day 14, and the difference is statistically
significant on day 18 (p=0.03).
Tumors Growing in Previously
Irradiated Mouse Brain Do Not Respond
to Anti-PD-L1 Immunotherapy
Figure 3 (left) displays representative contrast-enhanced, T1-
and T2-weighted MR images of tumors growing in mouse brain,
collected on post-implantation day 21, for subjects treated with
anti-PD-L1 mouse monoclonal antibody on post-implantation
days 3, 6, 9, 12, and 15. Early therapeutic intervention prior to
establishment of visible tumors was chosen to minimize the
impact of the differences in growth kinetics observed at later time
points. By post-implantation day 21, the therapeutic
responsiveness to anti-PD-L1 inhibition of tumor in non-
irradiated brain, compared with irradiated brain, is clearly
evident. Figure 3 (right) shows Kaplan-Meier survival curves
for cohorts of tumor-bearing, anti-PD-L1-treated mice. The
survival of tumor-bearing mice whose brains were not
irradiated (n=15; dashed line) is significantly greater than for
mice whose brains were irradiated six weeks prior to tumor
implantation (n=14; solid line). The ~50% survival of anti-PD-
L1-treated, non-irradiated mice is consistent with previously
published studies of ICI-treated mice (21, 23–25).
Activated Microglia Are More Prevalent
in Irradiated Mouse Brain
Immunohistochemical staining utilized IBA-1 antibodies to
identify activated microglia and macrophages. Figure 4A
compares IBA-1 staining of non-irradiated and (focally)
irradiated mouse brain, in the absence of tumor. Increased
levels of activated microglia and macrophages are found in the
irradiated hemisphere, which looks normal by standard H&E
staining. Populations of activated microglia and macrophages on
the non-irradiated side are comparable to those seen bi-
hemispherically in non-irradiated mice.

Figure 4B displays IBA-1 staining of tumor-bearing mouse
brain, with the top panel showing tumor growing in non-irradiated
brain, and thebottompanel tumorgrowing inRI2M.Non-irradiated
June 2021 | Volume 11 | Article 693146
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mice generally had solid well-circumscribed tumor with activated
microglia/macrophages within the tumor and at the periphery.
Rarely, cuffing of macrophages/microglial cells at the interface of
tumorwithnormal parenchymawas also observed.Whenpresent,
Frontiers in Oncology | www.frontiersin.org 5
it was thin or partial and never as complete/circumferential
and dense as seen in the irradiated groups. Outside of the
tumor, there were substantial numbers of activated microglia
and macrophages on the ipsilateral side, with little IBA-1
A B

FIGURE 1 | (A) Representative, contrast-enhanced T1-weighted MR images of GL261 tumor-bearing C57Bl/6 mice, collected 18 days after tumor implantation.
The top panel shows three contiguous image slices for two animals whose brains were focally irradiated with 30-Gy (50% isodose) Gamma Knife radiation six weeks
prior to GL261 cell implantation in the RI2M. The bottom panel shows similar images for non-irradiated mice. Tumors growing in the RI2M are larger and more
hyperintense (reflecting greater leakage of contrast agent) compared with tumors growing in non-irradiated brain. (B) Plots showing mean lesion volume (+/- SEM) for
tumors growing in irradiated (n = 9; black) and non-irradiated (n = 10; white) brain at post-implantation days 10, 14, and 18. At post-implantation day 14, there is a
trend toward larger lesion volumes in irradiated brain (p = 0.07). At post-implantation day 18, the difference in lesion volumes is statistically significant (*p = 0.030).
FIGURE 2 | (top) Contrast-enhanced T1-weighted and (bottom) T2-weighted MR images of a C57BL/6 mouse 10 weeks following hemispheric 30-Gy (50%
isodose) GK-irradiation. Each panel shows twelve contiguous, 1-mm thick transaxial slices. Both the T1W and T2W images are indistinguishable from the
corresponding images of non-irradiated mice and show no evidence of radiation-induced tissue damage.
June 2021 | Volume 11 | Article 693146
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A

