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Background: Hepatocellular carcinoma (HCC) is the sixth most common cancer in the
world and the third leading cause of cancer-related death. Although the diagnostic
scheme of HCC is currently undergoing refinement, the prognosis of HCC is still not
satisfactory. In addition to certain factors, such as tumor size and number and vascular
invasion displayed on traditional imaging, some histopathological features and gene
expression parameters are also important for the prognosis of HCC patients. However,
most parameters are based on postoperative pathological examinations, which cannot
help with preoperative decision-making. As a new field, radiomics extracts high-
throughput imaging data from different types of images to build models and predict
clinical outcomes noninvasively before surgery, rendering it a powerful aid for making
personalized treatment decisions preoperatively.

Objective: This study reviewed the workflow of radiomics and the research progress on
magnetic resonance imaging (MRI) radiomics in the diagnosis and treatment of HCC.

Methods: A literature review was conducted by searching PubMed for search of relevant
peer-reviewed articles published from May 2017 to June 2021.The search keywords
included HCC, MRI, radiomics, deep learning, artificial intelligence, machine learning,
neural network, texture analysis, diagnosis, histopathology, microvascular invasion,
surgical resection, radiofrequency, recurrence, relapse, transarterial chemoembolization,
targeted therapy, immunotherapy, therapeutic response, and prognosis.

Results: Radiomics features on MRI can be used as biomarkers to determine the
differential diagnosis, histological grade, microvascular invasion status, gene expression
status, local and systemic therapeutic responses, and prognosis of HCC patients.

Conclusion: Radiomics is a promising new imaging method. MRI radiomics has high
application value in the diagnosis and treatment of HCC.

Keywords: hepatocellular carcinoma, magnetic resonance imaging, intravoxel incoherent motion, radiomics,
immune checkpoint inhibitors, target therapies, therapeutic response, diagnosis
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INTRODUCTION

Hepatocellular carcinoma (HCC) is the sixth most common
cancer and the third leading cause of cancer-related death
worldwide (1). Although the diagnostic criteria of HCC
continue to improve, its prognosis remains unsatisfactory (2).
In addition to certain factors, such as tumor size and number and
vascular invasion displayed on traditional imaging, some histo-
pathological features and gene expression parameters are also
important in the prognoses of patients with HCC. However,
many current staging systems for HCC have not taken into
consideration the above-mentioned histopathological features
or genetic traits beyond the size and number and vascular
invasion of the tumor (3, 4). Most parameters are based on
postoperative pathological examinations, which cannot help with
preoperative decision-making. To better stratify HCC patients
before surgery, make more accurate treatment decisions, and
improve the prognoses of patients, there is an urgent need for a
noninvasive method that can accurately predict the histo-
pathological features and gene expression parameters before
surgery. The rapid development of artificial intelligence has
played an important role in personalized precision medicine
(5). Radiomics, a new technology, can transform the potential
histopathological and physiological information in images into
high-dimensional quantitative image features that can be mined
(6, 7).The study of radiomics will contribute to the early
diagnosis and treatment of HCC and ultimately improve
survival (8, 9). In recent years, many studies have confirmed
the application values of magnetic resonance imaging (MRI)
radiomics in the diagnosis and differentiation (10, 11),
histological grading (12, 13), microvascular invasion (MVI)
assessment (14, 15), radiogenomics (16, 17),prediction of
relapse and prognosis after surgical resection (18–20), response
to transarterial chemoembolization(TACE) (21, 22) and systemic
treatment efficacy of HCC (23).

To better understand the research hotspots and trends of MRI
radiomics in HCC, we used PubMed to identify important recent
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publications on MRI radiomics in HCC, selected research articles
and reviews and used bibliometric method to visually analyze the
countries, institution, authors, and keywords of MRI radiomics
in HCC. Meanwhile, this study reviews the radiomics workflow
from image acquisition and reconstruction, segmentation,
feature extraction, feature selection and modeling to model
validation, and the research progress of MRI radiomics in HCC.
BIBLIOMETRICS OF MRI
RADIOMICS IN HCC

