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Background: CD8+ T cells are one of the central effector cells in the immune
microenvironment. CD8+ T cells play a vital role in the development and progression of
lung adenocarcinoma (LUAD). This study aimed to explore the key genes related to CD8+
T-cell infiltration in LUAD and to develop a novel prognosis model based on these genes.

Methods: With the use of the LUAD dataset from The Cancer Genome Atlas (TCGA), the
differentially expressed genes (DEGs) were analyzed, and a co-expression network was
constructed by weighted gene co-expression network analysis (WGCNA). Combined with
the CIBERSORT algorithm, the gene module in WGCNA, which was the most significantly
correlated with CD8+ T cells, was selected for the subsequent analyses. Key genes were
then identified by co-expression network analysis, protein—protein interactions network
analysis, and least absolute shrinkage and selection operator (Lasso)-penalized Cox
regression analysis. A risk assessment model was built based on these key genes and
then validated by the dataset from the Gene Expression Omnibus (GEO) database and
multiple fluorescence in situ hybridization experiments of a tissue microarray.

Results: Five key genes (MZT2A, ALG3, ATIC, GPI, and GAPDH) related to prognosis and
CD8+ T-cell infiltration were identified, and a risk assessment model was established based
on them. We found that the risk score could well predict the prognosis of LUAD, and the risk
score was negatively related to CD8+ T-cell infiltration and correlated with the advanced
tumor stage. The results of the GEO database and tissue microarray were consistent with
those of TCGA. Furthermore, the risk score was higher significantly in tumor tissues than in
adjacent lung tissues and was correlated with the advanced tumor stage.

Conclusions: This study may provide a novel risk assessment model for prognosis
prediction and a new perspective to explore the mechanism of tumor immune
microenvironment related to CD8+ T-cell infiltration in LUAD.

Keywords: lung adenocarcinoma, immune microenvironment, CD8+ T cell, bioinformatics analysis, multiplex
immunohistochemistry
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INTRODUCTION

Lung adenocarcinoma (LUAD) is the most common type of lung
cancer, accounting for 40% of all lung cancers (1-3). In recent
years, the development of immunotherapy has changed the
landscape of non-small cell lung cancer (NSCLC) therapy (4-
6). Notably, the immunotherapy effects mainly rely on the
immune responses, which are significantly influenced by the
tumor microenvironment (7, 8). CD8+ T cells are central
effector cells in the tumor microenvironment, and previous
studies have reported that highly infiltrating CD8+ T cells are
beneficial to prognosis in most tumors, including LUAD (9-14).
However, the mechanism of CD8+ T-cell infiltration in the tumor
microenvironment in LUAD is still unclear. Therefore, identifying
novel biomarkers related to CD8+ T-cell infiltration may help
explore the immune infiltration mechanism in LUAD.

With the rapid development of bioinformatics, new tools have
arisen to identify novel biomarkers (15-21). For example,
weighted gene co-expression network analysis (WGCNA) is an
effective tool that mines related patterns between genes to
identify relevant modules and hub genes in cancer (16), and it
has been widely used to find biomarkers at the transcriptional
level (17, 18). Another bioinformatics tool, namely, Cell Type
Identification by Estimating Relative Subsets of RNA Transcripts
(CIBERSORT), is used to quantify the cellular composition of
immune cells using a deconvolution algorithm based on gene
expression data (19). This algorithm has been successfully used
to approximate the level of immune cell infiltration in various
cancers, such as prostate cancer and renal cancer (20, 21).

Previously, many studies have focused on exploring the immune-
genomic biomarkers, which may direct immunotherapy. For
example, tumor mutational burden (TMB) may be a preferable
choice for directing the first-line immuno-oncology agent
management of advanced non-oncogene-addicted NSCLC patients
(22, 23). However, fewer studies are focusing on exploring prognostic
biomarkers from the aspect of immune cell infiltration, which could
be used not only to estimate prognosis but also to direct
immunotherapy. In this study, to identify the hub genes related to
CD8+ T immune cell infiltration and potential biomarkers of LUAD,
we first used WGCNA to obtain differentiated gene expression
modules based on gene expression data in The Cancer Genome
Atlas (TCGA) database. The CIBERSORT algorithm was used to
calculate the T-cell compositions of the samples. Those important
modules and hub genes related to CD8+ T-cell infiltration were
identified by correlation analysis of the WGCNA and CIBERSORT
algorithm results. Furthermore, the immune and clinical
characteristics of the hub genes were verified, and a risk score
model based on the hub genes was built, which were significantly
related to the prognosis of LUAD after least absolute shrinkage and
selection operator (Lasso) regression analysis and multivariable Cox
analysis. The model’s performance was evaluated using receiver
operating characteristic (ROC) curves, calibration curve, and
stratification analysis. Gene Expression Omnibus (GEO) datasets
were then conducted for external validation. Furthermore, we
performed multiple fluorescence in situ hybridization of 98 LUAD
tissues and 82 adjacent tissues to further verify the results of
bioinformatics analysis. This is the first time that the WGCNA