B

FIGURE 3 | (A) Representative contrast-enhanced, T1- and T2-weighted MR images of the brains of C57Bl/6 mice, previously irradiated focally, or not, implanted
with GL261 cells in the irradiated hemisphere and treated with anti-PD-L1 therapy; (B) Kaplan-Meier curves show that survival of tumor-bearing mice whose brains
were not irradiated (n = 15; dashed line) is significantly greater than for mice whose brains were irradiated six weeks prior to tumor implantation (n = 14; solid line),
p = 0.031 [extended log-rank test (22)]. + signs indicate mice that were sacrificed for histology; numerals near the bottom of the plot reflect the number of surviving
mice in groups A (Anti-PD-L1; RI2M) and B (Anti-PD-L1; non-irradiated brain).
A

B

FIGURE 4 | (A) H&E (left column) and IBA1 images (middle, right columns) from non-irradiated (0 Gy; top panel) and focally irradiated (30 Gy; bottom panel) mice in
the absence of tumor. Increased IBA1 staining, indicative of increased levels of activated microglia and macrophages, is observed in the irradiated hemisphere, which
looks normal by standard H&E staining. (B) H&E (left column) and IBA1 (all other columns) images from non-irradiated (0 Gy; top panel) and irradiated (30 Gy;
bottom panel) tumor-bearing mice. Non-irradiated mice generally have well-circumscribed tumor with microglial activation both within the tumor and at its periphery.
Tumors implanted into RI2M are characterized by large areas of hemorrhage and necrosis with lesser viable tumor. However, there was marked activation of
microglia within the tumor and surrounding it.
Frontiers in Oncology | www.frontiersin.org June 2021 | Volume 11 | Article 6931466
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staining on the contralateral side. Tumors implanted into the
RI2M were characterized by large areas of hemorrhage and
necrosis with lesser viable tumor. However, a thick cuff of
macrophages/microglial cells formed around the tumor and at
its interface with the normal brain parenchyma. Interestingly, for
larger tumors/lesions, the contralateral side also had increased
numbers of activated microglia and macrophages compared to
tumor in non-irradiated brain.Microglia/macrophages within the
tumor itself were comparable in the two groups (data not shown).

Having observed a thick circumferential cuffing of activated
macrophages/microglia surrounding tumor implanted in previously
irradiated brain, we hypothesized that one mechanism of acquired
resistance to anti-PD-L1 inhibition therapy in previously irradiated
mice is exclusion of effector T cells from homing into the tumor
microenvironment. Using fluorescence-activated cell sorting
(FACS), changes in immune cell populations in orthotopic mouse
tumors grown in RI2M vs. non-irradiated brain were compared.
There were no differences in absolute number or relative frequency
of T cell subsets or NK/NKT cells (Figure 5A). However, there were
significant differences in the relative frequency of myeloid
subpopulations in tumor-bearing mice. Figure 5B is a
representative flow plot demonstrating the gating strategy used to
identify resting microglia (CD45lo), activated microglia (CD45int),
and macrophages/monocytes (CD45hi) within the CD11b+ Gr-1-

subpopulation. Figure 5C quantifies the relative frequency of
CD11b+ Gr-1- TIL that are CD45hi, CD45int, or CD45lo. Overall,
the difference in total number of microglia (resting + activated)
between irradiated and non-irradiated groups is not statistically
significant (data not shown), suggesting that irradiation does not
induce proliferation of microglia. However, there is a significant
difference in the relative frequency of activated vs. resting
microglia in the irradiated tumor-bearing mice. Thus, these
results suggest that the impact of irradiation on the brain
parenchyma is primarily in changing the activation state
of microglia.
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DISCUSSION

Radiation is a key component of early therapeutic strategies for
many malignant brain tumors and improves overall survival in
newly diagnosed glioblastoma. The late effects of irradiation on the
tumor microenvironment have an important impact on response
to subsequent systemic therapies for treatment of recurrent
malignant tumors. A better understanding of the immune and
vascular components of the brain microenvironment is needed for
improving clinical treatment strategies in patients with
recurrent tumors.

