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Radiomic features extracted from segmented tumor regions have shown great power in gene
mutation prediction, while deep learning–based (DL-based) segmentation helps to address
the inherent limitations of manual segmentation. We therefore investigated whether deep
learning–based segmentation is feasible in predicting KRAS/NRAS/BRAF mutations of rectal
cancer using MR-based radiomics. In this study, we proposed DL-based segmentation
models with 3D V-net architecture. One hundred and eight patients’ images (T2WI and DWI)
were collected for training, and another 94 patients’ images were collected for validation. We
evaluated the DL-based segmentation manner and compared it with the manual-based
segmentation manner through comparing the gene prediction performance of six radiomics-
basedmodels on the test set. The performance of the DL-based segmentation was evaluated
by Dice coefficients, which are 0.878 ± 0.214 and 0.955 ± 0.055 for T2WI and DWI,
respectively. The performance of the radiomics-based model in gene prediction based on
DL-segmented VOI was evaluated by AUCs (0.714 for T2WI, 0.816 for DWI, and 0.887 for
T2WI+DWI), which were comparable to that of corresponding manual-based VOI (0.637 for
T2WI, P=0.188; 0.872 for DWI, P=0.181; and 0.906 for T2WI+DWI, P=0.676). The results
showed that 3D V-Net architecture could conduct reliable rectal cancer segmentation on
T2WI and DWI images. All-relevant radiomics-based models presented similar performances
in KRAS/NRAS/BRAF prediction between the two segmentation manners.

Keywords: rectal cancer, deep learning, radiomics, magnetic resonance imaging, gene mutation
INTRODUCTION

It is clear that (1) Epidermal Growth Factor Receptor (EGFR) inhibitors could provide a beneficial
clinical outcome for metastatic Colorectal Cancer (mCRC) patients with wild-type rat sarcoma viral
oncogene homolog (RAS) genes rather than mutant types. However, some patients with wild-type
RAS still exhibit no response to anti-EGFR therapies. To address this confusion, the downstream
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factors of the RAS pathway was explored, and a specific mutation
in the BRAF gene (V600E) (2) was confirmed to be responsible
for less response from EGFR inhibitors and a worse prognosis.
Therefore, the National Comprehensive Cancer Network
(NCCN) guideline (3) recommends that the genotype of
KRAS/NRAS/BRAF should be determined in patients with
mCRC and further claims that patients with these mutations
should not be provided with medication such as cetuximab or
panitumumab, either alone or in combination with other
anticancer drugs, since there is little chance of them having
any benefit and the toxicity and expense suffered will not
be reasonable.

Up to now, it is still a state-of-the-art routine practice to
detect gene mutation status by pathologically analyzing biopsy
samples or resected tissues. However, there is a growing
recognition (4) that tissue-based genetic tests have some
limitations such as intratumoral heterogeneity, clonal
evolution, and poor DNA quality, especially in biopsy samples,
which can lead to a suboptimal profile of tumor genetic
characteristics and be of limited value in routine practice. In
recent years, liquid biopsy has emerged to be an alternative
method to determine gene status. However, this newly raised
technology is still limited for clinical practice due to the
availability of samples for testing, the non-standardized
method, and the low sensitivity in low-stage tumor (5).
Therefore, efficient identification of RAS and BRAF status in
rectal cancers using a non-invasive method, which could feasibly
reveal the whole tumor gene features in real-time, would be of
meaningful assistance in providing individual tailored therapy.

There have been a certain number of researches based on
PET/CT (6), CT (7), or MRI (8) focusing on detecting RAS gene
mutations in rectal cancer, while these studies all delineated
tumors manually. It is worth noting that the inherent limitations
of manual segmentation, such as long time-consumption and
inter- and intra-observer variability, have significant impact on
medical image quantitative analysis (9) and the efficacy and
safety of the radiotherapy plan (10). Fortunately, state-of-the-art
auto segmentation based on deep-learning architecture has been
developed and shown to be able to address these problems.
Successful application included making differential diagnosis in
brain (11) and contouring gross tumor volumes in rectal cancer
radiotherapy (12). For 3D medical image segmentation, 3D V-
Net, a special fully convolutional neural network (CNN), has
been shown to be able to produce satisfactory segmentation
results (13). The network first detects the boundary from a
“coarse” resolution, then provides accurate spatial localization
through a “fine” resolution.

