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The neurofibromatosis syndromes, including NF1, NF2, and schwannomatosis, are tumor
suppressor syndromes characterized by multiple nervous system tumors, particularly
Schwann cell neoplasms. NF-related tumors are mainly treated by surgery, and some of
them have been treated by but are refractory to conventional chemotherapy. Recent
advances in molecular genetics and genomics alongside the development of multiple
animal models have provided a better understanding of NF tumor biology and facilitated
target identification and therapeutic evaluation. Many targeted therapies have been
evaluated in preclinical models and patients with limited success. One major advance is
the FDA approval of the MEK inhibitor selumetinib for the treatment of NF1-associated
plexiform neurofibroma. Due to their anti-neoplastic, antioxidant, and anti-inflammatory
properties, selected natural compounds could be useful as a primary therapy or as an
adjuvant therapy prior to or following surgery and/or radiation for patients with tumor
predisposition syndromes, as patients often take them as dietary supplements and for
health enhancement purposes. Here we review the natural compounds that have been
evaluated in NF models. Some have demonstrated potent anti-tumor effects and may
become viable treatments in the future.

Keywords: neurofibromatosis (NF), signaling pathway, targeted therapy, natural compounds, eIF4A inhibitors,
rocaglamide, didesmethylrocaglamide, protein translation
NEUROFIBROMATOSIS (NF) COMPRISES THREE DISTINCT
GENETIC DISORDERS THAT CAUSE TUMORS TO GROW
ALONG NERVES

As a group of slowly progressive autosomal-dominant syndromes, NF is classified into
neurofibromatosis type 1 (NF1), neurofibromatosis type 2 (NF2), and schwannomatosis (1).
These syndromes typically present with neural tumors, which manifest in different locations
depending upon their genetic etiology. Although the tumors frequently remain benign, they incur
severe patient morbidity and occasionally exhibit malignant progression.
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NF1, previously known as von Recklinghausen disease, affects
~1 in 3,000 individuals (2) and is caused by mutations of the NF1
gene on chromosome 17q11.2 (3–5). Although NF1 mutations
can be inherited, the de novo mutation rate is relatively high
(~42%). With 100% penetrance, NF1 patients are symptomatic,
but with variable expression. First presenting with
hyperpigmentation-like café-au-lait macules and freckling in
afflicted patients, the hallmark of NF1 is the development of
neurofibromas, benign tumors composed of an admixture of
dysplastic Schwann cells and stromal cells, including fibroblasts,
mast cells, and perineural cells embedded in a collagenous
extracellular matrix (ECM). Nearly all NF1 patients develop
cutaneous neurofibromas (CNFs, or dermal neurofibroma),
which arise along superficial nerves and are confined to the
cutaneous tissues (6). CNFs can cause itching and pain. About
half of NF1 patients also develop more serious plexiform
neurofibromas (PNFs) (7). These tumors occur deeper within
the body and are more extensive, surrounding multiple nerve
roots and causing pain and disfigurement. PNFs can undergo
malignant progression, and 8-13% of PNFs in NF1 patients
develop into highly-aggressive malignant peripheral nerve
sheath tumors (MPNSTs) (8).

A fraction (15-20%) of NF1 patients develop optic pathway
gliomas (OPGs, astrocytomas of the optic tract) (9). Patients with
OPGs may present with visual disturbances and progressive
vision loss. NF1 patients are also predisposed to other types of
tumors, including gliomas, gastrointestinal stromal tumors,
juvenile myelomonocytic leukemia, and glomus tumors (10).
Although most NF1-related gliomas are classified as benign
pilocytic astrocytomas, adult NF1 patients are at ~50-fold
increased risk of developing malignant glioblastomas.

For current NF1 treatment, surgical excision of CNFs can be
performed when symptomatic (6). Surgical removal of PNFs is
more challenging because they are more diffuse and involve
multiple nerve roots. A recent exciting development is the FDA
approval of the MEK inhibitor selumetinib (Koselugo™) for the
treatment of children with symptomatic, inoperable PNF based
on the trial (ClinicalTrials.gov Identifier: NCT01362803) which
demonstrated a 72% response rate in tumor volume shrinkage by
≥20% in NF1 children with PNFs (11). However, this is not
curative as no subjects had complete tumor disappearance and
tumors regrew particularly after dose reduction or cessation due
to toxic effects, including diarrhea, weight gain, paronychia, skin
ulceration, and elevated creatinine level. Identification of other
targeted agents that synergize with selumetinib in eliminating
PNFs should be sought. Several other MEK inhibitors, such
as trametinib (Mekinist®; ClinicalTrials.gov Identifiers:
NCT02124772 and NCT03741101) and cobimetinib
(NCT02639546), are also being evaluated in children and
adults with PNFs. Mirdametinib was recently reported to
shrink the sizes of PNFs in adults and reduce tumor-associated
pain (NCT02096471) (12), and a larger trial of this drug in
children and adults with NF1 is currently recruiting
(NCT03962543). Additionally, a topical gel formulation of the
MEK inhibitor NFX-179 is being tested in NF1 patients with
CNFs (NCT04435665).
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Children with OPGs are routinely monitored for clinical
progression by neuroimaging and visual acuity tests (13). Slow-
growing gliomas causing minimal symptoms are usually not
treated, but if the disease progresses, chemotherapy and
occasionally, surgery is used to stabilize and reduce tumor
burden. Radiation is contraindicated in NF1 patients with
benign tumors due to the heightened risk of secondary
malignancies. In a phase 2 clinical trial of selumetinib for
pediatric low-grade glioma, sustained responses were seen in
~40% of NF1 patients (14), leading to a phase 3 trial comparing
selumetinib to chemotherapy (ClinicalTrials.gov Identifier:
NCT03871257). Due to highly aggressive behavior, MPNSTs
are excised with wide margins (8). Radiation may be used
following resection of large (≥5cm) tumors, and chemotherapy
can be applied in a primary or adjuvant setting to treat
unresectable or metastatic tumors. Despite these efforts, the
local recurrence rate remains high (~32-65%), suggesting an
urgent need for additional effective treatments (8, 15).

NF2 has an incidence of ~1 in 30,000 and has nearly complete
penetrance (16). It is caused by mutations in the NF2 gene on
chromosome 22q12.2 (17, 18). The hallmark of NF2 is bilateral
vestibular schwannomas (VS). As the most common benign
tumors of the cerebellopontine angle, 95% of VS are unilateral
and occur sporadically. Occasionally, unilateral tumors are found
in NF2 patients, especially when they are mosaic for NF2 loss.
Like NF2-related VS, sporadic unilateral VS harbor NF2
mutations (19). Compared to sporadic VS, NF2-associated
tumors display more aggressive behavior, with a propensity
towards multifocal, rapid growth. Due to their intracranial
location and proximity to cranial nerves, VS present with
serious comorbidities, including hearing loss, tinnitus, balance
dysfunction, facial weakness, and brainstem compression.
NF2 is also associated with an increased incidence of
cutaneous schwannomas.

