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Introduction: Circulating tumor cells (CTCs) and cell-free tumor DNA (ctDNA) are tumor
components present in circulation. Due to the limited access to both CTC enrichment
platforms and ctDNA sequencing in most laboratories, they are rarely analyzed together.

Methods: Concurrent isolation of ctDNA and single CTCs were isolated from lung cancer
and breast cancer patients using the combination of size-based and CD45-negative selection
method via DropCell platform. We performed targeted amplicon sequencing to evaluate the
genomic heterogeneity of CTCs and ctDNA in lung cancer and breast cancer patients.

Results: Higher degrees of genomic heterogeneity were observed in CTCs as compared
to ctDNA. Several shared alterations present in CTCs and ctDNA were undetected in the
primary tumor, highlighting the intra-tumoral heterogeneity of tumor components that
were shed into systemic circulation. Accordingly, CTCs and ctDNA displayed higher
degree of concordance with the metastatic tumor than the primary tumor. The alterations
detected in circulation correlated with worse survival outcome for both lung and breast
cancer patients emphasizing the impact of the metastatic phenotype. Notably, evolving
genetic signatures were detected in the CTCs and ctDNA samples during the course of
treatment and disease progression.
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Conclusions: A standardized sample processing and data analysis workflow for
concurrent analysis of CTCs and ctDNA successfully dissected the heterogeneity of
metastatic tumor in circulation as well as the progressive genomic changes that may
potentially guide the selection of appropriate therapy against evolving tumor clonality.
Keywords: circulating tumor cells, cell-free tumor DNA, amplicon-sequencing, metastatic signatures, genomic
heterogeneity, evolving alterations, lung cancer, breast cancer
INTRODUCTION

Tissue biopsies and radiological imaging are routinely utilized by
clinicians to monitor treatment efficacy and disease progression in
patients. However, tissue biopsies are invasive and often associated
with risks and pain or discomfort, while frequent imaging for
example with computed tomography may be costly and involves
cumulative exposure to ionizing radiation. Furthermore, tissue
biopsy may be limited by sampling error as single site biopsy may
not reflect the profile of the whole tumor. In contrast, minimally
invasive liquid biopsy allows repetitive non-invasive sample
collection and offers a broader tumor genomic profile based on
shed DNA or cells from the tumor, with potential for better real-
time monitoring of treatment efficacy and disease progression.

The metastatic spread of cancer is largely due to the shedding of
circulating tumor cells (CTCs) from tumors into the blood stream
and invasion of distant organs. Characterization of CTCs has
provided mutation profiles of emerging tumor subclones that
contribute to metastatic spread and resistance to therapy (1, 2).
The number of CTCs detected in the blood of cancer patients also
correlates with inferior treatment response and survival outcomes
(3), suggesting that the assessment of CTCs have prognostic and
predictive importance in monitoring treatment efficacy (4).
However, beyond the quantification of CTCs, molecular analysis
of CTCs is essential for improving our understanding of the tumor
biology which may in turn have therapeutic implications.

Recently, much attention and effort have been focused on
utilizing cell free tumor DNA (ctDNA) as liquid biopsy because
of its greater accessibility and easier utility. However, caveats
remain as ctDNA consists of fragmented DNA from apoptotic
and necrotic tumor cells shed into the bloodstream (5), hence it
provides limited insight to tumor biology of individual cells.
Moreover, genetic signatures obtained from ctDNA are derived
from the major clone in the tumor. The signatures of subclonal
tumor that do not respond to the treatment and drive disease
progression could be missed by ctDNA (6). Hence, additional
complementary information from CTCs may be useful.

Due to the limited access to both CTC enrichment platforms and
ctDNA sequencing in most laboratories, parallel analysis of CTCs
and ctDNA is rare. Furthermore, the technology for isolation of rare
CTCs at single cell resolution is restricted to costly and complex
platforms. In this study, we utilized the single cell isolation platform,
DropCell for CTC isolation at single cell resolution. We
implemented a standardized sample processing workflow that
allowed for concurrent isolation of CTC and ctDNA followed by
targeted amplicon sequencing to evaluate the genomic heterogeneity
of ctDNA and CTCs in lung and breast cancer patients.
2

MATERIALS AND METHODS

Patients
A total of 16 lung adenocarcinoma and 21 breast ductal
carcinoma patients diagnosed at the National Cancer Centre
Singapore were recruited. A total of 48 paired tumor tissues were
obtained from the surgical resections/biopsies at disease
diagnosis and progression. The detailed description of the
patient’s sample can be obtained in Supplementary Table 1.