Radiomics, with its high-throughput quantitative image
features, has shown exciting power in assessing treatment
response (14), genetic profile (8), predicting lymph node
(15), and distant metastasis (16) in respect to rectal
cancers. Furthermore, combinations of DL-based automatic
segmentation and radiomics have been demonstrated with
great potential in glioma grading (17), treatment response
assessment (18), and the isocitrate dehydrogenase-1 (IDH1)
mutation prediction (19) of glioblastoma. However, the
combination of DL-based auto segmentation with MR-based
Frontiers in Oncology | www.frontiersin.org 2
radiomics in predicting gene mutation for rectal cancer has not
been investigated. Thus, we attempt to segment rectal cancer via
3D V-Net on T2WI and DWI and then compare the
performance of radiomics in predicting the KRAS/NRAS/
BRAF status between DL-based auto segmentation and
manual-based segmentation.
MATERIALS AND METHODS

Dataset
This retrospective study was approved by the institutional review
board in our hospital, and informed patient consent was waived.
A total of 202 participants (mean age 59.88 ± 11.82 years, 139
males and 63 females) with rectal adenocarcinoma confirmed by
colonoscopy biopsy were recruited from 333 patients who had
underwent pelvic MR imaging on a 3.0T scanner (November
2016 to May 2019) after screening according to the following
exclusive criteria: (a) treated with any strategy before MR
imaging or surgery (n=75); (b) the interval between MR
imaging and postoperative pathology was more than 4 weeks
(n=8); (c) gross artifacts or severe distortion of MR images
(n=18); (d) absence of visible lesion or the volume of lesion
was less than 1 cm3 on MR image (n=7); (e) other pathological
types of tumor (mucinous adenocarcinoma, neuroendocrine
carcinoma, and malignant melanoma) (n=23). Among the 202
participants, 94 patients were subject to a KRAS/NRAS/BRAF
mutation test, and the interval was less than 4 weeks between MR
imaging and the gene test. Among the 94 patients who
underwent the gene test, 53 patients harbored mutant KRAS/
NRAS/BRAF, and 41 patients were wild type. The remaining 108
patients were not tested for mutations and could not be used to
assess mutation prediction, but they were suitable for modeling
segmentation. Therefore, we used the 108 patients without the
gene test as the training set for the auto segmentation model and
the 94 patients with the gene test as the test dataset, each
including both the T2WI and DWI images. The radiomics-
based model for gene mutation prediction was constructed
based on 94 patients’ MR images via 5-fold cross validation.
Considering the different imaging modalities and tumor
segmentation manners, we constructed six radiomics-based
models, which were T2WI+manual-based VOI, T2WI+DL-
based VOI, DWI+manual-based VOI, DWI+DL-based VOI,
T2WI+DWI+manual-based VOI, and T2WI+DWI+DL-based
VOI. The detailed experiment flow chart is shown in Figure 1,
and patients’ baseline clinical characteristics for genotype
prediction is summarized in Table 1.

MR Image Acquisition
All MR scanning was performed on a 3.0T MR scanner
(Discovery MR750, GE Medical Systems) with an eight-
channel phased-array coil. Bowel preparation was implemented
by drinking folium sennae soup (a kind of laxative) after dinner
the night before the examination. Antispasmodic and other
intestinal contrast agents were not used. Rectal MRI protocols
included axial T1WI (TR/TE = 487/8 ms), coronal and sagittal
T2WI (TR/TE = 7,355/136 ms), oblique axial small FOV FRFSE
July 2021 | Volume 11 | Article 696706
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TABLE 1 | Patient baseline characteristics for genotype (KRAS/NRAS/BRAF) prediction.

Characteristics Wild type (n = 41) Mutant type (n = 53) P

Age, years (Mean ± SD) 60.44 ± 12.93 61.57 ± 10.30 0.639
Gender, n (%) 0.297
Male 29 (70.7%) 32 (60.4%)
Female 12 (29.3%) 21 (39.6%)

Histologic grade, n (%) 0.206
Well 5 (12.2%) 9 (17.0%)
Moderate 35 (85.4%) 38 (71.7%)
Poor 1 (2.4%) 6 (11.3%)

pT stage, n (%) 0.021
T1/2 22 (53.7%) 16 (30.2%)
T3/4 19 (46.3%) 37 (69.8%)

pN stage, n (%) 0.183
N0 25 (61.0%) 25 (47.2%)
N1 16 (39.0%) 28 (52.8%)