Patients with NF2 also develop meningiomas and less
commonly, spinal schwannomas, ependymomas, and
astrocytomas (1, 16). Meningiomas are the most common
brain tumors, and ~80% are benign (WHO grade I), whereas
the remaining are atypical (grade II) and anaplastic (grade III)
(20). In addition to NF2-related meningiomas, NF2 mutations
are found in ~50% of sporadic meningiomas. Up to 60% of NF2
patients develop meningiomas, mostly benign and often
multiple, which are associated with disease severity and
increased mortality (21). These tumors cause significant
morbidity, including cranial nerve palsy, seizures, and
brainstem compression, which may lead to paralysis, aspiration
pneumonia, and death.

The current standard-of-care for NF2-related tumors is
surgery (1, 16, 19). Radiosurgery, such as stereotactic g-knife
radiation, may be used, especially for unresectable tumors.
However, it must be weighed against the risk of causing
malignant transformation of benign tumors and inducing
second-site malignancies. Also, surgery may not be
recommended if the tumor is located in critical structures or if
there is high tumor burden (21). Currently, an FDA-approved
medical therapy is not available for NF2 patients, although a few
September 2021 | Volume 11 | Article 698192
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targeted therapies have been evaluated (1). Bevacizumab
(Avastin®), a monoclonal antibody that neutralizes vascular
endothelial growth factor (VEGF), is administered off-label to
patients with NF2 and progressive VS, with ~36-41% of the
patients experiencing durable hearing improvement and reduced
tumor volume (22, 23). However, intravenous administration of
bevacizumab is needed, and its adverse effect profile, including
hypertension and proteinuria, may preclude long-term use for
some patients. Also, meningiomas are unresponsive to
bevacizumab (24). Another targeted drug, the kinase inhibitor
brigatinib, is currently in a phase 2 clinical trial for NF2-related
tumors (ClinicalTrials.gov Identifier: NCT04374305).

Schwannomatosis manifests as multiple schwannomas on
nerves throughout the body but without involvement of
vestibular nerves (1, 25). The true incidence of schwannomatosis
is unknown but thought to be similar to NF2. Schwannomatosis
usually occurs sporadically, although familial or mosaic cases
occasionally occur. The most common familial mutations occur
in either the SNF5/SMARCB1/INI1 (Switch/Sucrose Non-
Fermentable chromatin remodeling complex subunit-5/SWI/SNF-
related, Matrix-associated, Actin-dependent Regulator of
Chromatin, subfamily-B, member-1/INtegrase Interactor 1) gene
on chromosome 22q11.23 or the LZTR1 (Leucine Zipper-like
Transcriptional Regulator 1) gene on chromosome 22q11.21; both
are located near the NF2 locus (26, 27). Interestingly,
schwannomatosis-related schwannomas also exhibit NF2
inactivation. It is currently thought that familial schwannomatosis
is inherited through a “three-event, four-hit” process where
inactivating mutations occur in the NF2 gene located on the same
chromosome as the germline-mutated LZTR1 or SMARCB1 allele.
Loss of the remaining normal copy of chromosome 22q results in
biallelic loss-of-heterozygosity (1, 16). However, some patients with
schwannomatosis do not have LZTR1 or SNF5/SMARCB1/INI1
mutations, suggesting the presence of another tumor suppressor
gene on chromosome 22q in schwannomatosis development.

Patients with schwannomatosis are often diagnosed at age
over 30 and frequently present with chronic debilitating pain. As
an FDA-approved drug is also not available, surgery is
considered for symptomatic patients. As pain is the major
symptom experienced by patients with schwannomatosis, the
anti-nerve growth factor (NGF) neutralizing monoclonal
antibody tanezumab is being tested in a phase 2 trial for pain
alleviation (ClinicalTrials.gov Identifier: NCT04163419).
Schwannomatosis is also associated with an increased risk of
meningioma (1, 16). Unlike NF2, schwannomatosis patients
with germline loss of SMARCB1 have a higher risk of
developing MPNSTs.
SIGNALING PATHWAYS AFFECTED IN
NF-ASSOCIATED TUMORS

The NF1 gene encodes neurofibromin, a Ras-GAP (GTPase-
activating protein) which stimulates the intrinsic GTPase
activity of Ras, converting it from the active GTP-bound
to inactive GDP-bound state (9, 28). Therefore, NF1-deficient
Frontiers in Oncology | www.frontiersin.org 3
cells consistently exhibit excessive levels of Ras-GTP and
activation of its downstream signaling, including the Raf/
MEK/ERK mitogen-activated protein kinase (MAPK) and
phosphoinositide-3-kinase (PI3K)/AKT/mammalian target of
rapamycin (mTOR) pathways (Figure 1). Activated ERKs
phosphorylate several effectors important for cell proliferation,
including components of the protein translation apparatus, cell-
cycle proteins, transcription factors, other kinases, and
phosphatases. Activated AKT signals multiple downstream
targets, promoting cell growth, survival, and motility (29).
Through phosphorylation of mTOR, AKT also promotes
protein translation. The mTOR protein functions as a
component in two multi-protein complexes, mTORC1 and
mTORC2, with overlapping protein compositions but distinct
cellular functions (30). By integrating various extracellular and
intracellular signals, including growth factor receptor signaling
and the levels of ATP, oxygen, and nutrients, mTORC1 regulates
ribosome biogenesis and protein translation. The mTORC2
complex is insensitive to nutrient levels but is responsive to
growth factor-mediated activation of PI3K. Paradoxically,
mTORC1 negatively regulates the activity of mTORC2 via
direct inhibition or through S6-kinase. Acute inhibition of
mTORC1 by rapamycin and rapalogs can cause feedback
activation of mTORC2, which then phosphorylates AKT on
serine-473, leading to restoration of PI3K/AKT signaling.

Neurofibromas express several RTK ligands, including
neuregulin/heregulin, insulin-like growth factor-1 (IGF-1), and
hepatocyte growth factor (HGF) (31). NF1-related PNFs can
progress to atypical neurofibromatous neoplasms of uncertain
biological potential (ANNUBP), which are hypothesized to be
precursor lesions of MPNST. In addition to NF1 loss, ANNUBP
often harbor deletions of CDKN2A/B (Cyclin-Dependent Kinase
Inhibitor 2A/B). Additionally, MPNSTs frequently acquire
mutations in SUZ12 or EED, subunits of the polycomb
repressive complex 2 (PRC2) for chromatin remodeling. Loss
of PRC2 enhances Ras-driven gene transcription (32). Also,
MPNSTs often overexpress several RTKs, including epidermal
growth factor receptor (EGFR), HGF receptor (HGFR or MET),
platelet-derived growth factor receptor (PDGFR), and insulin-
like growth factor-1 receptor (IGF-1R), potentially resulting in
autocrine signaling. These aberrantly-activated RTKs can initiate
Ras-independent survival signals through mediators, such as the
STAT (signal transducers and activators of transcription)
transcription factors (33).