and CIBERSORT algorithm were used to identify the relevant
biomarkers of infiltration of CD8+ T cells in LUAD and to further
build a LUAD prognosis prediction model.

MATERIALS AND METHODS

Data Collection

Expression and clinical data (478 cases of LUAD and 51 normal
lung tissues) were downloaded from UCSC TCGA (https://gdc.
xenahubs.net/download/TCGA-LUAD.htseq_counts.tsv.gz;
https://gdc.xenahubs.net/download/TCGA-LUAD.GDC_
phenotype.tsv.gz; https://gdc-hub.s3.us-east-1.amazonaws.com/
download/TCGA-LUAD.survival.tsv). The Ensembl database
(http://www.ensembl.org/info/data/ftp/index.html) was used for
downloading human gtf files (Homo_sapiens.GRCh38.99.gtf.gz)
and acquiring symbol data. The validation dataset (GSE72094)
containing 393 cases of LUAD was downloaded from the GEO
database through the R package “GEOquery.”

Analysis of the Differential

Gene Expression

Differentially expressed gene (DEG) analysis was performed using
the R package “edgeR” and visualized by volcano plot and heatmap.
The heatmap and the volcano plot were done with the R packages
“pheatmap” and “EnhancedVolcano,” respectively. The threshold
of DEGs was set at [logFC| >1 and false discovery rate <0.05.

Co-Expression Network Construction by
Weighted Gene Co-Expression

Network Analysis

With the use of the R package “WGCNA,” a weight co-expression
network was constructed based on the expression value of 8,807
DEGs (16). According to Pearson’s correlation value between paired
genes, a similarity matrix containing the expression levels of
individual transcripts was built. Then, based on the equation,
adjacency between the paired genes = |Pearson’s correlation
between the paired genes|P, the similarity matrix was converted
into an adjacency matrix. The parameter 3 could amplify differences
of correlation between genes. When [ = 4, the adjacency matrix was
converted into a topological overlap matrix. Finally, we used a
bottom-up algorithm to classify genes with similar expression
patterns into different modules.

Construction of Module

Feature Relationships

With the use of the R package “CIBERSORT,” the proportions of
22 types of immune cells in the samples were deduced according to
the expressions of genes. The expression of signature genes was
extracted to form a signature gene expression matrix. Combined
with the known immune cell signature, the immune cell
proportions of samples were calculated using “CIBERSORT,”
and finally, the proportions of relevant subtypes of T cells were
extracted. Furthermore, the correlations between genes of modules
in WGCNA and the subtypes of T cells were calculated by
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Pearson’s test. The modules most significantly correlated with
CD8+ T cells were selected for the subsequent analyses.

Enrichment Analysis of Functions and
Signaling Pathways

The enrichment of functions and signaling pathways of genes in
the identified hub module was conducted using the R package
“clusterProfiler,” and the threshold was p-value <0.05 and g-value
<0.2. After the enrichment pathways were determined, a bubble
map was plotted.

Identification of Hub Genes Associated
With Infiltration of CD8+ T Cells

and Prognosis

To further determine the central nodes in the modules related to
immune cell infiltration, we imported the co-expression network
of relevant modules of WGCNA into Cytoscape (https://
cytoscape.org/) and then screened the genes with high nodes
according to a different degree. Furthermore, approximately one-
third of the total genes in the modules were selected as hub genes
according to the threshold of degree = 260. Meanwhile, all genes
in the hub module were imported into the STRING database
(https://string-db.org/), and then a protein-protein interaction
(PPI) network was constructed. The network was imported into
Cytoscape to search central nodes, and approximately one-third
of the total genes were selected as hub genes when the degree = 5.
Finally, a Venn plot integrated the WGCNA and STRING database
results to identify the hub genes. After acquiring the hub genes, we
used univariate Cox regression analyses to preliminarily screen the
hub genes associated with the prognosis, and the genes with
statistical significance (p < 0.05) underwent Lasso-penalized Cox
regression analysis for further dimension reduction. Genes with
statistical significance (p < 0.05) in Lasso-penalized Cox regression
analysis were considered key hub genes associated with CD8+ T-
cell infiltration and selected for the subsequent analyses.