Separation of Plasma and Buffy Coat for
Isolation of ctDNA and CTCs
A total of 10ml EDTA blood was collected from the patients. We
allocated 2.5ml blood for collection of buffy coat as germline
DNA control sample, while 7.5ml blood was subjected to CTC
enrichment using ClearCell® FX1 (Biolidics) platform following
the manufacturer’s recommendation. First, the plasma was
isolated by low-speed centrifugation at 500g for 10 minutes.
The supernatant was transferred to another 1.5 ml Eppendorf
tube followed by high speed centrifugation at 16,000g for 10
minutes at 4°C. The supernatant was snap frozen in dry ice and
stored at -80°C. Second, the red blood cells were lysed using RBC
lysis buffer (G-Biosciences) in a 1 blood: 3 buffer ratio for 10
minutes. The buffy coat was collected by centrifugation at 500g
for 10 minutes. The supernatant was discarded and the buffy coat
pellet was resuspended in 4mL of ClearCell FX Resuspension
Buffer (Biolidics), followed by CTC enrichment on ClearCell®

FX1 platform using protocol 1.

Single Cell Isolation With DropCell
In order to isolate CTCs at single cell resolution, we applied
CD45-antibody negative selection using a single cell capture
method as described previously (7, 8). In brief, larger cells
retrieved from the buffy coat were processed through the single
cell selection microfluidics. Cells were pre-incubated with CD45-
FITC antibodies (Abcam Inc., USA) and positively fluorescent
cells were excluded. Cells that fit the criteria of large nucleus to
cytoplasmic (N/C) ratio, intact cell membrane and CD45-
negative fluorescent stains were ejected from the microfluidics
platform one at a time for single cell processing.

DNA Extraction of Formalin-Fixed Paraffin-
Embedded (FFPE) Tissues
DNA was extracted from the FFPE samples using the GeneRead
DNA FFPE Kit (Qiagen). Following the manufacturer’s
instructions, each section of the FFPE sample underwent
July 2021 | Volume 11 | Article 698551

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Kong et al. Complementary CTC and ctDNA Profiling
deparaffinization and digestion, before allowing the DNA to bind
to the QIAamp MinElute column. While bound, the DNA was
washed to remove any contaminants. The DNA was then eluted
with 25ml of Buffer ATE.

DNA Extraction of Frozen Tissues
DNA was extracted from frozen tissue using the AllPrep DNA/
RNA/miRNA Universal kit (Qiagen). Following the
manufacturer’s instructions, the frozen tissue was first
disrupted using the mortar and pestle method, before being
homogenized using the QIAshredder (Qiagen). The
homogenized lysate was spun in an AllPrep DNA Mini spin
column, where DNA was bound to the column and the RNA was
found in the flow-through. Total RNA was first purified and
bound on the RNeasy mini spin column. While bound, the RNA
was washed to remove any contaminants. RNA was eluted in
30ml of RNase-free water. Next, genomic DNA that was bound
on the AllPrep DNA Mini spin column was washed to remove
any contaminants. 50ml of Buffer EB was used to elute the DNA.

DNA Extraction of Circulating Cell-Free
Nucleic Acid
DNA was extracted from plasma using the QIAamp Circulating
Nucleic Acid kit (Qiagen). Following the manufacturer’s
instructions, the sample was first lysed to release DNA bound
to proteins, before allowing it to bind to the QIAamp Mini
column using the VacConnector on the QIAvac 24 Plus. While
bound, the DNA was washed to remove any contaminants. The
DNA was eluted with 30ml of Buffer AVE.

Whole Genome Amplification for Lung
CTC Samples
Whole genome amplification was performed on the isolated
single lung CTC samples using REPLI-g single cell kit
(Qiagen). The denaturation buffer was added to the DNA
followed by a 3 min incubation at room temperature. The
denaturation was terminated by addition of neutralization
buffer. The DNA amplification was performed in a reaction
mix consisting of reaction buffer and DNA polymerase for 1.5
hours at 30°C. The reaction was terminated by inactivation of the
DNA polymerase at 65°C for 3 min. The amplified DNA was
cleaned using ethanol precipitation.