The NF2 gene encodes merlin for moesin, ezrin, and radixin-
like protein (17, 18), which shares similarity to the protein 4.1,
ezrin, radixin, and moesin (FERM) family of membrane-
associated proteins that link cell-surface receptors to the actin
cytoskeleton (34). Loss of merlin results in defective cell-cell
adhesion via destabilizing adherens junctions, which correlates
with abnormal activation of focal adhesion kinase (FAK), a
downstream target of ECM-binding integrins and MET (35).
Merlin negatively regulates ligand-induced internalization and
recycling of multiple RTKs, such as EGFR and PDGFR (34)
(Figure 1A). Cells lacking merlin also show elevated levels of
several other RTKs, including IGF-1R, MET, and the EGFR
September 2021 | Volume 11 | Article 698192
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family members ErbB2 and ErbB3 (36, 37). These RTKs activate
ERKs and AKT/mTOR, promoting translation and cell growth.
Through binding to angiomotin, merlin inhibits p21-activated
kinases (PAKs), and PAKs reciprocally phosphorylate and
inactivate merlin (38–40). Merlin-deficient cells display
deregulated PAK and enhanced invasiveness.

Additionally, merlin suppresses the Hippo/large tumor
suppressor kinase 1/2 (LATS1/2)/Yes-associated protein (YAP)
pathway (41, 42). Merlin inhibits proteasomal degradation of
LATS1/2 by interacting with the E3 ubiquitin ligase CRL4DCAF1

in the nucleus (43). Therefore, merlin deficiency is associated
with enhanced YAP-dependent gene transcription and cell
proliferation. Further, loss of merlin resulted in mTORC1
activation, leading to phosphorylation of ribosomal protein S6
and enhanced cap-dependent protein synthesis via inhibition of
the eIF4E-binding protein (4E-BP) (44, 45). NF2-deficient cells
also display mTORC2 activation. Inhibition of mTORC1 by
rapamycin amplifies AKT activation by mTORC2 (46, 47).
Frontiers in Oncology | www.frontiersin.org 4
The molecular mechanisms by which inactivation of the
LZTR1 or SMARCB1/INI1 gene in addition to the NF2 gene
causes schwannomatosis are not understood. Mutations in
LZTR1 also occur in several cancer types, including ~22%
glioblastomas (48). Introducing LZTR1 to LZTR1-mutated
glioblastoma cells decreases cyclin A and polo-like kinase 1
expression, indicating the importance of LZTR1 in cell cycle
progression. As a member of the BTB-kelch superfamily, LZTR1
acts as an adaptor for cullin 3 (Cul3)-containing E3 ubiquitin
ligases (27) and facilitates polyubiquitination and degradation of
Ras (49). Cul3-containing ubiquitin ligases promote cell
differentiation, and LZTR1-depleted Schwann cells have gene
expression signatures consistent with a demyelinated
proliferative phenotype. Additionally, recent evidence indicates
that LZTR1-mutant schwannomatosis schwannomas exhibit
deregulated VEGF receptor, ErbB3, and ERK signaling (25).
SMARCB1 is a component of the SWI/SNF chromatin
remodeling complex, which affects the accessibility of genes to
A

B

FIGURE 1 | The signaling pathways inhibited by neurofibromin and merlin. (A) NF-related tumors exhibit activated Ras/RAF/MEK/ERK and PI3K/AKT/mTOR, leading
to enhanced protein translation and growth. (B) Activated ERK and AKT/mTOR enhance translation via eIF4B, which stimulates eIF4A activity. AKT/mTOR also
promotes translation via eIF4E. Inset: rocaglamide locks eIF4A onto the structured 5’-UTR of mRNA.
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transcription factors and RNA polymerases (50). Loss of
SMARCB1 function is associated with deregulated Hedgehog/
GLI and WNT/b-catenin signaling. Additionally, SWI/SNF
antagonizes PRC function, and SMARCB1 deficiency results in
PRC placing repressive histone methylation marks on other
tumor suppressor genes, such as CDKN2A (51).

It should be emphasized that although NF1-, NF2-, and
schwannomatosis-related tumors have distinct genetic origins,
they share downstream activation of several molecular targets (1,
2, 6, 16, 25, 52). Collectively, these deregulated signaling
pathways due to tumor suppressor loss in NF-associated
tumors provide several targets for therapeutic development.
UNIQUE CHALLENGES FOR DEVELOPING
MEDICAL THERAPIES FOR NF

Neurofibromatoses are systemic, life-long diseases with diverse
manifestations. Drug safety and high efficacy must be carefully
considered for these patients. Due to their anatomical locations,
routine biopsies of NF-associated tumors may not be possible.
Determination of appropriate endpoints and identification of
noninvasive biomarkers to monitor drug pharmacodynamics and
predict patient response are of great importance. Owing to their
benign nature, NF-associated tumors exhibit variable growth
patterns. NF1-related PNFs tend to rapidly expand during
childhood but develop a more indolent growth pattern in adults.
NF2-associated VS grow slowly at one-to-two millimeters per year
with occasional increases in growth rates. Therefore, reduction in
tumor volume may not be an ideal endpoint, and other metrics,
such as time to progression, hearing loss, and pain, should be
considered fordrugefficacy (53–55).NF2andschwannomatosis are
rare diseases, and patientsmay be difficult to recruit to clinical trials
unless the drugs are effective and well tolerated. For most NF-
associated tumors, medication may need to be taken for years. The
dosing regimen should be as simple as possible to aid in patient
compliance, with a daily oral tablet being ideal. In addition, patients
being recruited to clinical trials should be asked whether they are
taking any drugs or supplements as there could be toxicities when
combining over-the-counter (OTC) with investigational agents.

From identification of targets deregulated in NF-related tumors
using traditional and systems biology approaches (56–59), it is
anticipated that additional targeted compounds will be successful.
The evaluation of these targeted drugs has been the focus of several
recent reviews. Below, we summarize the current research on
natural compounds in NF-associated tumors (Table 1).
NATURAL COMPOUNDS FOR
PREVENTATIVE PURPOSES AND
POTENTIAL TREATMENTS OF NF

Natural compounds from terrestrial microbes, higher plants, and
marine organisms have been studied as cancer chemotherapeutic
agents for several decades. Over the last 40 years, ~50% of FDA-
approved drugs are natural products, natural product derivatives,
Frontiers in Oncology | www.frontiersin.org 5
or synthesized compounds based on pharmacophores originally
identified in natural products (119). For example, the DNA-
intercalating anti-neoplastic agents anthracyclines are made by
Streptomyces bacteria. The microtubule-disruptor Taxol®

(paclitaxel) was originally isolated from the bark of Pacific yew.
Due to the slow-growing nature of this plant, Taxol is
manufactured semi-synthetically from a precursor or produced
by plant cell culture. The topoisomerase I inhibitor camptothecin
was obtained from Camptotheca acuminata (happy tree). Several
camptothecin analogs, including topotecan (Hycamtin®) and
irinotecan (Camptosar®), have been synthesized. Trabectedin
(Yondelis®, ecteinascidin 743, ET-743), which interferes with
transcription and related processes, was discovered from extracts
of the sea squirt Ecteinascidia turbinata and later found
to come from Candidatus Endoecteinascidia frumentensis, a
g-proteobacterium living in symbiosis with the sea squirt. Since
natural compounds tend to have diverse structural complexity
and may inhibit molecules previously thought to be untargetable,
the U.S. National Cancer Institute has divisions focused on drug
discovery within the natural product space aiming to identify
agents that inhibit difficult targets. Also, natural compounds
have served valuable roles as probes to delineate the signaling
pathways important for cell growth (103).

