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Colorectal cancer (CRC) is often characterized by mutations and aberrant DNA
methylation within the promoters of tumor suppressor genes and proto-oncogenes.
The most frequent somatic mutations occur within KRAS and BRAF genes. Mutations of
the KRAS gene have been detected in approximately 40% of patients, while mutations in
BRAF have been detected less frequently at a rate of 10%. In this study, the DNA
methylation levels of 22 candidate genes were evaluated in three types of tissue: mucosal
tumoral tissue from 18 CRC patients, normal adjacent tissues from 10 CRC patients who
underwent surgical resection, and tissue from a control group of six individuals with
normal colonoscopies. A differential methylation profile of nine genes (RUNX3, SFRP1,
WIF1, PCDH10, DKK2, DKK3, TMEFF2, OPCML, and SFRP2) presenting high
methylation levels in tumoral compared to normal tissues was identified. KRAS
mutations (codons 12 or 13) were detected in eight CRC cases, and BRAF mutations
(codon 600) in four cases. One of the CRC patients presented concomitant mutations in
KRAS codon 12 and BRAF, whereas seven patients did not present these mutations (WT).
When comparing the methylation profile according to mutation status, we found that six
genes (SFRP2, DKK2, PCDH10, TMEFF2, SFRP1, HS3ST2) showed a methylation level
higher in BRAF positive cases than BRAF negative cases. The molecular sub-classification
of CRC according to mutations and epigenetic modifications may help to identify
epigenetic biomarkers useful in designing personalized strategies to improve
patient outcomes.
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INTRODUCTION

Colorectal cancer (CRC) is the third most common type of cancer and, even with advances in CRC
screening and therapeutic strategies, it still remains the seconddeadliestmalignancy for both sexes. CRC
incidence has continued to increase in countrieswithmedium to high human development indexes and
in younger populations (1). This type of cancer is a highly heterogeneous disease that can be subtyped
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according to anatomical location or pathological and molecular
signatures. The development of CRC is influenced by both
environmental risk factors (such as obesity, a sedentary lifestyle,
an unhealthy diet, alcohol consumption, and smoking) (2) and
genetic risk factors, with less than 10% of patients presenting
inherited mutations that increase the risk of CRC onset (3) and
25% of patients with “familial” CRC (4). About 70% of CRC cases
are sporadic; these cases are most common in patients over the age
of 50 and seem to depend mainly on dietary and
environmental factors.

In general, the development of sporadic CRCs involves the
“normal-adenoma-dysplasia-carcinoma” sequence as described
by Vogelstein and Fearon (5). This sequence includes genetic and
epigenetic changes in the colonic epithelium that transformnormal
glandular epithelium into invasive adenocarcinomas. The
progression from adenoma to carcinoma is a multistep process
that involves three molecular pathways: the Chromosomal
Instability (CIN) pathway, the Microsatellite Instability (MSI)
pathway, and the CpG Island Methylator Phenotype (CIMP)
pathway. CIN is characterized by loss or gain of chromosomal
segments, chromosomal translocations, or gene amplifications,
which result in gene copy number variations. In addition,
mutations in specific oncogenes, including KRAS and BRAF, and
in tumor suppressor genes, such asAPC and TP53, can be detected
(6). MSI occurs in 15–20% of sporadic CRC cases and comprises
recurrent alterations in the microsatellite zone without structural
and numerical changes in the genome. CIMP, reported in 20–30%
of sporadicCRCs (7), is characterizedbyhyper-methylationofCpG
islands located in promoters that regulate the activity of several
tumor suppressor genes and other CRC related genes. It is well
known that specific mutations can modify DNA methylation (8)
and that DNA methylation changes can cause an increase in
mutation rate (9). In CRC, 10–40% lower levels of absolute
methylation than normal colon tissue within the whole genome
have beendetermined (10).However, CpG islands in thepromoters
of CRC related genes show a hyper-methylated profile, resulting in
repression of transcription of tumor suppressor genes (11).
Therefore, the first aim of this study was to identify methylation
differences in the promoters of 22 candidate genes in CRC tissues
compared with control tissues (from non-CRC individuals) and
withpairednormal adjacent tissues.The secondaimwas toexamine
the relationship between promoter DNA methylation and the
presence of mutations in KRAS and BRAF genes.
MATERIALS AND METHODS