CEA, n (%) 0.543
≤5 ng/ml (normal) 27 (65.9%) 38 (71.7%)
>5 ng/ml (abnormal) 14 (34.1%) 15 (28.3%)

CA-199, n (%) 0.588
≤27 u/ml (normal) 35 (85.4%) 43 (81.1%)
>27 u/ml (abnormal) 6 (14.6%) 10 (18.9%)
Frontiers in Oncology | www.frontiersin.org
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Chi-squared or Fisher’s exact tests, as appropriate, were used to compare the differences in categorical variables, while independent samples t test was used to compare the differences in
age. Bold value: Rectal cancer with more advanced T stage is prone to evolve mutant KRAS/NRAS/BRAF (P=0.021). p, pathological.
FIGURE 1 | Experiment flow chart. VOI, volumes of interest.
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T2WI (TR/TE = 6,055/130 ms, Slice Thickness = 3 mm, Gap =
0.3 mm, FOV=200 × 200 mm, Matrix = 352×256), and axial
single-shot EPI DWI (TR/TE = 4,734/80 ms, Slice Thickness =
4 mm, Spacing = 0.5 mm, FOV=340 × 340 mm, Matrix =
128×140, NEX = 8, b = 0, 1,000 s/mm2). An oblique axial
T2WI high-resolution sequence was planned perpendicularly
to the bowel with the tumor, while the axial DWI sequence
was performed parallelly to the horizontal line.

Imaging Pre-Processing
As the reliability of manual VOI delineation had been reported in
our previous study (20), the whole-tumor volume was manually
delineated as the ground truth annotation on T2WI and DWI
(b=1,000 s/mm2) images by one radiologist with 8 years of
experience in abdominal MRI and scrutinized by another
senior abdominal MRI radiologist with 20 years of experience.
The regions of contiguous normal rectal wall and lumen against
tumor were manually labeled on T2WI images, and the magnetic
susceptibility artifacts were labeled on DWI images, which were
used for the training and validation of the automated tumor
segmentation algorithm. All manual delineations were
performed using ITK-SNAP (version 3.8) (21). Because of the
peristalsis of rectum and different imaging parameters such as
matrix, FOV (Field of View), slice thickness, and scan position
Frontiers in Oncology | www.frontiersin.org 4
line, the processing of the registration and image fusion between
T2 and DWI images was not performed.

All MR images were normalized to accelerate the convergence
of neural network training. First, the MR images were resampled
to the same spatial resolution: 0.4×0.4×3.3 (mm), and then the
gray values were linearly normalized into the range [0, 1].
Considering the GPU memory, the input 3D patch size was set
to 96×96×32. Due to the limited amount of training images,
image augmentation was performed, which included shift,
rotation, scale, and flip slightly.

Network Architecture of 3D V-Net
We applied cascade learning in this work based on 3D V-Net for
the tumoral tissue segmentation of the rectum on T2WI and
DWI sequences. The code of 3D V-Net was improved from the
V-Net (13). The architecture of the conventional V-Net has two
pathways: the left part of the network consists of a compression
path, while the right part decompresses the signal until its
original size is reached. The detailed network architecture is
shown in Figure 2. The proposed cascade neural network
includes one coarse model and one fine model. The coarse-to-
fine segmentation method detects the boundary from coarse
resolution to the highest fine resolution to provide accurate
spatial localization. The input of the 3D V-Net is a single
FIGURE 2 | The schematic network architecture of cascade V-Net.
July 2021 | Volume 11 | Article 696706
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sequence of a patient such as T2WI, while the output is a map of
classification probability, which determines whether voxels of
image belong to tumor or background. The loss function based
on the Dice coefficient (range [0, 1]), which we sought to
maximize, was performed in the training process. It is defined as

D =
2oN

i pigi

oN
i p

2
i +oN

i g
2
i

Where N is the number of voxels of the image, pi is the
prediction probability of the i-th voxel which belongs to the
target region, and gi denotes whether the i-th voxel belongs to
ground truth annotation or not (1 means yes, 0 means no). The
volume size of the input and output image is 512×512×30, and
the parameters of spacing for the coarse model and fine model
are [3,3,3] and [0.4,0.4,1.6], respectively. Similar to other CNN,
the training process was iterated with min-batch and stochastic
gradient descent to ensure quick convergence. Tumor volume
was segmented using forward propagation in the test process.

