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Multiple myeloma (MM) is an incurable cancer arising from malignant plasma cells that
engraft in the bone marrow (BM). The physiology of these cancer cells within the BM
microenvironment (TME) plays a critical role in MM development. These processes may be
similar to what has been observed in the TME of other (non-hematological) solid tumors. It
has been long reported that within the BM, vascular endothelial growth factor (VEGF),
increased angiogenesis and microvessel density, and activation of hypoxia-induced
transcription factors (HIF) are correlated with MM progression but despite a great deal
of effort and some modest preclinical success the overall clinical efficacy of using anti-
angiogenic and hypoxia-targeting strategies, has been limited. This review will explore the
hypothesis that the TME of MM engrafted in the BM is distinctly different from non-
hematological-derived solid tumors calling into question how effective these strategies
may be against MM. We further identify other hypoxia-mediated effectors, such as
hypoxia-mediated acidification of the TME, oxygen-dependent metabolic changes, and
the generation of reactive oxygen species (ROS), that may prove to be more effective
targets against MM.

Keywords: pH balance, acid base regulation, bone marrow microenvironment, hypoxia and apoptosis,
multiple myeloma
INTRODUCTION

The underlying factors resulting in the development and progression of solid tumors is complex and
multivariable, but tumor genesis is likely first initiated by the accumulation of multiple genetic
mutations (the Knudsen hypothesis) (1) that result in changes of tumor growth, altered tumor
phenotypes, alterations in immunogenicity, increased metastatic potential, enhanced malignancy,
and development of chemo- or immunoresistance. Tumor progression is further driven by selective
pressure that develops within the tumor microenvironment (TME) in response to these changes
that selects for more malignant phenotypes. As solid tumors typically outgrow the ability of the
vasculature to provide sufficient nutrients and oxygen levels to support cell growth, factors like
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hypoxia-inducible transcriptional factor (HIF) ameliorate this by
activating multiple rescue and salvage pathways (i.e.
angiogenesis). Since these survival pathways underlie the
ability of cancer cells to survive inimical low pO2 conditions
within the TME, targeting these specific survival pathways
(especially in solid tumors), either by genetic manipulation or
pharmacological intervention of HIF is a promising and
frequently proposed anti-cancer strategy. In an analogous
manner to solid tumors, similar anti-tumor strategies have
been proposed for hematological or blood-derived tumors such
as MM. Despite numerous clinical studies and some modest
efficacy in a wide array of cancer types, the anti-tumor
effectiveness of these treatments has generally been limited and
short-lived. In fact, some evidence suggests that hypoxic
conditions in the TME may actually support more malignant
cancer phenotypes. For example, since the bone marrow is
already hypoxic and the relative low levels of O2 may actually
support myeloma progression, this raises questions about how
effective targeting HIF (or angiogenesis) in killing hematological
tumors will be, especially in light that these cells may already be
adapted to very low pO2 levels. In this review, we propose that
targeting alternative pathways, such as hypoxia-mediated
acidification of the TME, oxygen-dependent metabolic
changes, or the generation of reactive oxygen species (ROS)
may offer more effective clinical therapies as these events
represent obligate cellular responses to low pO2 that must
occur for the tumor cells to survive.

MM develops frommalignant plasma cells that have migrated
out of peripheral germinal centers and which have engrafted in
the bone marrow (BM) (2). As the second most common
hematological malignancy, MM accounts for 1-2% of all cancer
related deaths (3). Each year approximately 20,000 new cases are
diagnosed in the United States with older male patients having
increased risk. African Americans are more than twice as likely
to develop MM than Caucasians for reasons that are unclear.
Despite some success in prolonging patient survival with new
therapeutic strategies this disease remains incurable (4).

Myeloma tumor cells invade, grow and thrive within the BM,
a complexly organized tissue characterized by heterogeneously
distinct cellular and molecular “microniches” (5–8). These
niches can be defined in many ways, but the BM regions
characterized by low oxygen levels (hypoxia) are of special
interest. In most solid, non-hematologically-derived tumors,
cancer cells undergo an initial metastasis when they invade
and engraft themselves at sites distant from their origin. Solid
tumors can outgrow the ability of the vasculature to supply
oxygen and nutrients, resulting in conditions of low pO2 that has
been implicated in increased cancer cell malignancy and
development of resistance to chemo- and radiation therapy (9,
10). Yet, whether or not BM engrafted MMmalignancies develop
along similar lines due to hypoxic conditions analogous to what
is observed in non-hematologically-derived solid tumors is
unclear. Since much of the rationale for targeting the hypoxic
niche in MM has been based on studies in solid tumors, it is
important to clarify how the MM niche may be different. For
example, while the exact relationships between MM engrafted
Frontiers in Oncology | www.frontiersin.org 2
tumor cells and the hypoxic BM microniches remains mostly
undefined, evidence suggests that the innate low pO2 within the
BM actually provides a critical protective advantage to MM
tumor cells (8, 11, 12). In fact, the innate low pO2 in the BM
TME has been linked to the promotion of “stemness” in MM
tumor cells (13) and this may represent a much different TME-
environment that develops in solid tumors following
engraftment of metastatic cancer cells migrating from a distant
primary tumor. In the former situation, MM cells may already be
adapted to low pO2 and be less reliant on transcriptional
activation of de novo angiogenic pathways (say as mediated by
VEGF), than in solid tumors.