Quality Control of Amplified Lung CTC
With Quantitative PCR
In order to evaluate the quality of the amplified DNA in
particularly the possible allelic dropout rate during WGA, we
designed a total of 10 primers sets targeting genomics regions of
different chromosomes (Supplementary Table 2). The qPCR
reactions were carried out using SYBR Green Master Mix
(Roche) with 10ng of input DNA and 0.6nM of primers (IDT)
on the LightCycler® 480 platform (Roche) with the following
thermocycling conditions: 95°C for 5 mins; 45 cycles of 95°C for
10s and 60°C for 1 min; 95°C for 10s and 65°C for 1 min. Samples
with Ct values <35 in at least 5 of the 10 target regions (50%
Frontiers in Oncology | www.frontiersin.org 3
posit ive rate) were selected for downstream DNA
sequencing experiment.
Whole Genome Amplification for Breast
CTC Samples
Whole genome amplification was performed on the isolated
single breast CTC samples using Ampli-1 Single Cell WGA kit
(Silicon Biosystems). The cell lysis was performed with the
addition of Lysis Reaction Mix to each sample. DNA digestion
was carried out with the Digestion Reaction Mix followed by
ligation with Ligation Reaction Mix. PCR was carried out
following the recommended thermo-cycling condition.
Quality Control of Amplified Breast CTC
With Quantitative PCR
In order to evaluate the quality of the amplified DNA, we
performed PCR experiment on the amplified DNA with
Ampli1 QC Kit (Si l icon Biosystems) fol lowing the
manufacturer’s recommendation. Samples that gave positive
amplification for at least 2 out of the 4 amplicons (50%
positive rate) were selected for downstream amplicon-
sequencing work.
Allele Specific PCR (ASPCR)
The EGFR T790M and EGFR exon19 deletion mutation assay
were purchased from Life Technologies. ASPCR was conducted
on ABI7900 qPCR machine (Life Technologies) using 1x
TaqMan Genotyping Master Mix, 1x TaqMan Probe and 20ng
of DNA with the following thermal-cycling conditions: 95°C for
10 mins; 5 cycles of 92°C for 15s and 58°C for 1 min; 40 cycles of
92°C for 15s, 60°C for 1 min.

Sanger Sequencing
PCR for detection of EGFR Exon19 deletion mutation was
carried out using 0.4µM primers: Forward: 5 ’-ATGT
GGCACCATCTCACAAT-3’; Reverse: 5’-CAGCTGCCAG
ACATGAGAAA-3’; 20ng of DNA, 1x AccuTaq LA Buffer
(Sigma), 500µM dNTP, 0.05U/µl JumpStart RED AccuTaq LA
DNA Polymerase under the following thermo-cycling condition:
94°C for 3 mins; 15 cycles of 94°C for 20s, 58°C for 30s, 68°C
for 1 min; 20 cycles of 94°C for 20s, 55°C for 30s, 68°C for 1 min;
68°C for 5 mins. The PCR amplicon was purified with PCR
purification kit (Qiagen) following the recommended protocol.
The purified PCR product was submitted to Sanger sequencing
service provider, Axil Scientific.
GeneRead Targeted DNAseq
We customized 2 different gene panels using Qiagen’s GeneRead
DNAseq Custom Builder tool. The list of genes and its coverage
regions are listed in Supplementary Tables 3, 4. Multiplex PCR
was performed using GeneRead HotStar Taq DNA polymerase
and four primer pools with a total of 80 ng of tumor or CTC
DNA and 20ng of cell-free plasma DNA. The amplicons were
pooled together and cleaned using AMPure beads (Beckman
July 2021 | Volume 11 | Article 698551
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Coulter). The PCR-enriched DNA was subjected to next-
generation sequencing library construction using QIAseq 1-Step
Amplicon Library Kit (Qiagen). Each library was barcoded with a
unique index and quantified using KAPA Library Quantification kit
(Kapa Biosystems). Equal amounts of individual libraries were
pooled together for a 150bp paired-end sequencing run on the
Nextseq (Illumina) platform.

Reads Alignment and Base
Quality Refinement
The sequenced reads were mapped to the human reference
genome hg19 using BWA pipeline (0.7.12) followed by pre-
process based on Genome Analysis Toolkit (GATK 3.5) (9) best
practices and BAQ (Base Alignment Quality) calculation using
SAMtools (1.3) (10). The aligned reads were sorted based
on coordinates.

Variant Calling and Copy Number
Variation Analysis
We used LoFreq 2.1.1 (11) pipeline for detection of single
nucleotide variant (SNV) and insertions/deletions (INDEL)
variants with default parameters. We used Quandico 1.13 for
copy number variation (CNV) detection with the following
modification to the default setting: primer length was set to 21
(average primer length of our GeneRead panel); reads with
mapping quality score less than 30 were excluded from the
analysis and we grouped the reads into regions as qcluster.