The authors conducted a literature review using PubMed to
identify important recent publications and determine the
current status of radiomics in HCC. A comprehensive list of
MeSH terms and keywords was included in the search: HCC,MRI,
radiomics, deep learning(DL), artificial intelligence, machine
learning, neural network, texture analysis, diagnosis,
histopathology, microvascular invasion, surgical resection,
radiofrequency, recurrence, relapse, TACE, targeted therapy,
immunotherapy, therapeutic response, and prognosis. The
inclusion criteria were as follows: (1) original research articles
and review articles published in the English language betweenMay
2017 and June 2021; (2) literature related to MRI radiomics or DL;
and (3) literature related to diagnosis and differentiation,
histological grading, MVI assessment, radiogenomics, prediction
of relapse and prognosis after surgical resection, response to TACE
and systemic treatment efficacy of HCC. Articles that were not
published in English and those containing irrelevant information
on the subject were excluded. We also excluded articles that were
published before May 2017 and after June 2021. In total, 129
articles were ultimately retrieved. After screening the titles,
abstracts and full texts (if appropriate), only 84 papers met the
criteria for inclusion (Figure 1). Those 84 papers were then
downloaded with the record content of “Full Record and Cited
References” and the file format of “Plain Text”. As CiteSpace can
FIGURE 1 | Flow diagram of study selection.
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only recognize files named “download *.txt”, the files were
renamed accordingly. The bibliometric software CiteSpace5.7.R2
(64 bits) was utilized for this study to visually analyze the
countries, institution, authors, and keywords draw relevant
charts. The articles originated from a total of 12 countries, and
the top five countries were China (24), the USA (13), South Korea
(5), Germany (3), and France (2). A total of 30 institutions
published manuscripts independently or cooperatively. The top
five institutions were the Chinese Academy of Sciences (12),
Fudan University (10), GE Healthcare (8), Sun Yat-Sen
University (7), and Sichuan University (5). Bin Song and Xin Li
were the most prolific authors. Meng-Su Zeng, Jie Tian, andDong-
Sheng Gu were also active in this field. “Hepatocellular carcinoma”
was the most important term, followed by “radiomics”,
“recurrence”, and “microvascular invasion”. According to the
link strength of keyword cooccurrence, the network was divided
into eight clusters, and the largest cluster was “tumor
differentiation (#0)” (Figure 2).
RADIOMICS WORKFLOW

Radiomics extracts high-throughput features from images and
transforms imaging data into high-resolution mining data spaces
through machine learning (25). Quantitative radiological data
can therefore be extracted and applied to clinical decision-
making (25). The workflow of radiomics usually includes five
steps (6), which are described below.
IMAGE ACQUISITION AND
RECONSTRUCTION

Imaging techniques that can be used for radiomics include MRI,
computed tomography (CT), positron-emission tomography,
and ultrasound. Among them, MRI has the advantage of
depicting more soft-tissue features. Radiomics is an imaging
analysis method; thus, it is vital to standardize high-quality
images (26–28). This makes it necessary to preprocess the
imaging data; otherwise, a widely promoted standard scanning
protocol is needed to reduce the variability in radiomic features
and improve the performance of radiomic models (25, 29).
IMAGE SEGMENTATION

Manual, automatic, and semiautomatic segmentation are often
used to segment the volume or region of interest in a target
tissue (30). Manual segmentation is most reliable, but it involves
intraobserver and interobserver variability. Its labor and time cost
are high. The segmentation of an image often requires multiple
clinicians or the same clinician at multiple times. The intraobserver
and interobserver variability can be improved by screening the
intraobserver and interobserver consistency. The purpose of
Frontiers in Oncology | www.frontiersin.org 3
automatic segmentation is to mark the regions of interest
automatically by a computer. Semiautomatic segmentation
involves manual corrections. Automatic segmentation algorithms
include image segmentation based on thresholds, image
segmentation based on region growing, and image segmentation
based on edge detection. Some classical algorithms perform well at
delineating liver lesions (31, 32).
IMAGE FEATURE EXTRACTION

Image features include semantic features and nonsemanticfeatures
(33). Semantic features include qualitative (shapes, boundaries,
etc.) and quantitative features, and their analysis depends on the
radiologist’s knowledge. Nonsemantic features are quantitative
descriptors extracted from tissues of interest, including shape
and statistical features (34). The shape features of objects in
images include topological features, distances, perimeters, areas,
geometric features, and descriptions of shape and orientation.
Statistical features can be further divided into first-order, second-
order, and high-order features. First-order features are usually
called density features, which involve gray-level histogram
information simply describing the global distribution of gray
levels in an image. Such features cannot describe the local
distribution of gray levels in an image or the spatial position of
each gray level (35). Second-order features are often called
texture features. These reflect the relationships between
adjacent voxels. High-order features are usually called filtering
features and are generated by wavelet and Laplacian Gaussian
filtering, for example, in addition to first-order and second-
order features.
FEATURE SELECTION AND MODELING