In solid tumors, low pO2 levels in the tumor nodule results in
the subsequent activation of a suite of hypoxia-inducible
transcriptional factors (HIFs) that are important for
upregulating about 100-200 genes responsible for mediating
the adaptive hypoxic response of these tumor cells.
Presumptively, these genes activate salvage pathways, including
pro-angiogenic signals and altered cancer cell metabolic activity
(the Warburg effect) that are important for the cancer cells to
survive the increased oxygen burden within the TME (9). While
most non-cancer cells are generally unable to survive in these low
oxygen conditions and undergo hypoxia-mediated apoptosis,
some tumor cells seem to “thrive” in low pO2 conditions,
implying that hypoxia, in and of itself, is not necessarily
sufficient to kill cancer cells or that the cellular adaptive
response to low O2 selects for more malignant phenotypes. In
fact, a growing consensus suggests that hypoxia is strongly
correlated with increased tumor cell malignancy (14), increased
metastatic potential (15) and increased cellular resistance to
chemo- and radiation therapy (16).

Since HIF is likely a critical “master-regulator” of the cellular
response to hypoxia, it is suggested that inhibiting the ability of
HIF to induce these adaptive hypoxic responses makes it an
attractive anti-cancer strategy for killing both solid and
hematological tumors, like MM (11, 17–19). Treatment of MM
with a hypoxia-activated pro-drug (20), the suppression of HIF
(with small inhibitory RNA) (21), or a specific HIF-targeting
polyamide (11) all showed some anti-MM effects in vitro and
in vivo and some of these strategies have moved to clinical trials
(22). Despite the wide range of novel therapeutic strategies
designed to target hypoxia and HIF-mediated salvage pathways
(i.e. anti-VEGF/angiogenesis), the clinical effectiveness are
relatively modest (23, 24). This raises the question of whether
or not targeting HIF (or even down stream hypoxia-mediated
angiogenesis) to further induce lower O2 levels (for example by
blocking de novo neovascularization of the tumor nodule) is a
therapeutic dead end as an effective strategy to treat
hematological malignancies.

On the other hand, development of hypoxic TMEs are a
common motif of both solid and hematological tumors which
raise the question if better or more effective alternative
downstream responses triggered by low pO2 can be developed,
away from angiogenesis. In this case identifying obligate cellular
response to low pO2 that must occur in response to hypoxia
would be attractive therapeutic targets. For example, cellular
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hypoxia results in a marked decrease in the intracellular pH (pHi
~6.7) of cancer as a result of the tumor cells switching to
anaerobic glycolysis and the concomitant production of lactic
acid, a process that has been known for decades to occur in solid
tumors (25). Under these conditions, cells must maintain their
internal pH (pHi) at obligate neutral/basic levels (pH ~7.2-7.6)
by removing or altering the acidic byproducts to the external
environment (26, 27). The failure to maintain internal pH at
obligate neutral/basic levels will result in the pH-mediated
inactivation of enzymatic function thereby resulting in cell
death. Thus, it is reasonable to argue that a critical aspect of
the adaptive hypoxia-mediated response must also include the
activation of rescue pathways responsible for maintaining the
pHi at prescribed levels in both solid and hematological tumors.
Simultaneously, the regulation of the internal pH will result in an
acidification (~6.4-6.7) of the extracellular pH (pHe), as protons
are pumped out of the cell, and that the acidification of the pHe

may impact on the TME in other ways, yet to be discovered.
Since these are apparently obligate events that must occur in cells
faced with low pO2 levels, regulation of the internal pH and
acidification of the external pH, we propose that targeting
hypoxia-mediated acid/base regulatory survival pathways may
prove to be more effective anti-cancer therapeutic targets.
HYPOXIA IN SOLID TUMORS