We have developed a novel GK-enabled focal brain-irradiation
mouse model (10) that provides a powerful platform for
investigation of the late (six weeks) post-irradiation induced
immunologic modulation of the brain tissue microenvironment.
We emphasize that ours is not a model of radiotherapy aimed at
treating existing brain tumors, but instead was developed for
studying the growth and response to immunotherapy of tumors
growing in previously irradiated brain. Consistent with our
recently published study of naïve (non-irradiated) DBT tumors
growing in the RI2M of Balb/C mice (10), naïve GL261 cells
orthotopically implanted in the RI2M of C57Bl/6 mice show
similarly remarkable changes in growth characteristics
(Figure 1). Specifically, such tumors display aggressive, invasive
growth, characterized by viable tumor and large regions of
hemorrhage and necrosis, compared to tumors growing in non-
irradiated brain. In short, tumors originating from naïve (non-
irradiated) tumor cells orthotopically implanted in previously
irradiated brain show many of the histologic hallmarks of
recurrent glioblastoma in patients, features that are not observed
in tumor cells growing in non-irradiated brain parenchyma. The
model has direct clinical relevance because recurrent GBM is
almost always growing in previously irradiated brain. Prior
irradiation dramatically affects the growth and histologic
features of tumors in the orthotopic mouse model.
A B C

FIGURE 5 | (A) quantifies the relative frequency of CD45+ tumor-infiltrating leukocytes (TIL) that are NK cells (CD3-NK1.1+), NKT (CD3+NK1.1+), total T cells (CD3+),
CD8 T cells (CD3+CD8+), and CD4 T cells (CD3+CD4+). (B) is a representative flow plot demonstrating the gating strategy to identify resting microglia (CD45lo),
activated microglia (CD45int), and macrophages/monocytes (CD45hi). Cells are gated on lineage negative (i.e., Non-T cells, Non-NK cells), CD11b-positive, Gr-1-
negative TIL). (C) quantifies the percentage of CD11b+ Gr-1- TIL that are CD45hi, CD45int, or CD45lo. Data are representative of two independent experiments with
4-5 mice in each experiment. Black bars represent non-irradiated mice; white bars previously irradiated mice. Differences in CD45int and CD45lo are statistically
significant (***p < 0.0005).
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Previous radiation altered the brainmicroenvironment, resulting
in dramatic loss of sensitivity to anti-PD-L1 treatment in our mouse
model. We remind the reader that our studies were designed to
explore the effects of previous brain irradiation on the efficacy of
immunotherapy, as distinct from therapy studies on existing tumors
employing concomitant radiation and checkpoint inhibition (18,
19). The survival data reported in Figure 2 are consistent with
radiation generating an increased immunosuppressive tumor
microenvironment that promotes therapeutic resistance and loss
of sensitivity to PD-L1 therapy in aggressive recurrent mouse
gliomas. This finding has significant implications for the rational
design of immunotherapy trials in brain tumors. Specifically, a
better understanding of the late effects of radiation on the brain/
tumor microenvironment will be crucial to identifying effective
therapies that can safely synergize with immune checkpoint
inhibitors to enhance immune response and improve outcome for
brain tumor patients.