Many features can be extracted from a high-throughput image,
but using all the features to analyze an image will lead to
overfitting. The best features can be selected by dimensionality
reduction to improve the efficiency of the model. The methods of
feature selection can be divided into three categories: filter,
wrapper, and embedded (36). The goal of radiomics is to
establish a prediction model for clinical outcomes from
selected features. The modeling methods include logistic
regression, k-nearest neighbor, decision trees, ensemble
learning, and support vector machines. It is recommended to
test the effectiveness of several forecasting models to select the
model with the best performance (37).
MODEL VALIDATION

The prediction model can be validated by internal cross-
validation, such that the model can be further optimized and
the prediction performance can be maximized. Validation of the
September 2021 | Volume 11 | Article 698373
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model should be carried out in a separate cohort (37). For
differentiation analysis, the receiver operating characteristic
(ROC) curve is the most commonly used method to evaluate
the performance of the model. The area under the ROC curve
(AUC) or the sensitivity and specificity of the model can be used
to evaluate whether the model can predict clinical outcomes. For
survival analysis, the concordance index (C-index) and the time-
related ROC curve are usually used for validation (38).
DIAGNOSIS AND DIFFERENTIATION

At present, the diagnosis of HCC is mainly based on imaging
methods such as MRI, CT, and ultrasound. Because HCC has a
typical enhancement mode, contrast-enhanced CT and dynamic
contrast-enhanced MRI play important roles in the diagnosis of
HCC (39–42). The European Association for the Study of the Liver
standard (40) and the Liver Imaging Reporting and Data System
(43) are widely recognized. However, the evaluation of imaging
features may be subjective because radiologists have different
experiences and different familiarities with the system (44, 45).
Radiomics has important application value in the diagnosis of solid
tumors because it uses advanced image processing technology to
extract high-throughput data and quantitative analysis of tumor
behavior and heterogeneity (6, 46–51).

Radiomics signatures based on conventional precontrast
T1-weighted imaging, postcontrast T1-weighted imaging,
T2-weighted imaging, diffusion-weighted imaging (DWI), and
intravoxel incoherent motion (IVIM), whether alone or in
combination with clinical data, are all valuable for HCC
differentiation (52–59), and their differentiation efficiency is
almost equal to that of experienced radiologists (10-year
experience) (52). HCC, intrahepatic cholangiocarcinoma
(ICC), and HCC-ICC have common risk factors (60, 61), and
their typical qualitative MRI features may overlap (24, 62–64).
Therefore, the conventional MRI diagnosis of HCC is
still uncertain. According to Liu et al. (54), the imaging
features extracted from MR images have great potential to
differentiate combined hepatocellular cholangiocarcinoma from
cholangiocarcinoma and HCC, showing a maximum AUC of
0.77. Recently, Zhu et al. (56) studied the application value of
histogram features on IVIM-DWI in the differential diagnosis of
HCC. They found that the histogram parameters of IVIM-DWI
could distinguish hepatic hemangiomas, hepatic cysts, and HCC
and that the volume of the pseudodiffusion coefficient and
perfusion fraction had better diagnostic value than other
histogram parameters (56).

In recent years, DL technology has been developed and has
achieved excellent performance in the classification of hepatic
lesions (65–71). Hamm CA et al. (65) developed a proof-of-
concept convolutional neural network (CNN)-based DL system
and classified 494 hepatic lesions from six categories on MRI.
The system demonstrated 92% accuracy, 92% sensitivity and
98% specificity, and their results showed a 90% sensitivity for
classifying HCC compared to 60%/70% for radiologists.
Frontiers in Oncology | www.frontiersin.org 5
HISTOLOGICAL GRADING

The histological grading of HCC is key to determining the
best treatment scheme and prognosis of a patient. High-grade
HCC patients have a higher intrahepatic relapse rate than low-
grade HCC patients (72, 73), and most high-grade HCC patients
need larger safe resection margins and more frequent
postoperative follow-up visits (74, 75). The radiomic features
of precontrast T1-weighted imaging, postcontrast T1-weighted
imaging, and T2-weighted imaging, whether alone or in
combination with clinical data (76), are all valuable for
identifying poorly differentiated HCC (13, 76–80). In addition,
recent studies have shown the application value of functional
MRI radiomics based on IVIM-DWI in predicting the
pathological grade of HCC (12, 81, 82). Shi et al. (82)
performed MRI on 52 HCC patients and extracted histogram
indices from IVIM parameter maps. Eighteen IVIM histogram
indices showed the capacity to differentiate histopathological
grades. By establishing a diagnostic model based on logistic
regression and integrating different histogram indices showing
significant differences between different subgroups, the maximum
diagnostic power for distinguishing HCC histological grades was
obtained (AUC=0.917). This study indicated that histogram
indices extracted from IVIM parameter maps had great
potential in predicting histopathological grade (82). Geng et al.
(12) extracted 107 radiomic features from SWI images of 53 HCC
patients and Spearman correlation coefficients were used to
evaluate the correlation between SWI radiomic features and
histopathology. They found that the SWI radiomic features
were significantly correlated with histopathological grades.
MVI