The Analytical Pipeline for Detection of
Mutation and Copy Number Variation
A reliable analytical pipeline to minimize false positive detection
of mutation in our data was developed to address random errors
associated with whole genome amplification and sequencing
(12), as well as sequencing error/variation due to low
abundance of ctDNA samples. Our previous work has
conducted a systematic evaluation of the amplification error
generated during whole genome amplification using normal
DNA as test sample (1). We demonstrated that applying a 10%
cut-off on the variant allelic frequency (VAF) of amplified DNA,
it could avoid false positive detection of mutation owing to
amplification errors. Hence, we applied the same 10% VAF
threshold for single CTC that has undergone DNA
amplification, and 1% VAF for ctDNA and tumor samples.
Further, in order to eliminate false positive detection without
missing out genomics alteration due to tumor heterogeneity, we
only considered mutations that met the following criteria: shared
between tumor and CTC or ctDNA samples; shared between
CTC and ctDNA samples; shared between at least two individual
CTCs from the same patient (Figure 1F).

Survival Analysis
The survival analysis were carried out for top five genes that were
altered in lung cancer samples (CSMD2, DMBT1, EGFR, RYR2
and NOTCH1) and breast cancer samples (MTOR, KMT2C,
EGFR, ERBB3 and USH2A) using the cBioPortal (13, 14)
Frontiers in Oncology | www.frontiersin.org 4
survival analysis tool from a total of 511 lung cancer and 996
breast cancer patients cohort data (15–21).
RESULTS

Establishing a Systematic Workflow for
Isolation of ctDNA and Single CTCs
We obtained single time point clinical specimens from 16 lung
cancer and 5 breast cancer patients from a single comprehensive
cancer centre. In addition, serially collected tumors and blood
samples were collected from another 16 breast cancer patients.
The clinicopathological information of these patients are
described in Tables 1, 2. The baseline specimens were collected
at baseline prior to initiation of specific line of systemic anti-
cancer therapy. Additional blood samples were collected after
two cycles while on therapy where feasible, as well as at first
response assessment and eventually at disease progression or
completion of therapy.

CTCs display dynamic phenotypic changes from epithelial to
mesenchymal and vice versa during the different stages of disease
progression (22). Here, we utilized a combination of size-based
and CD45-negative selection method to enrich for CTCs In
order to ensure sample comparison validity, CTCs and ctDNA
were isolated from the same blood tube. The buffy coat
component was used to isolate single CTCs using ClearCell FX
and DropCell platforms while the plasma portion was used in
ctDNA detection (Figures 1A, B). A total of 116 CTCs and 41
plasma were collected from lung cancer patients while 159 CTCs
and 53 plasma were obtained from breast cancer patients
(Supplementary Table 5). Upon implementing the analytical
pipeline to eliminate the whole genome amplification and
sequencing errors, we kept a total of 16 tumors, 39 CTCs and
14 ctDNA from 16 lung cancer patients; a total of 32 tumors, 108
CTCs and 35 ctDNA from 21 breast cancer patients in the final
data set.

We detected the presence of EGFR T790M mutation in the
isolated ctDNA (Figure 1C) as well as the EGFR exon 19 deletion
using allelic-specific PCR (ASPCR) and Sanger sequencing on
single cells isolated from a lung cancer patient with known EGFR
exon 19 deletion mutation (Figures 1D, E) using this workflow,
proving the capability of the technology for this purpose that is in
concordant with previously reported studies from other cohorts
of lung and breast cancer patients (7, 23).

The Molecular Profiling of the Tumours,
CTCs and ctDNA
In order to assess the mutation profiles of CTCs, ctDNAs and
tumors, we custom-designed targeted gene panels for amplicon-
sequencing. The lung cancer GeneRead panel consisted of the 45
most frequently mutated or druggable genes in lung cancer as
previously reported (24, 25) with a targeted region of ~207kb.
The breast cancer GeneRead panel consisted of the 58 most
frequently mutated or druggable genes in breast cancer as
reported by TCGA (26) with a targeted region of ~233kb.
July 2021 | Volume 11 | Article 698551
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FIGURE 1 | The workflow for sample’s isolation, CTC mutation validation and analysis pipeline used in this study. (A) The isolation of CTCs and ctDNA from the
same tube of blood. CTC was enriched through the ClearCell FX system. (B) CTC was isolated on single cell resolution using the DropCell platform. An image of the
cells captured in the cell chamber. (C) The detection of EGFR T790M mutation with ASPCR in the negative control (GM12878 cell); positive control (H1975 cell) and
ctDNA from a lung cancer patient. (D) The presence of EGFR Exon19 deletion mutation with ASPCR in the negative control (GM12878 cell); positive control (PC9
cell) and two CTCs isolated with the DropCell platform from a lung cancer patient. (E) The electropherogam of Sanger sequencing run for validation of EGFR Exon19
deletion mutation in negative control (GM12878 cell); positive control (PC9 cell) and two CTCs from a lung cancer patient with known EGFR Exon19 deletion
mutation. (F) The analysis pipeline used in this study.