The six most common types of solid tumors (breast, lung,
prostate, colorectal, melanoma and bladder cancers) account
for about 1 million new cases per year. In most cases a
primary mass within the tissue of origin develops and is
frequently followed by individual cancer cells that break free
and metastasize to distant regions of the body (including the
bone). Despite the complex sequelae underlying tumorgenesis
and metastasis, once established (either as a primary or
secondary metastatic tumor), the growing cancer nodule
typically outgrows the ability of the local tissue vasculature to
provide sufficient levels of O2 and nutrients. This process results
in the development of temporally and spatially diverse
microniches in the tumor that are characterized by (1)
“normal” pO2 levels, (2) areas of “low/hypoxic” pO2, and (3)
necrotic regions. As such the response of cancer cells residing
within these heterogeneous microniches will also be diverse.
Normal, non-cancer cells and less malignant cancer cells are
more likely to succumb to these inimical hypoxic conditions,
whilst more malignant and resistant phenotypes will be selected.
While the role of O2 and metabolism is well studied in solid
tumors, it is less clear if the same conditions and pathways exist
in hematological tumors. We postulate that while there are many
similarities, significant differences do exist (Table 1) and such
should be taken into consideration when trying to develop novel
strategies to target these types of tumors. Yet an important
question remains to be answered is if the cellular response to
low pO2 (either in part or in toto) represent a critical survival
pathway that must be initiated by cancer cells (and as such can be
Frontiers in Oncology | www.frontiersin.org 3
targeted) or if this is simply an epiphenomena linked to increased
oxygen burden that the tumor cells have already bypassed.
HYPOXIA IN HEMATOLOGICAL TUMORS

Bone Marrow
The BM environment is hypoxic by its nature and this is critical
for the activity of hematological stem cells and may also be an
important underlying cause of metastasis of various tumor types
to the BM (28–30). This is an important consideration, as the BM
is already hypoxic and it remains unclear if engrafted MM tumor
cells establish a greater hypoxic gradient similar to what is
observed in solid tumors. Hypoxia is described as an
insufficient amount of metabolic oxygen resulting from a
discrepancy between homeostatic oxygen supply and
consumption. If the level of oxygen tension is below the
physiologic level, then the tissue is hypoxic. Physiologic pO2 in
“normal” tissues can vary based on the tissue vasculature and
cellular metabolic needs, which is organ specific and can vary
from 40-85 mmHg (31). Measuring the pO2 level is difficult and
invasive, but in animal studies, the pO2 of the BM was found to
range from 10-30 mmHg, which is hypoxic relative to most other
tissues (32). While the microenvironment of BM is hypoxic in
healthy individuals, the niche of engrafted MM can be even more
hypoxic, but it is not clear if what drives this process and how
much more hypoxic the microniche may become (20). In
cultured MM cell lines, the cells can survive relatively low pO2,
(down to 0.2%) without significant cell death (11). In fact there
do not appear to be clearly defined and physiologically critical
level of O2 (other than totally anoxic conditions) that represents
a “lower” target limit of inhibited cell survival in vitro or in vivo.
Thus, one aspect that is lacking in almost all studies is a
demonstration of the in situ physiological effectiveness of anti-
HIF or anti-angiogenic therapies must achieve a specific level of
sustained tumor hypoxia in order to be toxic to the cancer cells.
In fact, most tumor cells appear to quickly adapt to low pO2

levels in order to survive.
In contrast to solid tumors, hematological tumors derive from

blood cells and are already associated with the microenvironments
of the blood and lymphatic tissues, including hematopoietic stem
cells living in the BM. The development of hypoxic conditions
within hematological cancers and associated tumor masses (such
as seen in lymphomas and myelomas) likely share some
similarities with solid tumors but it is equally likely that they
differ in many other aspects (Table 1) and that the low pO2 in BM
may not strictly represent an inimical environment for
hematological tumors. Leukemias, for example, do not form
solid masses but rather are “liquid tumors” that circulate with
the blood and lymphatic systems. In this case, the role of oxygen in
these diseases was presumed to be inconsequential due to the
environment of the blood, and has long been overlooked (33).
Leukemias develop from the uncontrolled hematopoiesis of stem
cells in the BM and it seems that hypoxia plays a critical role in
maintaining these cancerous stem cells (34). In contrast, MM and
lymphomas form “solid” tumor masses and likely share some
July 2021 | Volume 11 | Article 703878
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physiological similarities to solid tumors, but again, the exact role
of hypoxia in MM remains unclear (8, 30).