MVI is diagnosed depending on postoperative tissue specimens,
but detection by conventional imaging is difficult. The presence
of MVI indicates that the tumor has strong biological
invasiveness, which can increase the relapse rate of HCC more
than fourfold (83, 84). Accurate preoperative prediction of MVI
of HCC can help doctors adjust treatment strategies in a timely
manner (such as expanding the resection range), optimize
treatment plans, reduce the risks of postoperative relapse, and
improve the prognosis (84, 85). Enhanced MRI is helpful to
predict MVI in HCC (83, 86–91). MRI-based radiomics (15, 92–
102) and DL systems (103–106) have shown good performance
in predicting MVI in HCC. The increase in clinicopathological
risk factors and qualitative imaging features can improve the
prediction efficiency of the model (14, 98, 107, 108). Li et al. (101)
found that tumor volume–based IVIM histogram analysis can be
used to predict MVI and that the fifth percentile of the true
diffusion coefficient is most beneficial to predict MVI of HCC.
Zhang et al. (107) extracted imaging features based on
preoperative multimodal MR images and constructed an
MVI prediction model (combined model) by combining the
clinical features and qualitative imaging features of patients
September 2021 | Volume 11 | Article 698373

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Gong et al. Progress of MRI Radiomics in HCC
with HCC. The AUC in the validation cohort of their
combined model was 0.858, which was higher than the AUC
(0.820) in the validation cohort of the model constructed from
individual radiomic features, indicating that the prediction
efficiency of the combined model was higher. Song D et al.
(104) predicted MVI using radiomics and DL in 601 patients
with HCC based on preoperative MRI. Their results showed that
the radiomics model achieved an AUC of 0.731, the DL model
based only on MRI images achieved an AUC of 0.915, and a DL
model combined with clinical parameters achieved an AUC of
0.931. These studies indicated that the model combining
radiomics, DL, and clinical parameters showed the best
predictive performance.
RADIOGENOMICS

The biological behavior of a tumor is closely related to its gene
expression profile. Biopsy is a widely used method to evaluate
gene expression before surgery, but biopsy is an invasive
examination that may cause bleeding and other complications.
Therefore, patients are often unwilling to undergo this
examination. In recent years, radiogenomics has gradually
become more widely applied in HCC research. The purpose of
radiogenomics is to determine the relationship between semantic
and quantitative image data and genomic and molecular
measurements, thus constructing correlation diagrams related
to results or other clinical measurements (33, 109, 110). Segal
et al. (111) evaluated the correlation between radiogenomic
features and the liver cancer gene phenotype and reported that
78% of liver cancer gene expression profiles could be
reconstructed by this combination of features. To date,
Frontiers in Oncology | www.frontiersin.org 6
radiogenomics studies have described the semantic features
obtained from MRI (112–115). MRI radiogenomics has the
value of predicting gene features with prognostic and
therapeutic significance (16, 17, 116–123). Taouli et al. (113)
found that there was a strong connection between imaging
features, such as the “infiltrative pattern”, “mosaic appearance”,
and “presence of macrovascular invasion”, and an aggressive
genomic signature determined previously. Shi et al. (82) found
that histogram indices extracted from IVIM parameter maps
could predict Ki-67 expression. Jun et al. (124) used an
immunohistochemical method to detect the expression of
programmed cell death-1 (PD-1) and programmed cell death
ligand-1 (PD-L1) in 98 ICC patients and extracted radiological
features from the arterial phase and portal venous phase of
preoperative MR images. The results indicated that the AUCs of
the models for predicting PD-1 and PD-L1 expression were 0.897
and 0.897, respectively. The prognoses of PD-1-positive and PD-
L1-positive patients were worse than those of PD-1-negative and
PD-L1-negative patients, and their 5-year survival rates were
12.5%, 48.3%, 21.9%, and 39.4%, respectively (P < 0.05). The
results indicated that MRI radiomics could be used as a
noninvasive biomarker to evaluate the expression of PD-1 and
PD-L1 and the prognosis of ICC patients (Table 1).
PREDICTION OF RELAPSE AND
PROGNOSIS AFTER SURGICAL
RESECTION

Surgical resection is still the main treatment for patients with
early HCC (125). However, tumor relapse is still the main cause
TABLE 1 | Summary of radiogenomics studies.