Genes (KRAS/NRAS/BRAF) Mutational
Status Analysis
The tissue blocks were acquired from resected tumors, and
pathologists selected the samples for gene mutational analysis.
Genomic DNA was extracted from 5 mm formalin-fixed,
paraffin-embedded (FFPE) tumor tissue sections, using a DNA
FFPE Tissue Kit (AmoyDx, China). KRAS (exons 2, 3, and 4),
NRAS (exons 2, 3), and BRAF (exons 15, V600E) mutations were
detected by using polymerase chain reaction (PCR) and
amplification-refractory mutation system (ARMS). Among the
53 patients with mutant genes, 48 patients were KRAS mutation,
four patients were NRASmutation, and one was BRAFmutation.

Radiomics Features Extraction,
Selection, and Classifier Modeling for
Gene Mutation Prediction
Radiomics analysis was performed by a clinical research platform
(uAI Research Portal, United Imaging Intelligence Co., Ltd,
China). The code for radiomics analysis was developed based
on pyradiomics (https://pyradiomics.readthedocs.io/en). First, a
total of 2,600 features were extracted from the labeled tumor
volume of each MR sequence. These features were computed by
the combination of 104 original image features with 25 image
filters. The original image features include First-order, Shape,
Gray Level Co-occurrence Matrix (GLCM), Gray Level Run
Length Matrix (GLRLM), Gray Level Size Zone Matrix
(GLSZM), Gray Level Dependence Matrix (GLDM), and
Neighborhood Gray-Tone Difference Matrix (NGTDM). The
image filters consist of Gaussian noise, curvature flow, Laplacian
of Gaussian, Discrete Gaussian, Speckle noise, Recursive
Gaussian, shot noise, and Wavelets. Second, feature selection
was performed on the extracted features (2,600 dimensions) by
least absolute shrinkage and selection operator (Lasso) method
to work out an optimal feature subset (around 10 dimensions, for
example). We set two parameters for LASSO, the feature scaler
and shrinkage penalty, as min-max scaler and 0.02, respectively.
The selected features for each radiomics-based model are
Frontiers in Oncology | www.frontiersin.org 5
presented in the supplementary material. Then, a radiomics-
based model was built by support vector machine (SVM)
classifier with the selected features. The parameters of SVM
consist of penalty factor C (3.0), Gamma (0.03), and kernel
(radial basis function). The predict models were verified by five-
fold cross-validation and thus derived an average performance.

Statistics
Differences of patient baseline characteristics between the wild-type
and mutant groups were tested using independent samples t test
and chi-squared or Fisher’s exact tests, as appropriate. Performance
of the V-Net with respect to tumor segmentation was evaluated in
the test dataset using the Dice coefficient. The AUC (area under the
curve), accuracy, sensitivity, and specificity were calculated to
evaluate the performance of the radiomics-based model in
differentiating gene status. DeLong’s test was used to compare
two AUCs of the manual based model and deep learning–based
model of identical imaging modality. The statistical analyses
were conducted with SPSS (version 26.0), Medcalc (version 20.0),
and PyCharm (version 2018, Python version 3.0). A two-sided
p value < 0.05 was statistically considered significant difference.
RESULTS

Performance of 3D V-Net
Segmentation Algorithm
The ground truth annotation includes 202 rectal cancers on
T2WI and DWI sequences. To evaluate the performance of the
3D V-Net, the Dice Similarity Coefficient (DSC) was used to
compare segmentations between AI and a radiologist. The
volumetric segmentations generated from the deep learning
model are probability maps. The mean and standard deviation
of the Dice is 0.878 ± 0.214 and 0.955 ± 0.055 for T2WI and DWI
separately in the test dataset. A paradigm of tumor segmentation
results are shown in Figure 3.

Clinical and Pathological Characteristics
Among the 202 participants, 94 patients underwent a KRAS/
NRAS/BRAF mutation test. There were 53 patients who harbored
mutant genes, and 41patients were wild type. A statistical difference
in terms of age, gender, histologic grade, pN stage, CEA, and CA-
199 levels was not found between wild-type and mutant groups,
except at the pT stage (p = 0.021). It seems that a tumor with more
advanced T stage is prone to evolve mutant gene (Table 1).