In addition to anti-neoplastic activity, natural compounds
may possess antioxidant and anti-inflammatory properties and
are particularly attractive as adjunct therapies for patients with
tumor predisposition syndromes, including NF. Due to limited
treatment options, NF patients often take them as dietary
supplements for health enhancement purposes. Although
much research has been conducted to evaluate anti-tumor
activities of natural products, most studies only report their
in vitro effects. Sometimes high doses are used, which may not be
achievable or even desirable in vivo. At high concentrations,
small molecules may cause off-target effects, unwanted redox
activities, and anomalous plasma membrane permeability. Some
natural dietary supplements are labeled as safe with health
benefits, but these claims have not been validated. Many
supplements are crude extracts, containing a mixture of
compounds with the active components unknown, and lot-to-
lot variability could contribute to irreproducible results.
Compound sourcing may affect the activity of natural
products. Also, some supplements may have dangerous
contaminants, such as heavy metals, or may not contain the
claimed ingredients. Therefore, dietary supplements should be
carefully verified for overall chemical composition and safety
(120). For purified single-chemical entity natural products that
may be developed into new therapies for NF, it is important that
their biological activities be carefully investigated and that they
be treated as tractable hits, defined as compounds with rational
structure-activity relationships. Here we summarize the natural
compounds (Figure 2) that have been evaluated in NF-related
tumor cell and animal models.

Phenolic Compounds
Characterized by the presence of one or more phenol functional
groups, these compounds comprise flavonoids, usually found in
herbs, citrus fruits, and other plants, and non-flavonoids, also
September 2021 | Volume 11 | Article 698192
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TABLE 1 | The natural compounds evaluated in NF-related models and their mechanisms of action, preclinical data, and human evaluation.
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(1 g dose)
• Extensively
metabolized and
rapidly degraded

ND

Quercetin • Stabilization of
merlin

• Fruits/vegetables
• OTC supplements

• HPV-transformed VS
cells HEI-193 IC50 >25 µM
• NF2-/- CH157-NM
malignant meningioma
transfected with mutant
merlin protein, ~25 µM for
merlin stabilization

ND • Cmax ~0.43-3.03
µM

ND
p
r

r
0
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TABLE 1 | Continued

an data References

studies Toxicities

ND (82)

• Severe diarrhea
and vomiting,
possibly requiring
intensive care.

(83–86)

• Hepatic,
nephrotic, and
cardiovascular toxicity
• Inhibits CYP-450
enzymes with
potential drug
interactions
• Impedes
mitochondrial
respiration

(77, 87, 88)

ND (86, 89)

ND (90)

• Well-tolerated
orally

(63, 91–94)

of NF1 patient
ngual CBD oil

• Drowsiness,
dizziness
• Oral route

(95–99)

(Continued)

A
m
aravathiet

al.
N
F
P
athogenesis

and
N
aturalC

om
pounds

Frontiers
in

O
ncology

|
w
w
w
.frontiersin.org

S
eptem

ber
2021

|
Volum

e
11

|
A
rticle

698192
7

Natural compound Preclinical data Hum

Name Mode(s) of
action

Availability NF cell culture models NF animal models Pharmacokinetics Efficac

Sichuan
pepper
extracts

• Inhibits PAK1
and cyclin D1

• Spice and
flavoring agents in
various foods
• OTC supplements

• NF1-/- S462 and S-
805 MPNST IC50 ≥10 µg/
mL

• Reduces the growth of NF1-
deficient MDA-MB-231 breast
cancer xenografts at 110 mg/kg

ND ND

Cucurbitacins • Inhibits AKT,
ERK1/2, and
cyclins
• Promotes
p21Waf1 and
tubulin disruption

• Low levels in
edible plants and
fungi
• Higher amounts in
bitter squash and
melons

• Primary VS IC50 250
nM (Cucurbitacin D)
• Nf2-/- mouse
schwannoma IC50 750 nM
• NF2-/- Ben-Men-1 IC50

200 nM
• Primary meningioma
IC50 200 nM
• NF1-/- ST8814 MPNST
~50 nM (cucurbitacin I)

• Cucurbitacin I reduces the
growth of NF1-/- ST8814
MPNST xenografts at 1 mg/kg

ND ND

Celastrol • Inhibits
proteasome and
NF-kB
• Promotes
stabilization of
merlin

• OTC T. wilfordii
supplements

• NF2-/- CH157-NM
malignant meningioma
transfected with mutant
merlin protein, ~800 nM
for merlin stabilization

ND ND ND

Goyazensolide • Inhibits AKT,
cyclins, and NF-
kB

• Not commercially
available for
consumption

• Primary VS IC50 <4 µM
• Nf2-/- mouse
schwannoma cells, IC50

0.9 µM
• NF2-/- Ben-Men-1 IC50

1 µM
• Primary meningioma
IC50 <4 µM

• Therapeutic doses toxic in
mice

ND ND

DAW22 • Inhibits AKT,
ERK1/2, and b-
catenin

• Not commercially
available for
consumption

• NF1-/-, NF1+/-, and
NF1+/+ MPNST IC50 ~30-
47 µM

• Modestly reduces the
growth of NF1+/+ STS26T
MPNST xenografts at 60 mg/kg

ND ND

Sulforaphane • Inhibits NF-kB • Plants and
vegetables, including
broccoli, cabbage,
Brussels sprouts
• OTC supplements

• HPV-transformed VS
cells HEI-193 IC50 > 10
µM
• Primary VS IC50 > 20
µM
• NF2-/- Ben-Men-1 IC50

8 µM

• Modest reduction in Nf2-/-

SC4 mouse Schwann cell tumor
weight at 25 mg/kg

• Cmax ~200 nM ND

Cannabidiol • Binds to CB1
and CB2
• Modulates

• Oral suspension
(Epidiolex) FDA-
approved for epilepsy

ND ND • High volume of
distribution (32 L/
kg)

• Case study
with PNF: sub
y

li
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TABLE 1 | Continued

Human data References

Efficacy studies Toxicities

ared to help with chronic
and mood control

associated with more
psychoactive effects

• Potential drug-
drug and drug-food
interactions through
effects on CYP3A4
and MDR1

(100–102)

ND (63, 103–
110)

ND (104, 106,
108, 110–

113)

• Neurotoxicitiy to
dopaminergic
neurons
• Atypical
Parkinson's disease
associated with high
consumption of
soursop

(114–118)

e-counter; IP, intraperitoneal injection; IV, intravenous injection; PO, per
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Natural compound Preclinical data