The development of MM is complex and not fully
understood, but appears to be caused by genetic and
chromosome abnormalities caused by genetic mutations during
terminal differentiation of B-lymphocytes into plasma cells. In
about half of all cases of MM, chromosomal translocations
(primarily 11q13 (cyclin D1), 6p21 (cyclin D3), 4p16 (FGFR3
and MMSET), and 16q23 (c-maf) onto the immunoglobulin
heavy chain of chromosome 14. In the other half, trisomies of
odd-numbered chromosomes are frequently observed (35–37).
Under these conditions of deregulated cellular proliferation,
additional mutations can accrue, such as mutations in the RAS
family of oncogenes (including K-ras and N-ras) that induce
constitutive ERK activation and which are observed in about 20%
of all MM cases (38). Interestingly, tumor hypoxia may actually
facilitate genetic instability and as such may underlie the
development of genetic lesions (39, 40).
Frontiers in Oncology | www.frontiersin.org 4
MM progresses through stages, including monoclonal
gammopathy of undetermined significance (MGUS) (with a
10% chance of progressing to MM), smoldering multiple
myeloma (SMM) and multiple myeloma (MM). Individuals with
MGUS are often asymptomatic with pre-malignant tumors made
up of about 15% lymphoid or lymphoplasmacytoid MGUS and
85% plasma cell MGUS (41). Patients with symptomatic MM
disease are characterized by skeletal destruction, anemia and renal
failure. The initial stages of MM (such as MGUS) occur when
long-lived plasma cells (PC) from peripheral lymphoid tissues
migrate to the BM. While the exact mechanisms regulating this
migration is unknown, some evidence supports the hypothesis
that hypoxia is an important factor for the initial growth, survival,
and proliferationMGUS cells migrating into the BM (42). Another
theory is that this migration is mediated by initial hypoxia-
induced induction of the epithelial-mesenchymal transition
(EMT) processes (43). Other factors may also play a role in MM
engraftment in the bone marrow, including: SH3GL3 mediated by
TABLE 1 | Summary table comparing oxygen-related similarities and differences between hematological and solid tumors.

Hematological malignancies Solid tumors

Major Types 1. Leukemia (develops in the bone marrow and travels through
the bloodstream affecting blood cells)

2. Lymphoma (develops and affects cells in the lymphatic system
including lymphocytes and lymph nodes)

3. Myeloma (develops in the bone marrow and affects plasma
cells)

1. Sarcomas (tumors in a blood vessel, lymph vessel, ligament, bone, muscle,
tendon or fat tissue)

2. Carcinomas (tumors in epithelial cells; skin, glands and linings of organs like
bladder and kidneys)

Response to
Hypoxia

It was initially thought that hematological malignancies acted the
same as solid tumors, but after targeting VEGF and angiogenesis
with moderate success, research has switched to more modern
approaches including targeting pH and metabolism

Neovascularization (angiogenesis) via release of hypoxia-inducible angiogenic factors
like VEGF is crucial for the survival of solid tumors. Targeting angiogenesis and VEGF
can be effective against solid tumors: Anti-VEGF drugs like bevacizumab (Avastin)
and Sunitinib and anti-angiopoietin pathway agents like AMG 386 and Regorafenib
are shown to be effective in various solid tumor cancers (like breast cancer, renal cell
carcinoma, ovarian cancer, colorectal carcinoma, etc.)

For MM, this is probably due to the already hypoxic environment
of the BM paired with the large blood vessels present, reducing
the viability of angiogenesis and micro vessel density playing a
role in tumorigenesis.

Physiological Hematological malignancies do not show clear oxygen-dependent
regions. Instead, clonal cells get dispersed unevenly based on
anatomy (more clones at extramedullary sites).

Solid tumors have distinct and spatially heterogenous regions. There are three types
of tissue regions based on oxygen distribution: Normoxic (well-oxygenated), Hypoxic
(oxygen-insufficient) and Necrotic/Anoxic (oxygen- depleted).

The malignant plasma cells here grow independent of another and
thus do not form a solid nodule.

Malignant cells grow in conjunction to each other, forming a solid mass.

Cellular Hematological malignancies adapt by inducing various gene
expression patterns, including stabilization of HIF. However, the
success of targeting HIF in these malignancies has not been
especially effective (as noted for solid tumors).

Solid tumor cancer cells can adapt to changes in the microenvironment by inducing
expression of various genes. HIF-1 is one such master regulator of the adaptive
cellular hypoxic response.