Sample Collection
The DNA for the study was obtained from 18 CRC sporadic
tumor tissues and 10 corresponding paired normal adjacent
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tissues (NAT) from CRC patients who underwent surgical
resection. The NATs were collected approximatively 10 cm
away from the tumors. For nine patients out of 10, the NAT
was collected from the same anatomic segment. For one patient
with tumor localization in the recto-sigmoid junction, the NAT
was collected from the sigmoid. For five of the 18 CRC patients,
blood samples were collected in EDTA tubes. The tissue
specimens and the blood samples were collected at Fundeni
Clinical Institute in Bucharest (Romania) and were stored at −80°C
until DNA isolation. Six specimens from normal colonic mucosa as
well as five blood samples from independent controls, from
previous preclinical studies were available from the biobank of the
Victor Babes Institute (Table 1). The present study was approved by
the local ethics committee (registration number 291, 8March 2016),
carried out in accordance with the Declaration of Helsinki, and the
individuals gave their written informed consent. Genomic DNAwas
isolated using the QIAmp DNAMini Kit (Qiagen) according to the
manufacturer’s instruction and quantified using a NanoDrop 2000
spectrophotometer (Thermo Scientific). All samples were examined
by a pathologist, and clinical information of the patient’s cohort are
reported in Table 2.

Detection of KRAS and BRAF Mutations
Detection and DNA Methylation Analysis
KRAS gene mutations (in codons 12, 13, 61) were detected by
pyrosequencing as previously described (12). Mutations in
codons 600 and 601 of the BRAF gene were assessed using the
BRAF 600/601 StripAssay (ViennaLab Diagnostic GmbH,
Vienna, Austria) by PCR followed by reverse hybridization
according to the manufacturer’s protocol. The DNA
methylation levels of the promoters of the 22 genes involved in
colorectal cancer (APC, CDH1, CDKN2A, DKK2, DKK3, HIC1,
HNF1B, HS3ST2, MGMT, MLH1, OPCML, PCDH10, RASSF1,
RUNX3, SFRP1, SFRP2, SFRP5, SPARC, TMEFF2, UCHL1,
WIF1, and WT1) were analyzed using the EpiTect Methyl II
PCR Array (Qiagen, Hilden, Germany) according to
manufacturer’s protocol. This array system is based on the
detection of the input DNA that remains after digestion with a
methylation-sensitive and/or methylation-dependent restriction
enzyme using the EpiTect Methyl II DNA Restriction kit
(Qiagen, Hilden, Germany). The relative amount of un-
methylated (UM) and methylated (M) DNA was quantified by
qPCR using the comparative cycle threshold method.

Statistical Analysis
The statistical analysis was conducted using the Statistical
Package for Social Science (SPSS version 17.0). Categorical
variables were tested using the chi-square test and continuous
variables were tested using a t-test or Mann-Whitney U test. The
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TABLE 1 | Socio-demographic data of the individuals involved in the study.

Group Age ± SD Sex (% Female) p-value Age p-value, Sex

T (N = 18) 65.72 ± 11.31 55.55 T vs C, p = 0.381 T vs C, p = 0.633, c2 = 0.229
NAT (N = 10) 62.40 ± 11.16 72.72 T vs PT, p = 0.461 T vs PT, p = 0.453, c2 = 0.562
C (N = 6) 60.66 ± 14.06 66.66 PT vs C, p = 0.789 PT vs C, p = 0.793, c2 = 0.069
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Mann-Whitney U test was used to identify differences in
promoter methylation levels between CRC patients (T) and
controls (C), normal adjacent tissue (NAT) and controls (C),
as well as to compare samples from patients with different
mutation status for KRAS and BRAF. Receiver operating
characteristic (ROC) curves were created and the area under
the curve (AUC) was calculated to determine the role of
methylation in differentiating T from C. Logistic regression
was used to build a diagnostic model that could explore
whether varying combinations of differentially methylated
genes could better differentiate T from C. A gene promoter
was considered to be methylated if the methylation level was over
20% according to the instructions of the manufacturer. A further
analysis of the 10 tumoral samples with their matched NAT
samples was performed using the Wilcoxon Signed Rank test. All
reported significant p values were two-sided, with p < 0.05.
RESULTS

In this study, colonic mucosa sample from 18 patients with CRC
and six controls were investigated to evaluate the levels of DNA
methylation of the promoters of 22 target genes. The tumors
were located in the ascending and transverse colon (n = 9), in the
sigmoid (n = 4), and in the rectum or the rectosigmoid junction
(RSJ) (n = 5). At the moment of sample collection, three cases
presented hepatic metastasis. Seven out of the 18 analyzed
tumoral tissues presented mutations in the KRAS gene: four
occurred in codon 12 and three in codon 13. Three patients had
mutations in the BRAF gene, and one patient showed a double
mutation, i.e., mutations in both BRAF and KRAS genes. KRAS
and BRAF mutations were not found in the 10 normal adjacent
tissues or in the seven tumoral tissues (WT) (Table 2).