Name Mode(s) of
action

Availability NF cell culture models NF animal models Pharmacokinetics

other ion channels
and
neuroreceptors

• OTC
supplements, e-
cigarettes, and food/
drink products

• Cmax: ~2.2 µM
(IV); ~0.008-0.011
µM (PO); ~0.35 µM
(smoking); ~0.03
µM (nebulizer)
• Bioavailability:
~6% (PO); ~31%
(smoking)

appe
pain

Ivermectin • Inhibits PAK1
and Raf1

• Tablets/capsules
prescribed for
parasitic infections

• HPV-transformed VS
cells HEI-193 IC50 ~ 5 µM

• CNS toxicity in mice with
MDR1 knockout (topical spray)
and in dog breeds with
compromised MDR1 function
(anti-parasitic medications)

• Cmax <100 nM ND

Silvestrol • eIF4A inhibitor
• Inhibits
prohibitins

• Not commercially
available for
consumption
• Source plants are
endangered

• Primary VS IC50 15 nM
• Nf2-/- mouse
schwannoma IC50 70 nM
• NF2-/- Ben-Men-1 IC50

10 nM
• Primary meningioma
25 nM • NF1-/- and
NF1+/+ MPNST IC50 ≤ 70
nM

• Suppresses the growth of
mouse Nf2-/- schwannoma
allografts and human
meningioma and NF1-/- MPNST
xenografts at 1.5 mg/kg
• Bioavailability (mice): IP
~100%, oral ~1.7%
• Lung toxicity in dogs (IV)

ND ND

Roc and DDR • eIF4A inhibitor
• Inhibits
Prohibitins

• Not commercially
available for
consumption
• Source plants are
endangered

• Primary VS IC50 25 nM
(Roc); 8 nM (DDR)
(unpublished)
• Nf2-/- mouse
schwannoma IC50 10 nM
(DDR)
• NF2-/- Ben-Men-1 IC50

15 nM (Roc); 5 nM (DDR)
• NF1-/-, NF1+/-, and
NF1-/- MPNST IC50 12-50
nM (Roc); 5-15 nM (DDR)

• Suppresses the growth of
human NF1-/- ST8814 and
patient-derived MPNST
xenografts (IP at 3 mg/kg and
PO at 1.2 mg/kg)
• Cmax of Roc in mice ~11 µM
(IV); ~4 µM (IP); ~ 0.8 µM (PO)
• Bioavailability (Roc in mice):
~100% (IP), ~ 1.7% (PO)
• Well-tolerated in dogs (IV)

ND ND

Annonacin • Mitochondrial
complex I inhibitor

• Fruits and leaves
from soursop, custard
apples, paw paws,
and related plants in
Annonaceae
• OTC supplements

ND ND ND ND

ND, Not determined; CBD, cannabidiol; CAPE, caffeic acid phenethyl ester; DDR, didesmethylrocaglamide; Roc, rocaglamide; HPV, human papillomavirus; OTC, over-t
oral; Cmax, maximum concentration; T1/2, half life; Tmax, time to Cmax; CNS, central nervous system; GI, gastrointestinal.
h
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Amaravathi et al. NF Pathogenesis and Natural Compounds
present in plants and including the curcuminoids in turmeric
(121). However, phenolic compounds may be difficult to develop
into drugs as many nonspecifically perturb cell membrane and
alter protein function. The sections below summarize several
phenolic compounds that have been evaluated in NF-related
tumor models.

(i) Curcumin and other curcuminoids. The diarylheptanoid
curcumin is isolated from turmeric (Curcuma longa) and
comprises 2-5% of the plant rhizome. Turmeric is commonly
used in Indian cooking and is a component in Ayurvedic
medicine for treating infections, inflammation, and other
chronic conditions. Curcumin possesses anti-inflammatory
properties through inhibition of the NF-kB pathway and
suppression of phospho-STAT3 in cancer cells at relatively
high IC50 (50% inhibitory concentration; ~20µM) (60, 61).
However, curcumin has also been shown to induce apoptosis
by increasing pro-inflammatory oxidative damage. Using HEI-
193, a human papillomavirus oncogene-transformed NF2-
associated VS cell line, curcumin inhibits colony formation at
~10µM by downregulating the ERK, AKT, and NF-kB pathways
while increasing free radical-mediated apoptosis (62) (Table 1).
These results suggest cell context-dependent effects of curcumin.
Also, curcumin enhances the expression of heat shock protein 70
(HSP70), a molecular chaperone associated with drug resistance.
Combining curcumin with the pan-HSP inhibitor KNK437
yields synergistic growth inhibition in HEI-193 cells. The use
of HEI-193 as an NF2-related cell model is of concern as viral
oncogene transformation alters growth behavior of benign
schwannoma cells. Other NF2-associated schwannoma models
should be evaluated to confirm the findings.
Frontiers in Oncology | www.frontiersin.org 9
Previously, we found that the IC50 value of curcumin was
~20µM in primary VS cells (63) and ~7µM in NF2-deficient
Ben-Men-1 meningioma cells. Curcumin also inhibits
proliferation of NF1-deficient MPNST cells at IC50 values of 25-
100µM (64). A related curcuminoid, calebin-A, reduces cell growth
at IC50 values ranging from 12.5-25µM and decreases the levels of
phospho-AKT and survivin in the sameMPNST cell lines. Calebin-
A shows modest anti-tumor activity in an NF1-deficient MPNST
xenograft model when dosed at 100mg/kg (Table 1). A dietary
study in a small number of NF1 patients fed a Mediterranean diet
supplemented with curcumin reported a 30-51% reduction in the
number of CNFs, while a Western diet with the same supplement
did not show any tumor inhibition (65). A larger study with well-
defined objective outcomes is required to draw firm conclusions
about the efficacy of curcumin in NF1 patients.

Curcumin has a short half-life in aqueous solution (<5 minutes),
making it imperative that experiments be rigorously controlled to
ensure the observed treatment effects are due to curcumin but not
its degradation products (66). The instability of curcumin along
with poor bioavailability may explain why many early trials did not
show any clinical benefits. To increase bioavailability, alternative
delivery approaches have been sought, including protein
nanoparticles, liposomal formulations, and erythrocytes coated
with porous nanoparticles (66, 67). It remains to be seen if these
strategies could improve the efficacy of curcumin.