Ref. Year Country Subject
number

Key findings

Shi G et al. (82) 2020 China 52 IVIM histogram metrics can predict expression of the cell proliferation marker Ki-67.
Hectors SJ et al. (116) 2020 United

States
48 Radiomics features extracted from MR images correlate with quantitative expression of the immune markers CD3,

CD68 and CD31and expression of the immunotherapy targets PD-L1 at the protein level, as well as PD1 and
CTLA4 at the mRNA level.

Wang W et al. (17) 2020 China 227 The radiomics-based model performs better than the clinico-radiological model for predicting biliary-specific
marker CK19 status of HCC.

Gu D et al. (117) 2020 China 293 The MRI-based radiomics signature is significantly related to GPC3positivity (a prognosis factor, was associated
with metastasis and recurrence after resection) in patients with HCC.

Ye Z et al. (118) 2019 China 89 Texture analysis on preoperative enhanced MRI can be used to predict the status of the cell proliferation marker
Ki-67 after curative resection in patients with HCC.

Fan Y et al. (16) 2021 China 133 Texture analysis based on enhanced MRI can help identify VETC-positive HCC (histological vascular pattern,
micrometastases, early recurrence and poor prognosis).

Li Y et al. (119) 2019 China 83 Texture analysis of multiphase MRI images is helpful for predicting expression of the cell proliferation marker Ki-67
in HCC.

Wang HQ et al. (120) 2019 China 86 Texture analysis based on MRI can help identifyCK19-positive HCC(tends to be related to a worse prognosis).
Fan Y et al. (121) 2021 China 151 A combined model including artery phase radiomics score and serum AFP levels based on enhanced MRI can

preoperatively predict expression of the cell proliferation marker Ki-67 in HCC.
Huang X et al. (122) 2019 China 100 MRI radiomics features can be used to preoperatively differentiate dual-phenotype HCC from CK7- and CK19

(markers of cholangiocellular carcinoma) -negative HCC.
Chen S et al. (123) 2019 China 207 Radiomics obtained from enhanced MRI can help predict the immunoscore (density of CD3+ and CD8+ T cells)

in HCC.
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of postoperative death, and the 5-year relapse rate after surgery
is close to 70% (126). Improving the ability to preoperatively
identify these high-risk patients will guide surgical management,
postoperative monitoring, and treatment intervention (127, 128).
The radiomic model based on preoperative MRI can be used as a
new tool to predict early relapse (18, 19, 129–134), relapse-
free survival (135) and overall survival (OS) (136, 137) in
patients with HCC after surgery. Hui et al. (130) used
preoperative MRI to extract 290 texture parameters to predict
the relapse of HCC patients within 730 days after surgical
resection. The results showed that the prediction accuracy of
texture features based on dynamic contrast-enhanced MRI in the
equilibrium phase was 84%. Combining clinical, laboratory, and
radiomic data can improve the performance of quantitative
models (20, 129, 135, 136, 138). According to Kim et al. (135),
the combined clinical and radiomic model had the same
performance as the clinicopathological model in predicting
early relapse. Zhang et al. evaluated the effectiveness of
contrast-enhanced MRI radiomic features in predicting the OS
of HCC patients after resection. Their results showed that
preoperative clinical features and semantic imaging features
were significantly correlated with survival rate; the Barcelona
Clinic Liver Cancer stage, uneven tumor margin, and combined
rad-score were independently correlated with OS; and the
combined model incorporating radiological and radiomic
features had a better prediction performance than the clinic-
radiological model (136).
PREDICTION OF RESPONSE TO TACE