Metabolism In MM and other hematological malignancies, glycolysis is
adjusted in a series of ways: Hexokinase II(HKII) is overexpressed,
3-bromopyruvate (3BP) has alkylation properties and can inhibit
HKII leading to reduced ATP production and viability, PKM2 (an
isoform form of Pyruvate Kinase) is upregulated, Acetyl-CoA is
increased, lactate is present, all resulting in acidosis.

Glucose is fundamental for a cell’s metabolism as it leads to glycolysis which leads to
the tricarboxylic acid cycle (TCA) and then oxidative phosphorylation allows for the
production of ATP. Tumorigenesis relies greatly on the shift in glucose metabolism:
from oxidative phosphorylation back to glycolysis even in a state of sufficient oxygen.
Glycolysis is an inefficient metabolic pathway for normal cells, but has advantages for
tumor cells.

Glutaminolysis appears to be enhanced in MM cells, related to the
idea that MM cells are glutamine addicted. This appears to be
related to the hypoxic environment of the BM. The MYC
oncogene is upregulated in MM, which also enhances expression
of glutamine transporters and represses inhibitors of
Glutaminolysis.

Glutamine is critical for cells to function, as it enhances proliferation, differentiation,
cytokine production and apoptosis. Glutaminolysis is the glutamine equivalent to
glycolysis, as they both result in energy production and nucleotide synthesis.
Glutaminolysis specifically results in amino acid synthesis and fatty acid synthesis.

“Reverse Warburg effect” describes MM cells and their supply or
lactate from the surrounding environment.

Together, Glycolysis and Glutaminolysis mechanisms enable the growth and survival
of the solid cancer cell.
Another thing to note is the Warburg effect, which is essentially an enhanced aerobic
glycolysis due to the hypoxic environment of tumor cells, but it can occur under
normoxic conditions too.
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the FAK/PI3K signaling pathway (44), Wingless/int (Wnt) family
including the Wnt/RhoA pathway and protein kinase c (PKC)
(45), CD40 activation which activates downstream AKT,
phosphatidylinositol-3-kinase (PI3K), and nuclear factor
(NF)-kB which targets urokinase plasminogen activator (uPA)
(46), and SRC3 which regulates Cx43 expression (47, 48).
Altogether, these findings suggest that MM may not actually
alter the “normal” BM niche to make it more hypoxic as
opposed to hypoxia and HIF activation representing
epiphenomena of MM engraftment

Angiogenesis and VEGF
For many years, a hallmark of MM progression and prognostic
potential was the observed correlations to increased expression
of angiogenic factors and increased microvessel density (MVD)
in the BM of MM patients (49–52). Angiogenesis is necessary for
essential biological processes such as embryogenesis (53) and
wound healing (54), but is also necessary for tumor growth and
may induce a dormant, benign tumor into a growing, malignant
mass (55). The term “angiogenic switch” refers to a time-
restricted event where pro-angiogenic factors outweigh anti-
angiogenic factors resulting in advance tumor progression (56).
The molecular mechanisms underlying a MM-induced
angiogenic switch have been studied extensively, with a
relatively large number of biological factors identified,
including VEGF, bFGF, HGF, OPN, Ang-1, Ang-2, IL-6 and
IL-8 (57). Despite this, it still remains unclear how important a
role de novo angiogenesis and increased MVD plays in MM
engrafted in the BM or whether this could simply be an
epiphenomena associated with tumor-mediated changes in BM
architecture. On the other hand, the drug thalidomide has
demonstrated some efficacy against MM and has been linked
to its possible anti-angiogenic properties (58).

HIF and the Adaptive Cellular
Hypoxic Response
The growth of de novo vasculature within a solid tumor typically
does not develop like normal, healthy vasculature, but instead
appears as disorganized, interconnected, leaky tubular structures
(59). A combination of this flawed vascular system, the
unsynchronized growth rates of tumor and endothelial cells,
sluggish blood flow, and high interstitial fluid pressure
contributes to highly variable and heterogeneous hypoxic
environments within the tumor nodules (which includes fluid
geographical regions of “normoxia”, regions of variable pO2, and
areas of anoxia and necrosis). In response to the reduced tumor
pO2 levels, a concomitant upregulation of multiple pro-
angiogenic factors leads to increased tumor de novo
angiogenesis acting as a salvage pathway, and as such, this has
been seen a potential target for anti-tumor therapies attacking
the cellular response to hypoxia.