(ii) Propolis constituents. Also called bee glue, propolis is
found in beehives and has been used since the ancient Egyptian
civilization for its anti-inflammatory, anti-bacterial, and wound-
healing properties. It comprises an admixture of different
chemicals with wide variability in composition depending
FIGURE 2 | The structures of the natural compounds evaluated in NF-associated disease. Synthetic rocaglates are included for comparison.
September 2021 | Volume 11 | Article 698192
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Amaravathi et al. NF Pathogenesis and Natural Compounds
upon factors, such as the regional flora, climate, and preparation
method (68). Therefore, studies using crude propolis extracts are
highly liable to lot-to-lot variabilities in their biological effects.
Chinese red propolis inhibits VEGF expression and contains at
least 12 components, including the phenolic ester, caffeic acid
phenethyl ester (CAPE), and the flavonoid, kaempferol. Turkish
propolis inducesG1arrest andapoptosis incancercells andcontains
six major constituents, including caffeic acid and CAPE. Polish
propolis inhibits S-phase entry, decreases cell viability, and contains
multiple flavonoids. Bio30 is a water-miscible extract of New
Zealand propolis, which contains multiple phenolic compounds
including CAPE, and suppresses the growth of HEI-193
schwannoma and NF1-deficient S462 MPNST cells (69)
(Table 1). Among these propolis specimens, a common
constituent is CAPE. The IC50 of this compound in HEI-193
schwannoma cells was ~36 µM. We also found that CAPE has
little growth-inhibitory activity inVSandmeningioma cells at doses
<=20µM (63). It is not known whether it is possible to achieve this
high concentration of CAPE in humans.

(iii) Honokiol. As a biphenolic lignan from the bark of
Magnolia trees, honokiol is commonly consumed as an
ingredient in herbal tea preparations for treating anxiety in
Asia and possesses anti-tumor activity (70). In HEI-193
schwannoma cells, honokiol inhibits proliferation by
decreasing phospho-AKT and ERK1/2 at an IC50 of ~26µM
(71) (Table 1). However, this compound has not been tested in
other NF2- or NF1-related models. Also, honokiol crosses the
blood-brain barrier, but its oral bioavailability and plasma half-
life are low (70). Several approaches, including encapsulating
honokiol in nanoparticles or liposomes, are being used to
enhance these properties.

(iv) trans-Resveratrol. This stilbenoid was isolated originally
from white hellebore, but is found widely in various fruits and
nuts, including grapes, apples, and pistachios (72). It has beneficial
metabolic effects in mouse models of diet-induced diabetes by
negatively modulating insulin and IGF-1 signaling. It inhibits cell
proliferation by reducing the levels of cyclin D, Hippo-YAP, and
b-catenin. In addition, resveratrol at doses of 5mg or less per day
reduces the number of adenomas by ~40% in a mouse model of
high-fat diet-induced colorectal carcinoma by promoting
autophagy, while a higher dose of ~1g per day shows less
inhibitory effects. These results suggest that resveratrol may
have chemo-preventive effects (73). Pharmacokinetic studies
indicate that a single dose of resveratrol of 5mg or 1g reaches
peak plasma concentrations of 0.6 and 137µM, respectively. It is
generally accepted that resveratrol at doses ≤1g can be taken long-
term, but higher doses (e.g., 2.5 and 5 g) can cause gastrointestinal
symptoms (74). In human VS cells and NF2-deficient Ben-Men-1
cells, resveratrol exhibits moderate antiproliferative activity at
doses up to 20µM (63). In NF2-expressing HBL-52 meningioma
cells, the effective dose of resveratrol to induce apoptosis is >50µM
(75). Therefore, additional studies in NF-related animal models
are needed to determine if resveratrol exhibits anti-tumor effects at
tolerable doses.

(v) Quercetin. The pigmented pentahydroxylated flavone
quercetin is widely found in oaks (genus Quercus), herbs,
Frontiers in Oncology | www.frontiersin.org 10
fruits, and vegetables. It induces apoptosis at a relatively high
dose and moderately reduces cancer cell growth (76). Quercetin
inhibits the growth of HEI-193 schwannoma cells and stabilizes
the expression of mutant merlin proteins in NF2-deficient
CH157-NM malignant meningioma cells at doses ≥25µM (77);
however, these doses are not possible to be reached in humans
(Table 1). Additionally, it is known to aggregate and
promiscuously bind to proteins, making it less therapeutically
effective and potentially toxic (78–81). The known toxic effects of
quercetin include mutagenicity, prooxidant activity, and
mitochondrial toxicity.

(vi) Sichuan pepper extracts. The Sichuan peppercorns
harvested from the seeds of the aromatic spiny shrub
Zanthoxylum piperitum are used in East Asian cuisine and
traditional Chinese medicine. Peppercorn extracts inhibit
proliferation of NF1-deficient MPNST and MDA-MB-231
breast cancer cells by reducing PAK1 activation and cyclin D1

levels (82) (Table 1). These extracts also suppress MDA-MB-231
xenografts, but resistant cell populations rapidly developed
during treatment. Moreover, the constituents in Sichuan
pepper extracts responsible for the antiproliferative effects have
not been determined.

Isoprenoids
Terpenoids and steroids are isoprene-derived, with terpenes
being a class of naturally-occurring hydrocarbons originally
named for their discovery in turpentine, a resin distilled from
conifer sap. Isoprenoids are the largest group of natural products.
Although they are mainly found in plants, some classes, such as
steroids, are common in animals. In plants, terpenoids are often
found as aromatic compounds that play important roles in signal
transduction and act as a defense against herbivores (122). With
great structural diversity, terpenoids are made up of repeating
units of the C5-hydrocarbon isoprene and classified based on the
number and structural organization of isoprene units. Although
the words terpenes and terpenoids are often used
interchangeably, terpenoids properly refer to modified terpenes
with additional oxygenated functional groups.

(i) Cucurbitacin. Originally isolated from the squash family
(Cucurbitaceae), cucurbitacins are tetracyclic triterpenoids with
a steroidal skeleton (83). These compounds are also found in
several other plants and mushrooms. They often have glycosidic
linkages and are classified into multiple variants according to
their side chains. Cucurbitacins are contained in traditional
Asian remedies for treating viral diseases and inflammatory
conditions. They exhibit antiproliferative effects by disrupting
microtubule polymerization. Also, they inhibit cancer cell
growth by decreasing phospho-AKT and phospho-ERK,
increasing the levels of p21WAF1, and promoting apoptosis
(84). Cucurbitacin I effectively inhibits proliferation of NF1-
null MPNST cells and induces apoptosis by decreasing STAT3
signaling (85) (Table 1). We showed that cucurbitacin D has
growth-inhibitory activity against Nf2-null mouse schwannoma
and human Ben-Men-1 cells at sub-micromolar IC50

concentrations by decreasing the expression of cyclins and
phospho-AKT, leading to G2/M arrest (86). Despite their anti-
September 2021 | Volume 11 | Article 698192
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tumor activity, cucurbitacins may cause gastrointestinal toxicity
and have a low therapeutic index, which hamper their further
clinical development (84).

(ii) Celastrol. Originally isolated from Tripterygium wilfordii
(thunder god vine), celastrol (tripterine) is a pentacyclic
triterpenoid, which exhibits anti-obesity, antioxidant, anti-
inflammatory, and anti-tumor effects (87). It inhibits NF-kB
signaling and multiple other pathways and reduces proliferation
and invasion of cancer cells with an IC50 of ~2µM. Celastrol
impedes degradation of the merlin protein in malignant
meningioma cells carrying a missense mutation in the NF2
gene at ~1µM (77) (Table 1). However, celastrol has a
problematic ortho-quinone methide functional group that
possesses redox activity and is reactive promiscuously with the
sulfur nucleophiles present in the active sites of several enzymes,
including metabolic coenzymes, needed by normal cells. These
features may explain the serious adverse effects on hepatic, renal,
reproductive, and cardiovascular systems reported after
consuming T. wilfordii supplements (88).