Construction and Validation of a
Prognostic Risk Model

Based on key hub genes associated with CD8+ T-cell infiltration,
a prognostic risk model was constructed. The risk score was
calculated as follows: risk score = (B X gene A expression) +
(Bg xgene B expression) -+ + (By x gene N expression). To
evaluate the model’s performance, the “survival” package was
used to draw a calibration curve, and the “survivalROC” package
was used to draw ROC curves. An area under the ROC curve
(AUC) >0.6 was considered as a good performance of the model.
Patients were divided into high-risk or low-risk groups according to
the median value of the risk score, and the Kaplan-Meier method
with log-rank test was used to test the prognostic significance of the
risk score. p < 0.05 was considered statistically significant.

The prognostic model was then validated by the GSE72094
dataset from the GEO database. The risk scores of samples were
calculated as the formula shown above. The ROC curve and the
calibration curve were drawn to evaluate the performance, as well
as the Kaplan-Meier method and the log-rank test were used to
compare the prognostic significance between the high-risk group

and the low-risk group. Because EGFR mutation status is critical
in LUAD, we estimated the prognostic model in wild-type and
mutation-type EGFR samples in the construction and
validation cohorts.

Correlation Between Key Hub Genes and
Subtypes of Immune Cells

The correlations of key hub genes and immune cell subtypes
were calculated online using the TIMER database (http://timer.
cistrome.org/). Then, together with the correlation data, a
heatmap was plotted to show the correlations, and scatter
diagrams were shown for different key hub genes.

External Validations of Protein Expression
by Multicolor Immunofluorescence

The lung cancer tissue array with 82 pairs of matched cancerous
and adjacent tissues, as well as an additional 16 cases of cancer
tissues (HLugA180Su07), was obtained from Shanghai Outdo
Biotech. To assess the expressions of key hub genes, multicolor
immunofluorescence (mIHC) was performed using an Opal 7-
color fluorescent THC kit (PerkinElmer) combined with
automated quantitative analysis (AQUA; Genoptix). First, the
concentrations and order of the five antibodies were optimized,
and a spectral library was built based on single-stained slides.
The slides were first deparaffinized with xylene and ethanol, and
antigen retrieval was done using a microwave. After incubation
with freshly made 3% H,O, for 10 min, the tissues were blocked
in a blocking buffer for another 10 min at room temperature.
Then the tissues were incubated with the primary antibodies,
followed by secondary horseradish peroxidase (HRP) antibodies
(Cell Signaling Technology) and an opal working solution (Akoya
Biosciences). Primary antibodies recognizing the following antigens
were used: MZT2A (1:20; Abcam), ALG3 (1:25; Abcam), GAPDH
(1:1,500; Abcam), GPI (1:3,000; Abcam), and ATIC (1:200;
Abcam). The slides were then mounted with ProLong Gold
Antifade Reagent with DAPI and scanned using a confocal
microscope (LEICA, Japan). Fluorescence images were acquired
using a Vectra 2 intelligent slide analysis system using Vectra 2.0.8
(PerkinElmer). The mean fluorescence intensities (MFIs) of
MZT2A, ALG3, GAPDH, GPI, and ATIC were measured.

Immunohistochemistry of CD8+ T Cell

The distribution of CD8+ T cells in the lung cancer tissue array
(HLugA180Su07) was evaluated by immunohistochemistry
staining. The tissue array was incubated in a dry oven at 63°C for
approximately 1 h, deparaffinized in xylene, and then rehydrated
with graded ethanol solutions. After antigen retrieval, the array was
incubated with a primary antibody against CD8 (DAKO, IR623)
overnight at 4°C in a humidified chamber, followed by incubation
at room temperature for 30 min with the secondary antibody
(Envision+/HRP, Rabbit, DAKO). Subsequently, the tissue array
was incubated with a 3,3’-diaminobenzidine (DAB) solution for 5
min. Finally, the tissue array was counterstained with hematoxylin.
The immunostained slide was evaluated by two experienced
pathologists blinded to clinicopathological characteristics, and the
percentage of CD8 positive cells was annotated.
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Subgroup Analysis to Evaluate the
Performance of the Model