The master regulator of this cellular hypoxic adaptive
response is mediated, at least in part by HIF. The HIF
transcription factor consists of constitutively expressed b-
subunit (HIFb) and inducible a-subunits (e.g. HIF1, 2, or 3a).
HIF1a and HIF2a are frequently upregulated in MM patients
Frontiers in Oncology | www.frontiersin.org 5
(60). The upstream O2-dependent regulation is mediated, by
prolyl-4-hydroxylase domain protein (PHD1-3) hydroxylation
on proline residues of the a-subunits that target them for
proteasome degradation. PHD activity is suppressed by low
pO2, which increases HIFa stability, allowing for dimerization
to HIFb, and nuclear localization of the transcription factor to
hypoxic response elements (HREs). However, PHDs control
more than just HIF stabilization, with PHD3 emerging as a
presumptive tumor suppressor gene (61) whose expression varies
between different cell types and oxygen concentrations. Shah
et al. (62) and Hatzimicheal et al. (63) reported frequent aberrant
CpG methylation of PHD3 (but not PHD2) in MM clinical
patient samples (42% and 33%, respectively). Furthermore
PHD3 is downregulated in hypoxia-resistant MM cell lines and
restoring its expression rescued O2-dependent regulation of
HIF2a as well as sensitivity to hypoxia-mediated apoptosis
(19). The recognition of HIF as a master regulator of the
hypoxic cellular response has led to multiple and diverse
pharmacological strategies to target this pathway in multiple
cancer types (64), but like many other transcription factors, the
“drugability” of anti-HIF compounds remains a real barrier. HIF
regulates a relatively modest 100-200 genes in response to
hypoxia, which may make identifying more effective HIF-
mediated obligate cellular survival targets more attractive and
feasible. In Table 2, we present a comparison of selected gene
expression from the six most common types of solid cancers
(breast, lung, prostate, colorectal, melanoma and bladder)
compared to MM hematological cancers.

Regulation of HIF Transcriptional
Factors in Cancer
In general, HIFa-subunits are not typically muted in cancer;
however, six HIF1A small nuclear polymorphisms (SNPs) have
been associated with breast, lung, colorectal (CRC), gastric,
prostate, oral cancer, and renal cell carcinoma (RCC) (78).
Upstream of HIF, the PHD3 gene is frequently silenced by
CpG methylation of the PHD3 promoter and downregulation
of PHD3 expression is frequently observed in glioblastoma (79,
80), colorectal cancer (74), soft tissue sarcomas (81) and breast
cancer (71). Perhaps the most significant factor in dysregulation
of HIF signaling in some cancer cells are related to inactivation of
the von Hippel-Lindau (VHL) factor, which is responsible for
recognizing hydroxylated a-subunits and targeting them for
ubiquination and degradation. VHL is often inactivated in
renal cell carcinoma (RCC) (70). Unlike mutations of HIF,
Von Hippel-Lindau (VHL) syndrome is an autosomal-
dominant, multi-organ, familial neoplastic syndrome that
predisposes affected individuals to the development of benign
and malignant tumors, The most common VHL-associated
tumors are hemangioblastomas involving brain, spinal cord,
and retina; RCC; pheochromocytomas and paragangliomas;
and pancreatic neuroendocrine tumors (PNETs) (82). These
“canonical” O2- dependent hypoxia regulatory systems can be
bypassed or disrupted by gain of oncogene function or loss-of-
function mutations in tumor-suppressor genes [i.e. phosphatase
and tensin homolog (PTEN)], or epigenetic silencing of the O2-
July 2021 | Volume 11 | Article 703878
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sensing pathways resulting in constitutive O2-independent
stabilization and expression of the HIFa-subunits which may
support tumor growth and survival (83).
Downstream Targets of HIF
Perhaps the most studied and frequently targeted hypoxia related
target has been VEGF and other related pro-angiogenic growth
factors (as discussed in Table 2). There have been over 80 types
of drugs developed through preclinical studies and phase I-III
clinical trials, with targeting of the VEGF axis, such as the
blockade of VEGF receptors (VEGFRs) or ligands with
neutralizing antibodies, and the inhibition of receptor tyrosine
kinase (RTK) enzymes being the most common therapeutic
strategies [for review see (84)]. Yet despite some initial success,
the clinical efficacy of these treatments has been modest. Thus, it
may be more effective to identify targets against the adaptive
hypoxic response that would be more effective in the clinic.
ACID/BASE REGULATION