(iii) Goyazensolide. Isolated from Piptocoma rufescens
(velvetshrub) and other members of the sunflower family
(Asteraceae), goyazensolide is a sesquiterpene lactone. It was
identified initially as an anti-schistosomal agent and has
antiproliferative activity by inhibiting NF-kB expression and
inducing apoptosis (89). We found that goyazensolide
suppresses proliferation of Nf2-/- mouse schwannoma cells and
NF2-deficient human meningioma cells at IC50 doses of ~1µM
and less effectively in primary human VS and meningioma cells
(86) (Table 1). These growth-suppressive effects appear to be due
to decreased expression of AKT and cyclins, followed by G2/M
arrest. Unfortunately, goyazensolide was too toxic in mice at
therapeutic doses for further development.

(iv) DAW22. This sesquiterpene coumarin was isolated from
the roots of Ferula ferulaeoides, a member of the carrot family
(Apiaceae). It is antiproliferative and pro-apoptotic in sporadic
and NF1-associated MPNST cells but at relatively high IC50

doses (30-47µM) (90) (Table 1). Also, it only modestly reduces
tumor growth in NF1-expressing MPNST-bearing mice at the
dose of 60mg/kg. The effects of DAW22 in NF2-related tumor
cell and animal models have not been investigated.

Sulforaphane
Frequently found as a glycosidic precursor in cruciferous
vegetables of the mustard family (Brassicaceae), sulforaphane is
a sulfur-containing member of the isothiocyanate compound
class (91). It has anti-inflammatory and anti-neoplastic activities
in several types of cancer cells, partly via inhibiting NF-kB. In
HEI-193 schwannoma cells, sulforaphane has growth-inhibitory
effects at IC50 >10µM (92) (Table 1). We also found that it
inhibited the growth of primary VS and meningioma cells at IC50

>20µM (63). Due to its short half life (93), the plasma
concentrations of sulforaphane in humans peak at ~200nM
(94). These results suggest that it may not be very potent
against NF2-related tumors. However, sulforaphane is
generally safe (93), improved formulation and delivery
methods will be required to reach a therapeutic level.
Frontiers in Oncology | www.frontiersin.org 11
Cannabinoids
Cannabis sativa, called marijuana or hemp, is used in traditional
Chinese and Ayurvedic medicine, but in the West, more well-
known for recreational purposes. Although Cannabis sativa
varieties synthesize >100 different cannabinoids, two
compounds, D9-tetrahydrocannabinol (THC) and cannabidiol
(CBD), are primarily studied for their clinical effects. Cannabis
extracts and individual cannabinoids are increasingly used in
patients suffering from glaucoma, neuropathic pain, and cancer
(95, 96). THC is known for its appetite stimulation and
psychoactive properties and is a Schedule 1-controlled
substance. Dronabinol (Marinol®, Syndros™), a synthetic
THC analog, is FDA-approved for treating HIV-induced
appetite loss and chemotherapy-related nausea and vomiting.
Nabiximols (Sativex®), a 1:1 THC : CBD extract, is approved in
~30 countries. for multiple sclerosis-related symptoms.
Cannabinoids may have anti-neoplastic activity through their
effects on endocannabinoid receptors (97). The synthetic THC
analog, WIN-55212-2, is an endocannabinoid receptor agonist
and induces G1 cell cycle arrest (123). In some contexts,
cannabinoids may be pro-tumorigenic as 100-300nM THC
enhances DNA synthesis in cancer cells by endocannabinoid
receptor-mediated EGFR transactivation (124). However, it
should be noted that overdoses of THC may cause acute
intoxication, tachycardia, aboulia, and psychosis. Also, THC
and related analogs have not been assessed in NF-related cell
and animal models.

In contrast, CBD is non-psychoactive and has analgesic,
anxiolytic, and anticonvulsant properties (95, 96). In the U.S.,
chemically-synthesized CBD is legally sold as an over-the-
counter supplement. Clinical trials suggest that CBD is overall
well-tolerated with drowsiness and dizziness being the main
adverse effects (96) (Table 1). The FDA approved Epidiolex®,
a plant-derived CBD, to treat Lennox-Gastaut and Dravet
syndromes, two rare forms of severe epilepsy. In addition,
CBD may have helped control neuropathic pain and mood
disorders in an NF1 patient with PNFs (98). A larger study is
needed to confirm these findings. CBD preparations are sold in a
wide variety of formulations, and the purity and safety of
different products are unclear. Additional rigorous clinical
examinations should be conducted to validate analgesic
qualities, pharmacokinetics, and long-term safety (99).

Ivermectin
The anti-parasitic avermectins were originally isolated from
Streptomyces avermitilis. Subsequently, a semi-synthetic
derivative of avermectin, ivermectin, was developed for
veterinary use to treat parasite infestations and was later
approved by the FDA to treat river blindness and other
nematode infections in humans (100, 101). Ivermectin is well
tolerated and only causes mild toxicity even when taking ten
times the FDA-approved dose. It has anti-tumor activity in
various types of cancer. It inhibits proliferation of HEI-193
schwannoma cells at an IC50 of ~5µM by blocking PAK1 and
decreasing phospho-Raf (102) (Table 1). However, the FDA-
approved therapeutic dose of ivermectin in humans only reaches
September 2021 | Volume 11 | Article 698192
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plasma concentrations of <100nM (100). Also, ivermectin is a
substrate for the multidrug resistance 1 (MDR1) transporter,
which prevents the drug from reaching high concentrations in
the brain (100, 101). Thus, this drug is not likely to be effective
against NF2-related VS and meningiomas.

Silvestrol, Rocaglamide, and
Didesmethylrocaglamide
Rocaglates, also called flavaglines, are a large family of cyclopenta
[b]benzofurans synthesized by tropical trees of the Aglaia genus
in the mahogany family (Meliaceae) (104). Among this group of
natural compounds, rocaglamide (also known as rocaglamide A
or RocA; Figure 2) was first found to possess antileukemic
activity (111) but was not further characterized biologically for
some years due to its scarcity. Subsequently, a few other
rocaglates with anti-proliferative activity were identified,
including silvestrol which was the first flavagline with an
unusual sugar-like dioxanyl ring discovered in Aglaia foveolata
(105). Silvestrol inhibits proliferation of a variety of cancer cell
lines at low nanomolar concentrations similar to camptothecin
and paclitaxel (104). Acting as inhibitors of the eukaryotic
translation initiation factor 4A (eIF4A), an RNA helicase (106),
silvestrol and rocaglamide bind eIF4A and lock it onto purine-
rich sequences in the 5’-untranslated region (UTR) of certain
mRNAs, leading to translation inhibition (107, 112) (Figure 1B).
Rocaglates may also bind to prohibitins, resulting in inhibition
Raf/ERK signaling (108).