Statistical analysis of the DNA methylation levels of the
promoters was performed for 16 genes out of 22, because in
six genes, the detected DNA methylation level in the tumoral
tissue was below 20% (Figure 1 and Table 3).

A significant differential methylation profile of nine genes
(RUNX3, SFRP1, WIF1, PCDH10, DKK2, DKK3, TMEFF2,
OPCML, and SFRP2) was detected in tumoral tissues when
compared to control tissues (Table 3). No statistical difference
was observed when comparing the methylation levels of NAT to
Frontiers in Oncology | www.frontiersin.org 3
C (p > 0.05).To assess the potential diagnostic value in
discriminating tumoral from normal tissues from controls,
ROC analysis was performed. All the significant genes
presented an AUC above 0.80 and a specificity and sensitivity
between 77.8 and 100% (Table 3). When combining three
selected potential biomarkers (SFRP1, PCDH10, and DKK2)
the value of the AUC was 0.972 and p = 0.001 (Figure 2).

We also performed a paired analysis for the 10 tumoral
samples with their matched NATs. The results showed that
RUNX3 and TMEFF2 promoters were significantly hyper-
methylated in tumoral tissue (p = 0.017 and p = 0.037,
respectively) (Figure 3). SFRP1, WIF1, PCDH10, DKK2, DKK3,
OPCML, and SFRP2 maintained the same trend of hyper-
methylation in T vs. C cases, without reaching statistical
significance in the comparison with NAT.

When comparing methylation profiles according to BRAF
mutation status, we found that SFRP2, DKK2, PCDH10, TMEF2,
SFRP1, and HS3ST2 showed methylation levels that were
significantly higher in the BRAF positive cases (n = 4, including
the case with BRAF+ and KRAS12+) than in BRAF negative cases
(WT andKRAS+; n = 14) (Figure 4A). No changes were identified
comparing BRAF+ vsWT (n = 7).

RegardingKRASmutation status,we found that themethylation
level of SFRP2 was lower in KRAS12+/13+ (n = 8) versus KRAS12
−/13− (n = 10) (p = 0.027). Even when the case with double
mutation (BRAF+ and KRAS12+) was excluded, the comparison
remained significant (p = 0.043). Moreover, OPCML was less
methylated in the comparison of KRAS12+ (n = 4) to KRAS12−
(n = 14), (p = 0.035). No significant difference in the percentage
levels of methylation was found in the following comparisons:
KRAS12+ (n = 4) with WT (n = 7), KRAS13+ (n = 3) with WT
(n = 7), KRAS12+/13+ (n = 8) with WT (n = 7). The
methylation results of the tumoral samples grouped by
mutational status are presented in the heat map of Figure 4B.

Furthermore, we quantified the methylation levels of the
promoters in peripheral blood mononuclear cells (PBMC)
from five controls and five CRC patients whose methylation
profiles were performed in the tumoral tissue. None of the five
patients presented BRAF/KRAS mutations in their blood. Except
for RUNX3, which was highly methylated both in patients and
controls, the other 21 gene promoters did not show a significant
general level of methylation (data not shown).
TABLE 2 | Available clinical data and mutation status of CRC patients involved in the study.

Mutational status (KRAS/BRAF) Number Mutation type Location Hepatic metastasis

WT 7 // Colon (n = 3) 1
Rect/RSJ (n = 3)
Sigmoid (n = 1)

KRAS12+ 4 KRAS12_G12D (n = 2) Colon (n = 3) 1*
KRAS12_G12V* (n = 2) Sigmoid (n = 1)

KRAS13+ 3 KRAS13_G13D (n = 3) Colon (n = 1) 0
Rect/RSJ (n = 1)
Sigmoid (n = 1)

BRAF+ 3 BRAF_V600E (n = 3) Colon (n = 2) 1
Rect/RSJ (n = 1)

KRAS12+BRAF+ 1 KRAS12_G12D+ BRAF_V600E (n = 1) Sigmoid (n = 1) 0
July 2021 | Volum
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DISCUSSION

In this study, we profiled DNA methylation of the promoters of
22 candidate genes in tumoral tissue, normal adjacent tissue
from CRC patients, and normal mucosa from controls. In all
tumoral samples, we also assessed the mutation status of KRAS
and BRAF to investigate a possible association between hyper-
methylation of these candidate genes and KRAS and BRAF
mutations. Our study revealed the hyper-methylation of nine
genes out of 22 in tumoral tissue from CRC patients compared to
Frontiers in Oncology | www.frontiersin.org 4
normal mucosa and identified a specific methylation profile for
patients with the BRAF V600E mutation.