Kong et al. Complementary CTC and ctDNA Profiling
We found that single nucleotide variation (SNV) or insertion/
deletion (INDEL) mutations were frequently detected in EGFR,
CSMD2, BRAF, TP53 and RYR2 genes in lung cancer samples
(Figure 2 and Supplementary Table 6), while frequent
copy number alterations were found in RYR2, RELN, DMBT1,
CSMD2 and NOTCH1 (Supplementary Table 7). In contrast, we
noted that the SNV or INDEL mutations were commonly
detected in MYC, TP53, USH2A, NOTCH1 and PIK3CA genes
in breast cancer samples (Supplementary Table 8), while
MTOR, KMT2C, EGFR, USH2A and NF1 amplification were
frequently found in breast cancer samples (Figure 3 and
Supplementary Table 9).

The Heterogeneity of Genomic Alterations
in Tumour, CTCs and ctDNA
Though intratumoral heterogeneity (ITH) has been well studied
in lung and breast cancers (25, 27–29), the comparative degree of
Frontiers in Oncology | www.frontiersin.org 6
heterogeneity between the CTCs, ctDNA and tumor remains
poorly described. The distribution of the genomic alterations
present in all the corresponding tumors, CTCs and ctDNAs
collected for each patient are shown in Figure 4. We observed a
high degree of heterogeneity in the mutation profiles of CTCs
that were undetected in the matched tumor. We found that 78%
of the lung CTCs and 91% of the breast CTCs had at least one
shared mutation with the matched tumors (Tables 3, 4). In
contrast, we observed that all (100%) of the lung and breast
ctDNA have at least one shared genomic alteration with the
matched tumor (either primary tumor and/or metastatic lesion).
Moreover, we noted that some mutations shared between CTCs
and ctDNA were absent in the tumor. These findings highlight
the heterogeneity of tumor subclones shed into circulation.

Of note, two lung cancer patients (L6 and L13) had more than
50% of the detected mutations found privately only in the CTCs
and not in ctDNA. Both of these patients had a survival shorter
TABLE 1 | The clinicopathological features of lung cancer patients recruited in this study.

Clinicopathlogic feature Details n %

Age at diagnosis <60 8 50
≥60 8 50

Median 60.5
Range 35-84

Disease stage at the point of blood collection Stage I 0 0
Stage II 1 6.25
Stage III 4 25.00
Stage IV 11 68.75

Smoking History Yes 3 18.75
No 10 62.5

Unknown 3 18.75
July 2021 | Volume 11 | Article 6
TABLE 2 | The clinicopathological features of breast cancer patients recruited in this study.

Clinicopathlogic feature Details n %

Age at diagnosis <50 9 42.9
≥50 12 57.1

Median 54
Range 27-65

Disease stage at the point of blood collection Stage I 0 0
Stage II 2 9.5
Stage III 5 23.8
Stage IV 14 66.7

ER/PR/HER2 ER+ and/or PR+, HER2- 9 42.9
HER2+ 9 42.9

ER-/PR-/HER2- 3 14.3
CA15.3 ≤25.1 U/mL 9 42.9

>25.1 U/mL 10 47.6
Not tested 2 9.5
Median 37.3
Range 12.4-1341
9
8551

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Kong et al. Complementary CTC and ctDNA Profiling
than one year, indicating that the highly heterogeneous profiles
of CTCs may provide information to stratify patients with
poorer prognosis.

We also noted more private mutations in the CTCs and
ctDNAs for breast cancer samples, at least partly due to increased
number of CTCs and ctDNA analyzed in breast cancer as
compared to lung cancer samples. We did not detect any clear
trend for the degree of heterogeneity with patient survival
outcome for breast cancer samples. Longer follow up and
larger sample sizes will be required to investigate the
association with survival outcome.

CTCs and ctDNA Provide Complementary
Genomic Information of Metastatic
Tumour and Evolving Genetic Signatures
During Disease Progression
The mutation profiles of CTCs, ctDNA, matched primary and
metastatic tumors of selected breast cancer patients were further
compared spatially and temporally. Where the degree of
mutational heterogeneity between paired primary and
Frontiers in Oncology | www.frontiersin.org 7
metastatic tumors is low, mutation profiles found in the CTCs
and ctDNA were similar to the tumors (Figure 5A). In contrast,
in primary and metastatic tumors that exhibited a high degree of
mutational heterogeneity (Figure 5B), CTCs and ctDNA
displayed higher degree of resemblance to metastatic tumor
than the primary tumor, indicating that CTCs and ctDNA are
potentially valuable resources to inform on the heterogeneity of
metastatic tumor.