To test the performance of the model, the risk score in different
subgroups of age, sex, T stage, N stage, etc., was evaluated in
TCGA dataset, GEO dataset, and the external validation dataset.
Moreover, the Kaplan-Meier method and log-rank test were
used to evaluate the performance of prognosis prediction in
different subgroups. Differences in risk scores between different
clinical characteristics were analyzed by GraphPad Prism 7.0. A
Student’s t-test was used for comparison between two groups.
ANOVA was used for comparison between three or more
groups. p <0.05 was considered statistically significant.

RESULTS

The Clinical Characteristics of The Cancer
Genome Atlas Cohort

After exclusion of those cases with deficient clinical information,
529 cases were included in this study. Of these, 478 were cancer

tissues and 51 were normal tissues. The clinical characteristics
are shown in Supplementary Table 1. The flowchart of this
study is shown in Figure 1.

Identification of Differentially Expressed
Genes and Construction of Gene
Co-Expression Network

After comparing the expressions of LUAD tissues with those of
normal tissues in TCGA-LUAD cohort, we identified 8,807
DEGs, including 2,172 upregulated genes and 6,635
downregulated genes (Figures 2A, B). The gene co-expression
network was then constructed using the 8,807 DEGs. B = 4
(scale-free R, > 0.85) was set as the soft-threshold power to build
a scale-free network (Figure 2D). Furthermore, we used the
dynamic hybrid cutting method to construct a hierarchical
clustering tree. Each leaf on the tree represented an individual
gene, and genes with similar expression data were gathered to
form a tree branch representing a gene module. Eleven modules
were generated (Figures 2C, E).

Data download
DEGs analysis

Function enrichment
e =

Identification of modules
related to CD8+ T cel |

Selection of modules
hub genes

infiltration

L

Selection of hub genes

by PPI network

J

L

Construction of risk assessment
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A
i 1

4 4 U
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FIGURE 1 | Flowchart of the study.
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Identification of Key Module Related to
CD8+ T-Cell Infiltration

The proportion of immune cells in each sample was calculated
based on gene expression by CIBERSORT. Seven T-cell subtypes
were included: CD8+ T cells, CD4 naive T cells, CD4 memory
resting T cells, CD4 memory activated T cells, follicular helper T
cells, regulatory T cells (Tregs), and gamma delta T cells.
Significantly, no CD4 naive T cells and gamma delta T cells were
found. The proportion of each T cell subtype was extracted as the
phenotype data, and its associations with the WGCNA modules
were analyzed. The highest correlations were found between genes
in the pink modules (275 genes) and CD8+ T cells (R>=022, p<
0.01). Hence, the genes in the pink modules were used in the
subsequent analyses (Figure 3).

Function Enrichment Analysis

In the pink module, 275 genes were analyzed by Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
function enrichment analyses. GO analysis showed that the main
enriched pathways were RNA metabolic processes, glucose
metabolic processes, mitochondrial matrix, mitochondrial
inner membrane, heterogeneous enzymatic activity, and tRNA
catalytic activity (Figures 4A-C). The main pathways found
enriched by KEGG were sugar metabolism and arginine/proline
metabolism, and the enriched functions were mainly related to
cell respiration (Figure 4D).

Identification and Validation of Hub Genes
Related to CD8+ T-Cell Infiltration

The genes in the pink module were imported into Cytoscape to
build a co-expression network (Figure 5A), and a total of 93 hub
genes were obtained at degree >260 (Figure 5B). One hundred
forty-eight interactions with the proteins encoded by the genes of
the pink module were identified by the PPI network, and then 46
hub proteins were selected at the degree >5 (Figure 5C). By
overlapping the genes in Cytoscape and the PPI network, we
acquired 117 hub genes related to CD8+ T-cell infiltration
(Figure 5D). Of them, VARS (originating from the PPI
network) does not belong to the pink module or DEGs and
thus was excluded from the subsequent analysis. Finally, 116 hub
genes associated with CD8+ T-cell infiltration were obtained.