Testing of Gene Mutation Prediction With
Radiomics Signature
We built radiomics-based models with extracted features from
two MR sequences of T2WI and DWI. Each sequence was
processed separately to compute features from DL-based and
manual-based VOI, respectively. Furthermore, we combined all
features computed from T2WI and DWI sequences, and then
applied the feature selection method LASSO to obtain an optimal
feature subset. Thus, in total we collected six feature subsets and
built six radiomics-based models for gene prediction. The mean
performance of each model based on five-fold cross-validation is
July 2021 | Volume 11 | Article 696706
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listed in Table 2 and includes accuracy, specificity, sensitivity,
and AUC. For each imaging modality, the prediction
performance of gene mutation did not show any statistical
difference between DL-based segmentation and manual-based
segmentation (Table 2 and Figure 4).
DISCUSSION

In this study, we segmented rectal cancer via 3D V-Net on T2WI
and DWI and then compared the radiomics performance in
predicting KRAS/NRAS/BRAF status between DL-based auto
segmentation and manual-based segmentation. By virtue of
volumetric convolution and coarse-to-fine segmentation
models, higher tumor segmentation performance (Disc=0.878
and 0.955 for T2WI and DWI) was achieved by V-Net in our
Frontiers in Oncology | www.frontiersin.org 6
study compared with Trebeschi’s (22) (Dice=0.70 for confusion
image of T2WI and DWI) and Wang’s (Dice=0.74 for T2WI)
(12) work. This could be explained with low signal noisy ratio
caused by 1.5T MR scanner in Trebeschi’s work, volumetric
information loss with 2D U-net architecture in Wang’s work,
and their relatively small sample size (n=140 and 93,
respectively). It has been widely recognized that qualified
standard input image data are crucial for training CNN
architecture to obtain high performance (23). We recruited
MR images from 202 rectal patients who underwent 3.0T MR
scans, which ensured eligible input data with high signal noise
ratio and spatial resolution. Furthermore, we manually labeled
regions of contiguous normal rectal wall and lumen against
tumor on T2WI images and the magnetic susceptibility
artifacts on DWI image. This process is distinctive to previous
work (12, 22) and helpful to confirm the boundary of VOI.
TABLE 2 | Performance of the radiomics-based models in predicting genotype (KRAS/NRAS/BRAF).

Imaging modality VOI Accuracy Specificity Sensitivity AUC P

T2WI Manual 0.669 0.614 0.716 0.637 0.188
DL 0.674 0.464 0.744 0.714

DWI Manual 0.776 0.731 0.809 0.872 0.181
DL 0.711 0.678 0.736 0.816

T2WI+DWI Manual 0.829 0.803 0.847 0.906 0.676
DL 0.783 0.661 0.882 0.887
July 2021 |
 Volume 11 | Article 6
For each model, the mean performance from five-fold cross-validation is presented in this table. DeLong’s test was used to compare the two AUCs of the manual-based model and the
deep learning–based model for identical imaging modality. DL, deep learning; VOI, volumes of interest; AUC, area under the curve.
FIGURE 3 | Illustration of automated segmentation using 3D V-Net versus ground truth on rectal MR images of a 51-year-old male. Purple indicates tumor, yellow
indicates normal rectal wall, and blue indicates lumen. The Dice was 0.980 on T2WI and 0.981 on DWI for this patient.
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Though the T2WI had higher spatial resolution, the higher
Dice was achieved on DWI. The noise, intensity non-uniformity,
partial volume averaging, and tumor background contrast were
key elements to influence the accuracy of segmentation (24).
Compared to T2WI, the tumor background contrast and
intensity uniformity on DWI were greater, which may facilitate
the computer to identify and recognize the tumor region. As
there was greater non-uniformity of intensity and low tumor
background contrast on T2WI, especially in respect to muscle,
bladder, and normal rectal wall, which may present similar signal
intensity and texture to tumorous tissue, we found that after
intensity histogram match there were still two samples that
totally failed to give the correct segmentation (Disc=0). One of
them put the segmentation label on the right piriformis, and the
other put the segmentation label on the uterus (Supplementary
Figure 1). Except for intensity non-uniformity and low tumor
background contrast on T2WI, limited training samples may be
another reason that contributes to failed segmentations.