Given the differences in tumor growth kinetics between
tumor cells implanted in irradiated and non-irradiated brains,
we initiated PD-L1 inhibition therapy early (day 3) post-
implantation to avoid confounding variables associated with
differences in tumor size. Thus, to see differences in survival
following PD-L1 inhibition therapy was somewhat surprising.
We reasoned that the impact of prior irradiation on the
microenvironment and its impact on responsiveness to PD-(L)
1 inhibition therapy was present at the time of implantation of
tumor cells, rather than after the tumor was established.
Therefore, we initially evaluated the primary immune cell
subset present within the brain parenchyma at steady state, the
microglia. As demonstrated by IBA-1 staining in Figure 4,
microglia/macrophages do not proliferate in response to
irradiation but rather acquire an activated phenotype (i.e.,
IBA-1 positive) in post-irradiated brain parenchyma, even in
the absence of tumor. The observation of increased activated
microglia following radiation is aligned with the chronic
activation of microglia reported following irradiation in adult
rats (26) and in C57BL/6 mice (27). In previously irradiated,
tumor-bearing mice, there was significant activation of microglia
and macrophages in and around the tumor, forming a thick ring
of macrophages/microglial cells around the tumor and at its
interface with the normal brain parenchyma. These IHC
observations were further corroborated with flow cytometry
experiments. Results reported in Figure 5 demonstrate that
there is a statistically significant increase in the relative
frequency of activated microglia and a decrease in resting
microglia among TIL isolated from irradiated compared to
non-irradiated tumor microenvironment. The FACS results are
consistent with and provide complementary support to the
conclusions drawn from IBA-1 IHC. The changes in the
orthotopic tumors growing in previously irradiated brain are
consistent with an increased immunosuppressive environment
and subsequent loss of response to immune checkpoint blockade.

The tumor-permissive and immunosuppressive characteristics
of tumor-associated macrophages (TAM) have driven interest in
development of novel therapeutic strategies to target these cells.
Colony stimulating factor (CSF-1) is an important cytokine
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involved in survival, proliferation, and differentiation of tissue
macrophages and their precursors. As a consequence, there has
been considerable interest in CSF1 and its receptor (CSF1R), and
various approaches targeting either the ligand or the receptor are
currently in clinical development. In addition to CSF-1/CSF-1R
pathway inhibition, other myeloid-directed targets are also being
developed. Kaneda and colleagues demonstrated that
administration of a PI3K-gamma inhibitor resulted in improved
responsiveness of the tumor (28). In addition to the CSF-1
pathway and PI3K-gamma, CD40 agonists (29) have also been
shown to remodel the myeloid compartment and are being
explored as microenvironment modulators to combine with ICI.
Likewise, CD47 agonists are thought to have a similar effect on
remodeling the myeloid compartment (30). Thus, identifying
novel agents that target the microenvironment, namely the
myeloid compartment, to sensitize tumors to PD-L1 inhibition
therapy is an active area of investigation and may be particularly
needed in the post-irradiation setting.

To summarize, in our GK-enabled hemispheric brain irradiation
mouse model, the persistent (six weeks post-irradiation) effects of
the irradiation on the brain microenvironment are shown to induce
substantial changes in tumor growth characteristics and response to
immunotherapy. Specifically, naïve (non-irradiated) GL261 tumors
growing in the RI2M grew markedly more aggressively, with tumor
cells admixed with regions of hemorrhage and necrosis, and showed
a dramatic loss of response to anti-PD-L1 therapy compared to
tumors in non-irradiated brain. IHC and FACS analyses
demonstrated increased relative frequency of different myeloid cell
infiltration and increased activated microglia, which correlated with
the loss of sensitivity to checkpoint immunotherapy. We are
currently performing experiments using high-dimensional single-
cell techniques to define changes in myeloid cell populations.
Metabolism studies can also contribute important insights
towards understanding the enhanced tumor growth and lack of
responsiveness to checkpoint inhibitors observed in our model.
Ongoing studies in our lab are directed at developing Deuterium
Metabolic Imaging (DMI) (31, 32) for characterization of the RI2M.
While there are well-recognized imperfections in murine models vs.
the human condition, the changes in tumor growth and loss of
sensitivity to checkpoint inhibitors are not subtle and provide a
framework that motivates further analysis of the late effects of the
irradiated brain/tumor microenvironment on tumor growth and
therapeutic efficacy.
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