We have shown that MPNST, VS, and meningioma tumors
frequently overexpress the eIF4F components, including eIF4A
(63, 109). Genetic depletion of eIF4A via RNA interference and
pharmacological inhibition by silvestrol effectively suppress
proliferation of NF2-deficient tumor and NF1-deficient
MPNSTs cells (Table 1). As an eIF4A inhibitor, silvestrol
reduces the protein levels of multiple cyclins and oncogenic
kinases, including AKT, ERK, and FAK, leading to G2/M arrest
and apoptosis. Also, it profoundly suppresses tumor growth of
Nf2-/- schwannomas and NF1-/- MPNSTs. However, a toxicology
study in dogs revealed that silvestrol caused lung damage
(https://dtp.cancer.gov/publications/silvestrol_rocaglamide_
studies.pdf). Consequently, its further clinical development was
suspended (103).

By side-by-side comparing 10 silvestrol-related rocaglates
lacking the dioxanyl ring (110), we identified rocaglamide and
didesmethylrocaglamide (also called RocB) with growth-
inhibitory activity comparable to silvestrol in MPNST,
schwannoma, and meningioma cells at low nanomolars (113)
(Table 1). Both rocaglamide and didesmethylrocaglamide reduce
expression of multiple oncogenic kinases IGF-1R, AKT, and
ERKs while simultaneously inducing DNA damage response,
caspase cleavage, and apoptosis. Interestingly, rocaglamide
exhibited 50% oral bioavailability and was not susceptible to
multi-drug resistance-1 efflux. When delivered by oral gavage or
intraperitoneal injection, rocaglamide potently suppressed
tumor growth in an orthotopic MPNST model. Most
importantly, rocaglamide was well tolerated in mice and did
not induce pulmonary toxicity in dogs. Furthermore, both
Frontiers in Oncology | www.frontiersin.org 12
rocaglamides exhibited strong anti-tumor effects against other
sarcomas, including osteosarcoma, Ewing sarcoma, and
rhabdomyosarcoma. These results warrant a clinical trial to
evaluate these rocaglamides in patients with sarcomas and
those afflicted by NF. It should also be mentioned that the
synthetic rocaglates have also been developed that retain the
core scaffold responsible for eIF4A inhibition, while
incorporating side chain modifications to optimize
pharmacokinetic and pharmacodynamic properties. One such
compound, (-)-CR-1-31B prolongs survival of mice bearing
pancreatic adenocarcinoma allografts (125). Another synthetic
rocaglate-like compound, eFT226 (zotatifin), has anti-tumor
activity against several fibroblast growth factor receptor- and
ErbB2-driven cancers (126) and has recently entered a phase 1/2
clinical trial in patients with K-Ras- or RTK-driven advanced
solid tumors (ClinicalTrials.gov Identifier: NCT04092673).

Annonacin
Also called guyabano or graviola, soursop is the fruit of Annona
muricata, a member of the custard apple family (Annonaceae).
With its pleasant aroma, soursop is used to make juices and as a
flavoring agent (Table 1). Extracts from fruits and leaves of
Annona muricata are reported to have anti-tumor activity
against multiple tumor types, including anecdotally shrinking
NF2-associated VS (114–116). One active component with anti-
proliferative activity in soursop is annonacin, an acetogenin.
However, this compound inhibits mitochondrial complex I,
elicits severe neurotoxic effects, and excessive consumption of
Annona plants and supplements are associated with atypical
Parkinson’s disease (117). These serious adverse effects prevent it
from further development as an anti-tumor agent (118).

Additionally, several other natural compounds may be of
interest to NF patients. Silibinin, the main flavonolignan
component in the extract of milk thistle (Silybum marianum)
seeds, is used to treat hepatotoxicity caused by poisoning from
the death cap mushroom Amanita phalloides. It inhibits lung
cancer cell proliferation by suppressing AKT and ERK activation
(127). Gingerol, an alkylphenol found in ginger, decreases the
growth of breast cancer cells by lowering the expression of EGFR
and b1-integrin (128). Shikonin, a naphthoquinone pigment
found in the root of Lithospermum erythrorhizon in the borage
family (Boraginaceae), is used in traditional Chinese medicine
for treating inflammatory diseases. It suppresses leukemia cell
growth by decreasing phospho-AKT and ERKs (129). Angelica
sinensis, commonly known as dong quai (danggui, dang’ui), is an
herb in the carrot family (Apiaceae) used in traditional Asian
medicine for reproductive disorders. An active component in
dong quai is the g-lactone N-butylidenephthalide, which inhibits
proliferation of gastric carcinoma cells by increasing the levels of
REDD1 (regulated in development and DNA damage responses
1), a negative regulator of the mTOR pathway (130). Genistein is
an isoflavone found in soy-based foods, such as soymilk. It
induces apoptosis, reduces tumor vascularity, and suppresses
metastasis by inhibiting cyclins and AKT activation (131).
Epigallocatechin gallate is the most abundant catechin ester in
green tea (Camellia sinensis). It decreases phosphorylation of
September 2021 | Volume 11 | Article 698192
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PI3K and AKT and reduces IGF-1R levels in some cancer cells
(132). Since these natural compounds inhibit the signaling
pathways frequently activated in NF-associated tumors, it will
be interesting to see whether they have anti-tumor effects in
these tumors.
CONCLUSION

NF are characterized by multiple nervous system tumors and
other non-tumoral manifestations. Surgery and/or radiation are
the standard of care to control the tumor burden but often
incur significant morbidities. The recent approval of the MEK
inhibitor selumetinib to treat NF1-associated PNF suggests that
medications targeting specific NF signaling pathways can be
successful. However, combining selumetinib with other targeted
agent(s) will be needed to achieve a cure. Although not FDA-
approved, bevacizumab is used off-label for NF2 patients, with
some of them experiencing tumor reduction and improved
hearing. Recently, using traditional and systems biology
approaches (56–59), several targeted compounds and compound
combinations with anti-tumor effects in NF-related models have
been identified, and some are being evaluated in humans.

Natural compounds have been investigated as potential cancer
therapies for several decades, and many are on the WHO’s List of
Essential Medicines. Many patients with NF-related tumors take
natural products as supplements in the hope of reducing tumor
growth. While several natural compounds can inhibit signal
transduction pathways deregulated in NF-associated tumors
(Figures 1 and 2), most have only been tested in cell culture
models and exhibit high IC50 values that may not be achievable
in vivo (Table 1). In some cases, the cell culture and animal
Frontiers in Oncology | www.frontiersin.org 13
models used do not accurately reflect the pathogenesis of NF
tumors. Therefore, the published data should be interpreted
cautiously, with patients consulting their physicians before
taking any natural compounds. Of the natural compounds that
demonstrated potent anti-tumor activity in both NF-related
mode l s , t h e e I F 4A i nh i b i t o r s r o c a g l am id e and
didesmethylrocaglamide effectively block the expression multiple
oncogenic kinases with good bioavailability and toxicity profiles
and are expected to enter clinical trials in the future.
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