In the case-control comparison, we found hyper-methylation
of genes belonging to the Wnt signaling pathway (SFRP1, SFRP2,
DKK1, DKK2, and WIF1), the TGF-Beta;/SMAD pathway
(RUNX3), two tumor suppressor genes (PCDH10 and
OPCML), and a gene that acts both as an oncogene and a
tumor suppressor, depending on the cellular context
(TMEFF2). Many CRCs feature methylation of the extracellular
inhibitors of Wnt signaling, such as SFRP1, SFRP2 (13–15), and
FIGURE 1 | DNA methylation levels in 18 Tumoral (T), 10 Normal Adjacent Tissue l (NAT), and 6 Control (C) of each of the 22 evaluated genes. The line represent
the threshold of 20% of CpG dinucleotides modified by a methyl group, above which the promoter is defined as methylated.
TABLE 3 | Average of the methylation percentage (± SEM) in tumoral and control tissues along with the statistical results between the two groups and the ROC curve analysis.

Gene TUMORAL N = 18 CONTROL N = 6 % Methylation T vs C ROC

Mean SEM Mean SEM p-value (Mann-Whitney U test) AUC Cut-off% Sensitivity%/ Specificity% p-value

RUNX3 78.87 4.05 48.31 4.83 <0.001 0.917 55.57 94.4–83.3 0.003
SFRP1 54.61 7.44 3.18 0.98 <0.001 0.944 10.51 94.4–100 0.001
SPARC 52.01 6.14 33.66 4.78 ns
WIF1 51.95 7.13 6.66 1.69 0.003 0.889 15.69 88.9–100 0.005
PCDH10 50.31 7.07 4.95 1.01 0.001 0.935 12.03 88.9–100 0.002
HS3ST2 50.03 8.39 11.04 8.7 ns
DKK2 47.96 6.68 7.38 1.58 <0.001 0.981 13.81 94.4–100 0.001
DKK3 47.22 8.65 2.35 0.55 0.027 0.806 3.92 77.8–83.3 0.028
TMEFF2 46.4 7.89 1.87 0.4 0.002 0.907 2.99 88.9–83.3 0.003
OPCML 43.28 5.37 9.38 2.69 0.003 0.889 15.20 83.3–83.3 0.005
WT1 42.9 9.09 0.9 0.23 ns
SFRP2 41.84 7.51 2.18 0.66 0.015 0.833 10.84 83.3–100 0.016
UCHL1 36.95 7.6 5.28 2.65 ns
HIC1 29.87 8.12 4.34 0.58 ns
SFRP5 26.87 7.57 2.53 0.93 ns
RASSF1 20.28 6.6 0.87 0.22 ns
CDKN2A 19.03 7.09 1.84 0.38 Methylation <20%
MLH1 14.48 6.88 2.05 0.95
APC 9.2 3.36 2.28 0.58
MGMT 7.81 3.38 3.5 1.54
CDH1 1.08 0.1 7.35 2.38
HNF1B 0.9 0.11 1.23 0.43
July 2021 | Volume 11 | Article
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genes belonging to the dickkopf (Dkk) family. Although genes from
the Dkk family largely have an inhibitory effect on this pathway,
there is evidence thatDKK2 can also activateWnt signaling (16). In
particular, DKK2 and DKK3 were hyper-methylated in tumoral
tissue from CRC versus control tissues or paired adjacent healthy
tissues (13, 17, 18). Furthermore, DKK3 expression levels were
negatively correlated with the rate of promoter methylation (19).
Moreover, it has been suggested that DKK2 and DKK3 co hyper-
methylation might be considered as an independent prognostic
predictor (20). Aberrant methylation of WIF1 was found in CRC
(13, 14, 20, 21) with a statistically significant association with
increasing tumor stage and tumor differentiation (22).
Frontiers in Oncology | www.frontiersin.org 5
A high percentage of colorectal cancers contain mutations
that disrupt signaling in the pathways of the TGF-b family that
regulate the proliferation, differentiation, adhesion, and
migration of cells (23). One of the transcriptional effectors
involved in TGF-b/SMAD signaling is RUNX3. Its promoter
has been found to be methylated in approximately 30% of CRCs
(15) with high levels both in CRC tissues (17, 24) and in serum,
where methylation levels increase with the advancement of
pathological stage (25). PCDH10 belongs to the protocadherin
gene family and acts as tumor suppressor gene inhibiting cell
proliferation and cell invasion in colorectal cancer development.
The rate of PCDH10methylation in CRC tissue was significantly
higher compared with normal mucosa in different studies (26,
27) as well as in other types of cancer such as lymphomas (28,
29), breast cancer (30) and medulloblastoma (31). Another
tumor suppressor gene found hyper-methylated in our study
was OPCML (Opioid Binding Protein/Cell Adhesion Molecule
Like). It is involved in cell growth, invasion, and metastasis. This
gene exhibits high promoter methylation and reduced expression
levels in different cancers, including ovarian, bladder,
nasopharyngeal, and cervical cancers, as well as hepatocellular
carcinomas, and colorectal cancer (32, 33). Finally, our
comparison between CRC tissue and controls revealed hyper-
methylation of TMEFF2. In this case, our results are also in line
with the literature as it shows aberrant methylation of this gene
in CRC (34), suggesting its role as prognostic marker (35).