While O2 is critical for life, it is also clear that under hypoxic
conditions, tumor cell metabolism must shifts towards anaerobic
glycolysis to keep up with cellular energy demands. This likely
represents an obligate metabolic pathway that can be targeted
against cancer cells. Lactic acid, the metabolic end product of
anaerobic glycolysis, accumulates along with CO2, leading to
acidification of the extracellular environment. In subcutaneous
xenograft model of solid tumors, the average pH inside MM
tumors was ~6.9 compared to pH of 7.4 outside of the tumors (85).
It is the buildup of these acidic byproducts that necessitates
activation of various acid/base regulatory salvage pathways
within the cells, else the enzymes will be inactivated. For
example, carbonic anhydrase IX (CAIX) plays a crucial role in
maintaining intracellular pH within a neutral/alkaline range under
hypoxic conditions (86). It was recently reported that the sera of
patients with relapsed/progressed MM reacted with antibodies to
CAI, II, IX and XII and patients with elevated CA autoantibody
titers had a significant survival benefit over those who did not (87).
Importantly, inhibition of CAIX leads to the inhibition of growth
of primary tumors and metastases and depletes cancer stem cell
populations in a number of preclinical studies and against various
hypoxic tumors (88, 89). We have shown that MM cells treated
with acetazolamide, a CAIX inhibitor, can be sensitized to
hypoxia-mediated cell death (12, 19).

In addition to the CA isozymes, the Na+/H+ exchanger-1
(NHE1) is a ubiquitously expressed acid-extruding membrane
transport protein, and upregulation is commonly correlated with
tumor malignancy (90). Recently, the NHE1 inhibitor, amiloride,
was shown to induce apoptosis in a broad panel of MM cell lines
and in a xenograft model, supporting a role for targeting pH
regulation as an anti-MM therapy (91). We also showed that
targeting CAIX activity with amiloride could potentiate hypoxia-
mediated cell death of MM cell lines in a HIF-dependent manner
(12, 19). Thus, targeting the obligate requirements for MM cells
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to maintain their intracellular pH in a very narrow defined range
may offer attractive new anti-cancer strategies.

Metabolism
MM cells also undergo multiple changes in metabolism reflecting
changes as the progress from MGUS to MM that can reflect
changes in pO2 burdens. Using mass spectrometry, large
differences were found in amino acid, lipid, and energy
metabolism profiles when comparing healthy patients and MM
patients. These differences were found between the profiles of
plasma metabolites of MM and MGUS patients, demonstrating
that metabolic pathways change during disease progression (92).
Consequently, the presence of certain metabolites in the blood
or BM could be used clinically as a way to detect progression
from the MM precursors (MGUS or SMM) to MM as well as
measuring responses to changes in hypoxia. One study examined
the presence of 2-hydroxyglutarate (2-HG) for this purpose. 2-
hydroxyglutarate is an oncometabolite already known to cause
tumorgenesis in other cancers. This study found significantly
higher 2-HG levels in the BM of patients with MM compared
with those of MGUS, and found that in SMM patients, 2-HG
levels were associated with a higher risk of progression to MM
(93). Metabolic changes have also been shown to be associated
with drug resistance. Comparison of metabolic profiles of
melphalan resistant and sensitive cell lines showed a switch to
aerobic glycolysis, in line with the Warburg effect seen in other
cancers (94). In addition, melphalan resistance is associated with
increases in the oxidative stress response and survival and
proliferation signaling (94). Metabolic changes were also
observed in MM cells resistant to proteasome inhibitors
(bortezomib and carfilzomib). Cell lines resistant to these
drugs upregulate proteins involved in metabolic regulation,
redox homeostasis, and protein folding and destruction. Based
on these findings, a potential mechanism for resistance could be
metabolic adaptations that favor the generation of reducing
equivalents such as NADPH (95).
REACTIVE OXYGEN SPECIES AND
METABOLISM

In studies of metabolism, the production of reactive oxygen
species (ROS) paradoxically creates both a threat to and growth
signals for MM cells. ROS are produced as byproducts of
metabolism resulting from oxidative respiration, but other
metabolic processes such as oxidative protein folding also
produce ROS as by-products. These molecules all have
properties that make them highly reactive with other biological
molecules, so the overproduction of ROS is toxic to the MM cell
(96). Reactive oxygen species are produced in large amounts by
cancer cells due to their increased/altered metabolic activity and
oncogene activation (97). This is particularly important in MM,
since healthy plasma cells already have relatively high levels of
ROS production as a result of their role as antibody producing
factories (98). As a result, MM cells produce large amounts of
ROS that need to be dealt with in order to prevent cell death.
Frontiers in Oncology | www.frontiersin.org 7
This is achieved through an oxidative stress response. The
oxidative stress response includes multiple mechanisms to
reduce the amount of ROS in the cell, such as the expression
of antioxidant enzymes, which eliminate ROS. Therefore, the
high rate of ROS production must be countered by an increased
rate of antioxidant production (99).