Identification of Prognosis-Related Key
Genes and Construction of a Risk
Assessment Model

To identify prognosis-related genes from the hub genes, 116 genes
were subjected to univariable Cox regression analysis. In total, 34
genes were found significantly associated with the prognosis
(Figure 6A). We then used Lasso-penalized Cox regression
analysis and identified five genes independently correlated with
prognosis (Figure 6B). Based on the expressions and correlation
coefficients of these five genes, a risk assessment model was

established, where Risk Score = MZT2A * 0.035 + ALG3 * 0.084 +
ATIC * 0.104 + GPI * 0.125 + GAPDH * 0.134 (Figure 6C).

Validation of Risk Assessment Model

Patients were divided into high-risk and low-risk groups, with the
median score at 6.53. The patients with the high-risk group
showed a poorer 5-year overall survival (OS) compared with the
patients in the low-risk group (low-risk vs. high-risk = 44.6% vs.
31.0%, p < 0.01) (Figure 7A). The ROC curves showed that the
AUC of OS at 5-year was 0.643, which suggests that the prediction
of the risk model has a good performance (Figure 7B). The
calibration curve of the model suggested that the predicted 5-year
OS closely correlated with the actual 5-year OS (Figure 7C). The
subgroup analysis of the risk model suggested that the model had a
good prediction performance in patients with wild-type EGFR
status or mutation-type EGFR status (Figures 7D-I).

The GSE72094 dataset was used to validate the risk model
(Supplementary Table 2). After scoring, the cases were divided
into high-risk and low-risk groups, with the median score at 5.34.
The result of the Kaplan-Meier curve was similar to that of
TCGA cohort (Figure 8A). Furthermore, the calibration curve,
ROC curve, and the AUC (0.62) implied that this risk model had
good prediction performance in the external dataset (Figures 8B, C).
We also assessed the model in the patients with wild-type or
mutation-type EGFR status. The results showed that the prognosis
of the low-risk group did not have a significant difference from that of
the high-risk group in the mutation-type cohort, which may be
caused by the small sample size. However, the performance of the
model in the wild-type cohort was good (Figures 8D-I).

Since our bioinformatics analysis was based on RNA
sequences, we performed a multicolor immunofluorescence
(mIHC) experiment on 98 LUAD tissues and 82 adjacent tissues
from the protein perspective to validate the model. The follow-up
time of the cohort was 1-94 months, and the median follow-up
time was 39 months (interquartile range: 15-57). The median
survival time was 50 months. The baseline characteristics of the
cohort are shown in Supplementary Table 3. The expressions of
five proteins were primarily located in the cytoplasm (Figure 9).
We calculated the risk score based on fluorescence intensities and
then divided the cohort into the low-risk group and high-risk
group according to the median risk score. The results showed that
the prognosis of the high-risk group was significantly poorer than
that of the low-risk group (Figure 10A). The ROC curve, the
calibration curve, and the AUC = 0.655 showed good performance
(Figures 10B, C). In the subgroup analysis of EGFR status, the
wild-type EGFR cohort showed similar results with the overall
cohort. However, the mutation-type EGFR cohort results did not
show significant differences between the prognosis of the high-risk
group and the low-risk group. In addition, the performance of the
risk model was poor, which may be caused by the small sample
size (Figures 10D-I). We found that the risk score was
significantly higher in the advanced T stage, N stage, and TNM
stage. Furthermore, we found that the risk score was significantly
negatively correlated to the infiltration of CD8+ T cells, which
validated our bioinformatics analysis (Figure 11A). The
distribution of CD8+ T cells is shown in Figures 11B-E.
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according to the EPIC algorithm (p < 0.01). These results implied
that the expression of those genes might be negatively correlated
with the infiltration of CD8+ T cells. The heatmap of key genes is
shown in Figure 12.

Subgroup Analysis

The Kaplan-Meier curves were plotted in subgroups of data
from TCGA database, including age, gender, T stage, N stage, M
stage, and TNM stage. Although the prognosis of the high-risk
group and the low-risk group was not significantly different in
the age <60 group or the NO group, the high-risk group had a
poor prognosis in other subgroups (Figure 13). Similarly, the
model underwent subgroup analysis with the GEO and mIHC
cohorts, and the same results were found (Figures 14, 15).