In order to investigate the temporal genetic signatures during
the course of treatment and disease progression stages, we
obtained serial collection of tumor, CTCs and ctDNA of
different treatment cycles from a subset of breast cancer
patients (n=15). The longitudinal follow up of CTC count and
ctDNA CNV displayed differential correlation with the CA15.3
biomarker (Figure 5C). We found that the majority of DNA
aberrations were consistently detected at different time points
(Figure 5D). Notably, we observed several CNV such as JAK3,
BRAF or MTOR amplifications were present only at selected time
points of the collected CTCs but not found in the matched ctDNA.
We posit that this observation could be explained by the viable
FIGURE 2 | The genomics alteration detected in the lung cancer samples. The tabulation of exonic SNVs, in-frame or frame-shift INDELs and CNVs of frequently
mutated genes. The right panel displays the cumulative numbers of alterations for individual genes. Patient’s sample IDs are shown at the top panel. The bottom
panel shows the type of samples analyzed. Red rectangles represent amplifications. Blue rectangles represent deletions. Green rectangles represent missense,
Stopgain or Stoploss somatic SNVs. Purple rectangles represent somatic INDELs. TUT, CTC and DNA refer to tumors, individual CTC and ctDNA respectively.
July 2021 | Volume 11 | Article 698551
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CTCs that have evolved and survived the treatment while ctDNA
provided genetic information of apoptotic tumor cells. Further, we
found emerging of new JAK2 and ATM alterations in patient B8 at
the second time point (Figure 5E), indicating possible evolving
tumor clonal growth during disease progression.

The Mutation Profiles of CTC, ctDNA and
Tumour Displayed Signatures Associated
With Patient Survival Outcome and
Disease Progression
We further explored whether the concomitant genomic
alterations that present at high frequency in the tumor, CTCs
and ctDNA, may provide information that is linked to patient
survival outcome. Taking the top 5 most frequently concomitant
altered genes detected in lung cancer CTC/ctDNA samples
(CSMD2, DMBT1, EGFR, RYR2 and NOTCH1) and breast
cancer CTC/ctDNA samples (MTOR, KMT2C, EGFR, ERBB3
andUSH2A) from our study, we applied this gene set to a curated
database of lung (n=511) or breast (n=996) cancers (13–21)
Frontiers in Oncology | www.frontiersin.org 8
obtained from cBioPortal (13, 14) for survival analysis. We found
that these gene sets were significantly associated with worse
survival outcome (Figures 6A, B). In addition, we found
significant increase of copy number alterations in the CTC and
tumor samples when the disease progressed (Figures 6C–H).
The absence of such observation in ctDNA could be explained by
its smaller sample size. Cumulatively, this indicates that the
mutation profiling of CTCs and ctDNA is useful to provide
genetic information with prognostic relevance.
DISCUSSION

CTCs and ctDNA represent different tumor components present
in the circulation of cancer patients. Relatively few studies have
analyzed both CTCs and ctDNA concurrently, hence their
similarity or differences remains largely unknown. Though a
few previous publications have analyzed CTCs, ctDNA and
tumor from the same patient, these studies focused on new
FIGURE 3 | The genomics alteration detected in the breast cancer samples. The rectangle panels and colors are as described in Figure 2. In addition, the time
point of the serially collected samples for selected patients are represented by the different tones of green color at the bottom panel from 1st (T1) up to 4th time point
(T4) during the course of this study. T0 indicates the time point that the tumor was collected before this study.
July 2021 | Volume 11 | Article 698551

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Kong et al. Complementary CTC and ctDNA Profiling
technology platforms and involved small number of patients (30,
31). For example, the work by Shaw et al. (30) isolated the CTCs
using DEPArray based on epithelial marker from breast cancer
patients, hence potentially missing the CTCs of mesenchymal
Frontiers in Oncology | www.frontiersin.org 9
phenotype that is critical during disease progression (20).
Similarly, Sundaresan et al. utilized EPCAM-coated chip for
CTC isolation, but only analyzed a single EGFR T790M
mutation, and hence it lacked a more comprehensive
A

B

FIGURE 4 | The configuration of the genomic alterations detected in (A) lung and (B) breast cancer samples. The mutations are grouped according to their
occurrence, either private or commonly found in tissue, CTCs or ctDNA. The disease stage of each patient is represented by the different tones of purple colors.
TABLE 3 | The tabulation of the mutations shared between tumor, CTCs and ctDNA for lung cancer samples.