Mutations in BRAF andKRAS genes occur in about 10 and 40%
of CRC cases respectively (36, 37) and affect different biological
pathways. Functionally, these genes are linked todysregulatedDNA
methylation (38) and miRNA expression (39). We found a specific
methylation profile of tumoral tissues with the BRAF V600E
mutation that showed increased methylation levels of SFRP2,
DKK2, PCDH10, TMEFF2, SFRP1, and HS3ST2 compared with
tissues without this mutation.

The association of the BRAF V600E mutation and SFRP2
methylation levels has been already shown by Bagci and
colleagues (40). In line with the results of this research group,
the association between KRASmutations in codon 12 and codon
13 and hyper-methylation of SFRP2 did not show significant
results. Regarding the other identified genes, a specific
association between BRAF V600E mutation and methylation
levels has not, to our knowledge, been reported in the literature.

Epigenetic aberrations are reversible and therefore represent
promising targets for novel approaches for cancer therapies (41,
42). The observation that BRAF-mutant CRCs displayed six
hyper-methylated genes with tumor suppressive functions
respect to BRAF-negative CRCs may shed light on their
possible re-expression following treatment with demethylating
agents. In CRC, epigenetic alterations may promote resistance to
systemic drugs such as 5-fluorouracil (5-FU), oxaliplatin, and
irinotecan (43). For this reason, it has been suggested that
combined therapies with epigenetic agents may reverse drug
resistance. It has been demonstrated that the use of a
demethylating compound, such as 5-azacitidine (5-AC)
improves sensitivity and reduces resistance in BRAF-mutant
CRCs that are usually characterized by very aggressive
FIGURE 3 | Significant promoter genes hyper-methylated in the paired
analysis (Wilcoxon Signed Rank test): T vs NAT.
FIGURE 2 | ROC curves for three potential biomarkers combined (SFRP1,
PCDH10, and DKK2). AUC = 0.972, p = 0.001.
July 2021 | Volume 11 | Article 697409
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behavior, poor prognosis, and resistance to therapies with 5-FU
or irinotecans (44). Mao et al. demonstrated that treatment with
demethylating agents might prime CRC for BRAF inhibitor
treatment. In a xenograft model of CRC, these authors showed
that pretreatment with 5-AC significantly increased the efficacy
of subsequent treatments with a BRAF inhibitor (45).

Our results indicate a panel of genes that could be considered
for the identification of an epigenetic molecular signature of
BRAF-mutant CRCs and thus potential molecular targets for
selective epigenetic treatments. Several epigenetic drugs are
currently under study in clinical trials for the treatment of
CRC (46); epigenetic target-based therapy might be a
promising approach in the future to improve the curative
treatments of CRC.

Clearly, there were some limitations to this study. Firstly, the
sample size was relatively small; secondly, mRNA data, which is
useful to perform a correlation between methylation and gene
expression, was not available.
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