The differences of risk scores among age, gender, M stage, N
stage, T stage, and TNM stage were tested in TCGA cohort. The
results showed that the risk scores were higher in men, M1 stage,
N2 or N3 stage, T3 or T4 stage, and TNM stage III or IV
(Supplementary Figure 1). Similarly, differences in risk scores
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FIGURE 8 | Validation of model by GEO cohort. (A) Kaplan-Meier curve of overall cohort. (B) ROC curve of overall cohort. (C) Calibration curve of overall cohort. (D)
Kaplan—-Meier curve of mutation-type cohort. (E) ROC curve of mutation-type cohort. (F) Calibration curve of mutation-type cohort. (G) Kaplan—Meier curve of wild-type
cohort. (H) ROC curve of wild-type cohort. (I) Calibration curve of wild-type cohort. GEO, Gene Expression Omnibus; ROC, receiver operating characteristic.

were detected in the GEO cohort and the mIHC cohort. The
results showed that the advanced TNM stage had a higher score.
Furthermore, the distribution of the risk scores between different
EGFR statuses was tested in the GEO cohort, and the results
showed that the risk scores were significantly higher in the wild
type. However, in the mIHC cohort, we found that the risk score
distribution in EGFR status was not significantly different.
Hence, whether these five genes are related to EGFR status
needs further exploration (Supplementary Figures 2, 3).

DISCUSSION

LUAD is the most common type of lung cancer (24). Nowadays,
surgery combined with chemotherapy, targeted therapy, or
immunotherapy is the primary treatment strategy for most LUAD
patients (25-29). For non-oncogene advanced LUAD, chemo-
immunotherapy is an essential treatment strategy. In recent years,
several reports found that the immune microenvironment plays a
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FIGURE 9 | The expression of ATIC, GPI, GAPDH, ALG3, and MZT2A. (A) The expression of five proteins in tumor tissues. (B) The expression of five proteins in

critical role in it. CD8+ T cells are the central effector cells of anti-
tumor immunity (30-33). Identification of the key genes related to
the infiltration of CD8+ T cells may offer new insights for research
on the mechanism of tumor immunotherapy.

This work analyzed the expressions of 529 LUAD-related
samples (478 cancer tissues and 51 paracancerous tissues) from
TCGA database. As a result, 8,807 DEGs were identified,
including 2,172 upregulated genes and 6,635 downregulated
genes. We constructed a co-expression network by WGCNA
and then identified the gene module most significantly correlated
with CD8+ T cells combining with the CIBERSORT
algorithm based on the DEGs. Subsequently, we identified
five key genes (MZT2A, ALG3, ATIC, GPI, and GAPDH)
related to prognosis and CD8+ T-cell infiltration through a co-
expression network PPI network analysis and Lasso-penalized
Cox regression analysis.

MZT2A (Mitotic Spindle Organizing Protein 2A) is a
protein-encoding gene, but very little research is available on
this gene. Recently, Wang et al. reported that MZT2A mRNA
and protein levels were overexpressed in NSCLC and associated
with poor NSCLC prognosis. Upregulation of MZT2A could
promote NSCLC cell viability and invasion by overexpressing
LGALS3BP via the MTZ2A MOZART2 domain and Akt
phosphorylation (34). However, mechanisms on how MZT2A

influences tumor prognosis and CD8+ T-cell infiltration should
be further explored.

ALG3 (o-1,3-mannose glycosyl transferase) belongs to the
ALG family and is located on the chromosomal region 3q27.1.
ALG3 upregulation is related to lymph node metastasis of
esophageal squamous cell carcinoma (35) and the proliferation
of cervical cancer cells (36). ALG3 expression is higher in NSCLC
tissues than in normal tissues and is associated with a higher T
stage, lymph node metastasis, tissue differentiation, and
prognosis (37). Similar to MZT2A, there are no reports on the
relationship between ALG3 and CD8+ T-cell infiltration, which
we will further explore.

ATIC (5-aminoimidazole-4-carboxamide ribonucleotide
formyltransferase/IMP cyclohydrolase) encodes a bifunctional
protein and catalyzes the last two steps in de novo synthesis of
purines. ATIC is overexpressed in hepatic cell carcinoma
and is associated with a poor prognosis in patients (38). The
fused protein between ATIC and anaplasia lymphoma kinase
(ALK, a common oncogene) was discovered in lymphoma
patients (39, 40). Interestingly, frame-shift mutations and
missense mutations of ATIC were found in a case of radiation
sensitivity, and biochemical research showed that purine
biosynthesis involving ATIC might help with DNA damage
repair (41). Hence, these results imply that ATIC may be
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involved in tumorigenesis and may influence the survival of
cancer cells. Additional research would be needed to explore the
mechanism of ATIC and its relationship with CD8+ T-
cell infiltration.