Patient Disease stage at the
point of blood collection

Shared mutations
between Tumor and

CTC

Shared mutations
between Tumor and

ctDNA

Shared mutations
between CTC1 and

CTC2

Shared mutations
between CTC and

ctDNA

Availability
of tumor

L1 IV 9 2 5 4 Yes
L2 IV 21 6 12 0 Yes
L4 IV 12 6 5 1 Yes
L5 III 0 0 29 7 No
L6 IV 1 0 17 0 Yes
L7 III 5 2 4 1 Yes
L8 IV 0 0 29 1 No
L10 III 6 3 14 0 Yes
L11 IV 0 7 0 0 Yes
L12 IV 4 1 13 0 Yes
L13 II 0 0 22 0 Yes
L14 IV 0 0 16 0 No
L16 III 1 0 0 0 Yes
L17 IV 0 3 0 0 Yes
L18 IV 0 0 5 4 No
L19 IV 0 5 0 0 Yes
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evaluation of the genomic profiles of CTCs, ctDNA and tumor
(31). In addition, these studies obtained CTCs and ctDNA from
different tubes of blood, hence not accounting for possible inter-
sample heterogeneity. Though the study by Manier et al.
analyzed the genomic alterations of CTCs and ctDNA from
patients with multiple myeloma (32) taken from the same source
sample, the similar approach on other solid tumors is lacking. To
address this, we obtained CTCs and ctDNA from the same
source sample, and used label-free CTC isolation followed by
CD45-negative selection of CTCs at single cell resolution with a
new single cell isolation platform, DropCell, to provide agnostic
selection regardless of epithelial or mesenchymal phenotype.

We had recently described the heterogeneity in gene
expression of single CTCs relative to intra-tumoral
heterogeneity, between metastatic and non-metastatic lung
cancer (33), as well as comparing the drug-responsive and
drug-resistant lung cancer lines (34). Here we found that the
majority of the CTCs and ctDNA displayed similar mutation
profiles with the matched tumor. However, we noted some
private mutations that were found only in two or more CTCs
from the same patients, consistent with other studies (30, 32).
This highlights that CTC heterogeneity could be dependent on
tumor heterogeneity and clonal selection. In contrast, we
observed less heterogeneity in the ctDNA as compared to
CTCs, indicating possibly that the ctDNA was derived largely
from the dominant clone in the tumor. Intriguingly, patients
with distant metastasis to multiple organs displayed a higher
degree of heterogeneity in tumor and CTCs, suggesting that
subclonal evolution in tumor progression also featured in CTCs.
This was further supported by an evolving genomic signature in
sequential samples of CTCs and ctDNA. Hence, the ability to
characterize the cells with metastatic properties could provide
Frontiers in Oncology | www.frontiersin.org 10
useful insights for better management of cancer in patients.
Future studies would be required to define the metastatic
heterogeneity of the CTCs and the association with poorer
survival in tumors exhibiting the heterogeneity observed here.

Finally, frequent genetic alterations detected in lung and
breast cancer have been reported by previous studies to be
associated with poor prognosis in lung or breast cancer
patients (35–43). Accordingly, we found that the top five most
frequently mutated genes in both CTCs and ctDNA had
prognostic value when applied to existing cancer cohorts.
Indeed, the alterations found in these genes such as RYR2,
NOTCH1 and DMBT1 have strong association with high
tumor burden and tumorigenesis (44–47), possibly resulting in
a worse prognosis in lung cancer patients. Further, frequent
alterations of USH2A, EGFR and ERBB3 were previously
reported in association with cellular proliferation (48–51).
Further, we observed significant increase of copy number
changes in the tumor and CTCs during disease progression.
This finding suggests that incorporating the mutational profile
for the CTCs in addition to enumeration, could build upon
existing prognostic variables defined by FDA approved systems
such as CellSearch, and potentially better defining the groups
that need to receive adjuvant therapy.

Besides molecular characterization, the functional analysis of
the identified mutations could provide additional insights to
assess the consequences of these mutations in cancer therapy.
We have previously developed CORTAD-seq that allows for
concurrent analysis of transcriptome and mutation at single cell
resolution (34). Using this tool, we found that single cell that
harbors selected tyrosine kinase inhibitor (TKI)-responsive or
-resistance EGFR mutations possesses differential transcriptomic
signatures upon TKI stimulation. Hence, we envision that future
TABLE 4 | The tabulation of all the detected mutations that are shared between tumor, CTCs and ctDNA in regardless of the differential time points for the breast
cancer samples.