The ultimate goal of auto segmentation is to facilitate clinical
or experimental application. Since the genotype (KRAS/NRAS/
BRAF) is strongly correlated with response to anti-EGFR
therapies (25), we evaluated the reliability and usefulness of
auto segmentation with radiomics analysis on these genotype
predictions. No matter whether referring to single imaging
modality or combined imaging modality, we found that the
performance of genotype prediction is similar between
manual-based and DL-based segmentation (Table 2). For
example, the AUC is 0.906 for manual-based and 0.887 for
DL-based VOI in combination of T2WI and DWI features on the
test dataset (P=0.676). When referring to radiomics analysis, the
genotype prediction performance of DWI is superior to that of
T2WI, and combination modality surpasses any single imaging
modality no matter whether it is manual-based VOI or DL-based
VOI (Table 2). The KRAS/NRAS/BRAF are the downstream
effectors of the EGFR signal pathway involved in tumor cell
proliferation, differentiation, and invasion (26). Tumors with
Frontiers in Oncology | www.frontiersin.org 7
mutant genes more likely exhibit greater aggressiveness and
angiogenesis, which will result in faster progress, worse
survival, and lower apparent diffusion coefficient (ADC) value
(27). The DWI can indicate the functional information of tissue
by evaluation of water molecular mobility, which is estimated
with ADC value, while T2WI are prone to indicate anatomic
information, which might explain the higher genotype prediction
performance of DWI compared to that of T2WI. Cui and his
colleagues (8) developed a radiomics signature to predict KRAS
mutations with moderate performance on T2WI (AUC=0.682
for internal validation and 0.714 for external validation), which
is concordant to our genotype prediction performance with
T2WI (AUC=0.714, DL-based VOI). We noted that for T2WI
modality, the AUC of the radiomics-based model with DL-based
VOI is higher than that of manual-based VOI (0.714 vs 0.637).
In theory, the manual segmentation is the ground truth for
radiomics analysis. So, the performance of the DL-based model
should not be superior to manual-based VOI. To assess the
difference of gene prediction performance between these two
models, a Delong’s test was used, and the result showed no
statistical significance (P=0.181). We speculate that limited
sample size may be one reason. On the other hand, DL-based
VOI may contain some peritumoral region, which could exhibit
an inflammatory response and tumor microinvasion. The
inflammatory response and tumor microinvasion may provide
additional information that is related to gene mutation. Meng
et al. (28) investigated a radiomics-based model in predicting the
KRAS-2 genotype based on multiparametric MRI (T1WI, T2WI,
DWI, and DCE) with 0.651 of AUC in the validation cohort,
which is slightly inferior to our combination model (T2WI+
DWI, AUC=0.878 for manual VOI) and may be attributed to
low signal noise ratio and spatial resolution of their 1.5T MR
scanner. Several studies have demonstrated the value of CT
radiomics (7) (AUC = 0.829) or texture analysis (AUC = 0.82)
(29) or PET/CT (AUC = 0.684 ~ 0.75) (30) on genotype prediction
of KRAS/NRAS/BRAF or KRAS alone. Compared with CT or
FIGURE 4 | Mean receiver operating characteristics (ROC) curve of five-fold cross validation for each radiomics-based model. DL, deep learning; AUC, area under
the curve.
July 2021 | Volume 11 | Article 696706
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PET/CT, MRI can be of benefit with no concern about radiation
exposure and contrast agent injection and simultaneously provide
a wonderful detailed tissue contrast.

Though 202 patients were involved in our analysis, it is still
necessary to validate this framework and compare it with
different architectures, such as the recently developed
Generally Nuanced Deep Learning Framework (31), in larger
and diverse datasets. Currently, all segmentation acquired with
deep learning architecture should be carefully reviewed before
being submitted for further application, especially for making a
radiotherapy plan. The requirement of high-quality annotated
data is a great challenge for auto segmentation, which needs a
standard imaging protocol, strict quality control, and accurate
annotation. For rectum DWI, magnetic susceptibility artifact is
the main obstacle that affects the accuracy of auto segmentation.
Therefore, we labeled the artifact on DWI of the training dataset.
If possible, labeling all anatomic structures and artifacts on the
training dataset will definitely improve the performance of deep
learning architecture, but that will be a huge workload.
Considering the great performance of combined imaging
modality on predicting genotype, further investigation of
combining CT and MRI is needed.
CONCLUSIONS

In this study, 3D V-Net architecture provided reliable rectal
cancer segmentation on T2WI and DWI compared with expert-
based segmentation, and auto segmentation was subjected to
radiomics analysis in the prediction of KRAS/NRAS/BRAF
mutation status and may produce a good prediction result.
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