GPI (glucose-6-phosphate isomerase) is an enzyme that
participates in the glycolysis pathway. GPI is a cytoplast dimer
that can catalyze the conversion from glucose-6-phosphate to
fructose-6-phosphate. GPI is a protein similar to the autocrine
movement factors involved in the migration and invasion
of tumor cells and angiogenesis (42). In various cancers,

the expression of GPI is induced by c-Myc, and HIF-1 is
overexpressed at the same time (43, 44). HIF-1 can induce
GBE1 upregulation, which would decrease CCL5 and CXCL10
secretion, hindering the recruitment of CD8+ T lymphocytes
(45, 46). GPI can also induce the protein expression of matrix
metalloproteinase-3 and thereby promote the invasiveness of
tumors (47). GPI, which is overexpressed in renal cancer, plays a
role in tumor progression and is negatively correlated with the
clinical prognosis of patients (48). However, the role of GPI in
lung cancer has not been investigated to date.
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GAPDH (glyceraldehyde-3-phosphate dehydrogenase) is one
of the housekeeping proteins, and the mechanism of its
anaerobic conversion to glucose critically regulates tissue
regeneration and tumor growth (49, 50). Cancer cells can
persistently survive under metabolic stress, anoxia, or
starvation; and their glycolysis capacity must be improved by
the Warburg effect, such as to improve the activity of enzymes
involved in this function. Herein, the total glycolysis flux rate is
precisely decided by the conversion stage from GALP
(glyceraldehyde-3-phosphate) to biphosphoglyceride and is
regulated by the activity of GAPDH (51). As an essential factor
in the speed-limiting step of glycolysis, it plays a pivotal role in
the energy metabolism of cancer cells. Hence, increased GAPDH
activity will increase glycolysis rate and promote tumor growth,
leading to poor prognosis (52). Anoxia is one of the major
phenomena during tumor growth and activates the HIF-la
transcription factor to upregulate GAPDH expression (53, 54).
In addition, upregulation of GAPDH may enhance HIF-la
transcription and activity, restricting the recruitment of CD8+
T lymphocytes (45, 46, 55). Moreover, the high activity of
GAPDH increased the mobility of cancer cells, and epithelial-
mesenchymal transition (EMT) markers are significantly
associated. Colon cancer cell chromatin immune precipitation
experiments proved the direct interaction between GAPDH and
SPI transcripts, leading to the upregulation of the main
regulatory factor in EMT, the zinc finger protein SNAI1 (Snail)
(56-58). The initiation of GAPDH synthesis may be a protection
mechanism for tumor cells to regulate metabolism and improve
survival under anoxic conditions. Therefore, our results indicate
that the expression of GAPDH may influence prognosis.
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Gene Expression Omnibus.

Based on these five genes, we established a risk score model.
We found that the risk score could reasonably predict the
prognosis of LUAD, and it was negatively related to the CD8+
T-cell infiltration and correlated with the advanced tumor stage.
These results implied that these five genes might play a role in the
infiltration of CD8+ T cells into the immune microenvironment.
Among these genes, GAPDH and GPI may influence the
infiltration of CD8+ T cells through the HIF-1/GBE1 pathway
(45, 46, 55). Furthermore, the risk score was significantly
upregulated in tumor tissues and correlated with advanced
tumor stage. The validation of the overall cohort results by
GEO dataset and the cohort of tissue microarray was
consistent with the results of TCGA. Because the EGFR status
is critical in LUAD, we also performed the subgroup analysis of
the EGFR status. The performance of the risk model in both wild
type and mutation type was good in TCGA cohort, as well as in
the GEO cohort. However, the prediction accuracy is deficient in
patients with mutation-type EGFR status in the mIHC cohort
due to the small sample size. In a future study, we will increase
the sample size of patients with mutation-type EGFR status to
verify the risk model.

Nevertheless, this study also has some limitations. First, the
mechanisms about how the genes affect the infiltration of CD8+
T cells were not explored in this report, but they will be
investigated in a future study. Secondly, we constructed a risk
score model that depended on gene expression but did not
consider gene mutation, methylation, or other genetic events
that can affect the occurrence and progression of cancers. In a
subsequent study, we may consider more genetic modification to
make our risk model more accurate. Finally, a large-sample
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prospective study is needed to further validate the clinical

applicability of the risk score.

CONCLUSIONS

In conclusion, this study may provide a novel risk assessment
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