TACE is recognized as an effective treatment for advanced HCC
(125), but its long-term efficacy needs to be further improved
(139–141). MRI radiomics can be used to predict the response to
TACE treatment and provide a reference for the formulation of
individualized treatment plans (21, 22, 142–148). Sun et al. (142)
predicted the risk of early postoperative progression based on
multiparameter MRI data before TACE. The results showed that
the AUC of themodel based onDWI features was 0.786 and 0.729
when b=0 and b=500, respectively, followed by the AUC of
T2-weighted imaging features (0.729) and the apparent
diffusion coefficient (0.714). Compared with any single MRI
signal, the MP-MRI signal had a higher AUC, at 0.800. Song
et al. (143) revealed that their combined model incorporating
radiomic features and clinical radiation risk factors had the best
predictive value (C = 0.802).
PREDICTION OF THE SYSTEMIC
TREATMENT EFFICACY

The treatment of HCC has been a challenge. Systemic therapies
for HCC are current research hotspots. Targeted therapy with
sorafenib (149) and lenvatinib (150) and immunotherapy
with immune checkpoint inhibitors, especially antibodies
Frontiers in Oncology | www.frontiersin.org 7
against PD-1/PD-L1 pathway members (nivolumab and
pembrolizumab), have achieved excellent clinical results (151–
158). These results strongly indicated that immune checkpoint
inhibitor-based strategies will soon be primary method in the
treatment of advanced HCC, and immunotherapy will introduce
a new era of HCC therapy. Traditional contrast-enhanced CT
and MRI, including functional imaging, are the most commonly
used biomarkers for evaluating the therapeutic response in
clinical practice (159–172). Research based on contrast-
enhanced CT and MR images has shown the value of
radiomics and DL in predicting systemic treatment efficacy for
advanced HCC (23, 173–175). Mulé et al. (174) analyzed the CT
texture features of 92 patients before receiving sorafenib and
found that the entropy of portal phase-derived entropy at fine
texture scales was an independent predictor of OS, which was
confirmed in their validation cohort. Yuan et al. (173) established
a radiomics nomogram and measured its ability to evaluate the
therapeutic efficacy of anti-PD-1antibodies in the treatment of
HCC by combining pretreatment contrast-enhanced CT images
and clinical risk factors. The results indicated that the AUCs of
the radiomics nomogram were 0.894 and 0.883 in the training
and validation cohorts, respectively.

In recent years, MRI radiomics has gradually become more
widely applied to systemic treatment evaluation of brain tumors
(176, 177). There are still no reports on using MRI radiomics
to evaluate the systemic treatments of patients with HCC. We
believe that as research progresses, MRI radiomics will play an
important role in the evaluation of systemic treatments for HCC
in the near future.
CONCLUSION

As a new technology, radiomics can improve the diagnosis and
differentiation of HCC, as well as predictions of the stage,
histological grade, MVI, gene expression, treatment response,
and prognosis of HCC. This is because it allows us to analyze the
relationship between high-dimensional quantitative imaging
features and clinical and genetic data. Moreover, it is a
powerful tool for making personalized treatment decisions
before surgery. With the rapid development of targeted
therapy and immunotherapy for HCC, radiomics is expected
to become a reliable radiological marker for predicting the
therapeutic targets and therapeutic responses of HCC patients.

There are still some challenges and limitations in the clinical
application of radiomics. First, a key challenge is to ensure that
the academic community can obtain high-quality radiological
and clinical resources that involve the establishment and
promotion of imaging and clinical data acquisition protocols.
Second, the analytical methods of radiomics need to be
standardized. Third, many radiomics studies are retrospective,
whereas a prospective research design is ideal. As technology
advances and research progresses, MRI radiomics will play a
more important and even irreplaceable role in the diagnosis and
treatment of HCC.
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174. Mulé S, Thiefin G, Costentin C, Durot C, Rahmouni A, Luciani A, et al.
Advanced Hepatocellular Carcinoma: Pretreatment Contrast-Enhanced
CT Texture Parameters as Predictive Biomarkers of Survival in Patients
Frontiers in Oncology | www.frontiersin.org 13
Treated With Sorafenib. Radiology (2018) 288:445–55. doi: 10.1148/
radiol.2018171320

175. Aerts HJ. The Potential of Radiomic-Based Phenotyping in Precision
Medicine: A Review. JAMA Oncol (2016) 2:1636–42. doi: 10.1001/
jamaoncol.2016.2631

176. Galldiks N, Kocher M, Ceccon G, Werner JM, Brunn A, Deckert M, et al.
Imaging Challenges of Immunotherapy and Targeted Therapy in Patients
With Brain Metastases: Response, Progression, and Pseudoprogression.
Neuro Oncol (2020) 22:17–30. doi: 10.1093/neuonc/noz147

177. Aslan K, Turco V, Blobner J, Sonner JK, Liuzzi AR, Núñez NG, et al.
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