Patient Disease stage at the
point of blood collection

Shared mutations
between Tumor and

CTC

Shared mutations
between Tumor and

ctDNA

Shared mutations
between CTC1 and

CTC2

Shared mutations
between CTC and

ctDNA

Availability
of tumor

B1 IV 9 7 18 1 Yes
B2 IV 10 9 12 2 Yes
B3 IV 5 8 13 6 Yes
B4 IV 1 1 17 0 Yes
B5 IV 15 9 28 0 Yes
B7 III 4 5 38 1 Yes
B8 II 8 5 37 1 Yes
B9 IV 5 6 10 1 Yes
B10 IV 0 4 5 1 Yes
B11 IV 10 9 26 2 Yes
B12 III 1 2 21 0 Yes
B13 IV 8 9 8 0 Yes
B14 III 10 12 14 5 Yes
B15 IV 3 2 0 1 Yes
B16 III 9 2 15 0 Yes
B17 IV 21 17 10 1 Yes
B18 III 3 23 0 2 Yes
B20 IV 11 6 23 2 Yes
B22 IV 3 0 30 0 Yes
B23 II 1 1 19 2 Yes
B24 IV 4 3 24 0 Yes
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A CB

D E

FIGURE 5 | The mutation profiles and evolving genomics alteration in CTCs, ctDNA, primary and metastatic breast tumors. Red rectangles represent amplifications.
Blue rectangles represent deletions. Green rectangles represent missense, Stopgain or Stoploss somatic SNVs. Purple rectangles represent somatic INDELs. TUT,
CTC and DNA refers to tumors (yellow rectangles), individual CTC (blue rectangles) and ctDNA (orange rectangles) respectively. (A) Breast cancer patient, B17 with
homogenous mutations profile in the primary (T0) and metastatic (T1) tumors. The pie chart represents the fraction of detected mutations to the primary tumor (light
green) or metastatic (dark green) tumor or both tumors (pink). (B) Breast cancer patient, B5 with heterogenous mutations profile between primary and metastatic
tumors. CTCs and ctDNA displayed better resemblance to metastatic than the primary tumors. (C) The CTC count, ctDNA CNV and CA15.3 level of serially
collected samples for B5, B14 and B17 patients. (D) Majority of the mutations are consistently found at different time points in B7 breast cancer patient. However,
selected mutations were only found in certain time points. The pie chart represents the fraction of detected mutations found at different time points. (E) Evolving
genomics alterations during different course of treatment such as emergence of JAK2, ATM and KRAS mutations.
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study incorporating CORTAD-seq or other similar tool will be
useful to dissect the consequences of mutation on
cellular phenotypes.

We acknowledge that a technical limitation in our study is the
low number of CTCs that passed the quality control check. Only
Frontiers in Oncology | www.frontiersin.org 12
~34% of all the isolated lung CTCs and ~68% of all the isolated
breast CTCs were kept in the final analysis (Supplementary
Table 6). This observation is in concordant with the findings by
Dirix’s and Park’s laboratories where 43 to 60% of the isolated
CTCs yielded positive result from the downstream
A

C D E

F G H

B

FIGURE 6 | The frequently altered genes found in this study are associated with worse survival outcome. We performed survival analysis using data obtained from
cBioPortal with a large cohort of (A) lung and (B) breast cancer patients. X-axis represents time to event. Y-axis represents overall survival probability. The patients
with mutated genes (red) have significantly poorer survival compared to patients without mutations (blue). The boxplot of the CNVs detected in the (C) tumor,
(D) CTC and (E) ctDNA grouped by the disease stage for lung cancer patients. The boxplot of the CNVs detected in the (F) tumor, (G) CTC and (H) ctDNA grouped
by the disease stage for breast cancer patients. There is significant increase of copy number changes (*p-value ≤ 0.05, t-test) when the disease progressed in the
tumor and CTCs.
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transcriptional and mutational analysis (52, 53), highlighting
that it is important to improve the quality of the amplified DNA
from the CTCs sample. We believe that this is a technological
limitation that can be overcome with improving single cell
analytical platforms that could be mated with this workflow.

Cumulatively, we present a workflow for robust simultaneous
evaluation of CTCs and ctDNA from the same source sample.
The molecular profiling of serially collected liquid biopsies could
inform and build on existing algorithms for prognostication and
management using CTCs and ctDNA.
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