Paradoxically, ROS also promote tumor growth by acting as
signals for proliferation. For example, the release of H2O2 from
mitochondria activates transcription factor NF-kB, which is
activated by myeloma cells in order to increase proliferation
and survival (100). ROS from the mitochondria may also activate
the PI3K and MAPK pathways, which also promote
tumorgenesis (101). Therefore, ROS can serve both a beneficial
and antagonistic role in MM tumor growth, and cells must
balance their ROS levels to maximize signaling while preventing
toxic effects in a manner analogous to hypoxia.
SUMMARY

The natural growth and development of tumors (either solid
tumors or hematological tumors) influences the tumor
microenvironment as the cancer cells outgrow the available
blood supply and establish areas of low pO2. In order to survive
these potential inimical conditions, it is clear that the tumor cells
must activate hypoxia-mediated salvage pathways, that include
increasing angiogenesis and MVD and switching metabolic
pathways from oxidative-phosphorylation to anaerobic
glycolysis. Because these events are tumor specific and do not
generally occur in normal cells, these cellular hypoxic adaptive
responses offer tantalizing targets for cancer specific treatments.
On the other hand, the hypoxia-mediated activation of salvage
pathways also selects for more resistant tumor cell phenotypes,
enhance the malignancy and metastatic potential these cells, and
contributes to the development of resistance to chemotherapy and
radiation treatment. Furthermore, the redundancy in hypoxia-
sensing pathways and the establishment of a diverse, fluid, and
heterogeneous microenvironment confounds and limits the
effectiveness of any specific therapy targeting one particular
niche at the expense of another. Altogether, this could explain
the overall modest impact of targeting hypoxia and hypoxia-
mediated pathways in cancer.

In solid tumors, the progression of growth in the tumor
nodule results in a well characterized development of decreased
pO2. Because of the critical role of oxygen in cell survival, it
seems attractive to attack the pathways that regulate the cellular
response to low pO2 in vivo. In contrast to solid tumor
development, we believe that hematological malignancies, such
as MM, have similar but unique responses to the innate low pO2
TME that already characterizes the BM. In fact, hypoxia in the
BM may actually be critical events underlying the initial homing
and engraftment of MM tumor cells. We propose that the critical
aspects of MM that are engrafted in the BM is distinct from that
seen in non-hematological-derived solid tumors. Because low
oxygen levels are already part of the normal BM niche, targeting
HIF, for example, may have limited anti-tumor effectiveness in
July 2021 | Volume 11 | Article 703878
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treating MM. This observation is supported by multiple clinical
studies demonstrating that targeting hypoxia or angiogenesis is
only moderately effective. Building on this, we further believe
that there are other obligate cellular responses to low pO2, such
as acid, such hypoxia-mediated acidification of the TME,
oxygen-dependent metabolic changes in MM cells and the
subsequent generation of reactive oxygen species (ROS), that
may prove to be more effective targets against MM.

These pathways seem to be less well-defined (and less
targeted) pathways that tumor cells are obligated to remediate
if they are to survive hypoxic conditions. For example, the
Warburg effect results in the generation of acidic intracellular
milieu that require activation of additional pathways necessary
to maintain the cellular cytoplasm at neutral/basic levels. Thus,
the increased proton transport in highly malignant cells not
only allows them to survive in a hostile environment, but also
facilitates their metastasis to other sites in the BM. Acid secretion
by the cells may also affect the formation of osteolytic bone
lesions through the modulation of osteoclast and osteoblast
activity and that of acid-dependent proteases including
cathepsins, serine proteases, and matrix metalloproteinases
(MMP) secreted by the cells (102). Given the important role
attributed to acidification of the TME and the regulation by HIF of
the hypoxic adaptive response in generation and spread of the
MM tumors, it is logical to target these factors for treatment
of MM.

In summary, we propose that whilst targeting the cellular
response to hypoxia in MM is attractive, we also believe that next
generation anti-MM strategies must move beyond HIF and
VEGF/angiogenesis. Further, we believe that the main focus
should be in identifying those salvage or rescue pathways that
MM tumor cells are obligated to activate in response to hypoxia,
Frontiers in Oncology | www.frontiersin.org 8
such as the build of acidic byproducts are result of metabolic
switching to aerobic glycolytic pathways when the pO2 is low.
These strategies could be developed alone, or in combination
with other HIF/hypoxia targeting modalities in order to
synergize the anti-tumor effects in the clinic.
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