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Urinary bladder cancer (BCa) is a highly prevalent disease among aged males. Precise
diagnosis of tumor phenotypes and recurrence risk is of vital importance in the clinical
management of BCa. Although imaging modalities such as CT and multiparametric MRI
have played an essential role in the noninvasive diagnosis and prognosis of BCa,
radiomics has also shown great potential in the precise diagnosis of BCa and
preoperative prediction of the recurrence risk. Radiomics-empowered image
interpretation can amplify the differences in tumor heterogeneity between different
phenotypes, i.e., high-grade vs. low-grade, early-stage vs. advanced-stage, and
nonmuscle-invasive vs. muscle-invasive. With a multimodal radiomics strategy, the
recurrence risk of BCa can be preoperatively predicted, providing critical information for
the clinical decision making. We thus reviewed the rapid progress in the field of medical
imaging empowered by the radiomics for decoding the phenotype and recurrence risk of
BCa during the past 20 years, summarizing the entire pipeline of the radiomics strategy for
the definition of BCa phenotype and recurrence risk including region of interest definition,
radiomics feature extraction, tumor phenotype prediction and recurrence risk
stratification. We particularly focus on current pitfalls, challenges and opportunities to
promote massive clinical applications of radiomics pipeline in the near future.

Keywords: urinary bladder cancer, multimodal imaging, radiomics, histopathological phenotype, recurrence
INTRODUCTION

Urinary bladder cancer (BCa) is the sixth most common malignancy and the ninth most common
cause of cancer death among males worldwide (1–3). An estimated 573,278 new cases and 212,536
new deaths were reported to occur in 2020 globally (3, 4). BCa is more common in men than in
women, and the incidence increases with age (1, 4, 5). Meanwhile, it has a high recurrence rate (5–7).
Early diagnosis with personalized treatment and follow-up of patients is critical to a
favorable outcome.

BCa usually originates from the epithelium (5, 7). As carcinomas invade the detrusor muscle,
they are categorized as muscle-invasive BCa (MIBC, stage ≥ T2) and more likely to metastasize to
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lymph nodes or other organs (5, 6). Approximately 75% of the
patients at initial diagnosis have nonmuscle-invasive BCa
(NMIBC, stage ≤ T1), and the rest have MIBC (6, 8–10).
Nearly 50% of newly diagnosed NMIBCs are low grade, while
most MIBCs are high grade (7, 11). According to the European
Association of Urology (EAU) guidelines (10, 12), pathological
phenotypes such as grade, stage and muscle-invasive status
(MIS) are important predictors of BCa recurrence, and have
immense implications for treatment decisions and prognosis.
Preoperatively determining the histopathological phenotype and
recurrence risk of BCa is, therefore, of critical importance for
BCa patients.

The clinical first-line reference for the preoperative diagnosis
of the histopathological phenotype of BCa is cystoscopic
resection of a suspicious lesion during a biopsy (6, 8–10, 13,
14). Considering that bladder tumors are heterogeneous, local
biopsy results may not be typical representatives of the entire
tumor mass, and diagnostic errors are inevitable (5, 7, 15–19).
Many studies have shown that 9 to 49% of BCa patients have
their tumor stage misdiagnosed (14, 20–23), which leads to
inappropriate treatment decision and unfavorable prognosis.
Repeated cystoscopic resections are considered a practical way
to reduce the misdiagnostic rate, but are unwanted due to the
invasive, uncomfortable, time-consuming and costly process (21,
24–27). Besides, they may easily cause infection or urethral
bleeding (6, 8–10, 28–30). Developing a noninvasive approach
for the precise prediction of the histopathological phenotype of
BCa and further stratifying its recurrence risk preoperatively is,
Frontiers in Oncology | www.frontiersin.org 2
therefore, crucial for patient treatment and management (16,
31–35).

In current clinical practice, easily accessible and noninvasive
imaging tools such as pelvic CT and multiparametric MRI
(mpMRI) provide immense assistance to clinicians for the
preoperative diagnosis of BCa phenotypes (24, 30, 36–43). CT
is mainly performed for evaluating the upper urinary tract and
predicting lymph node metastasis of BCa (40, 42, 43). When
clinicians identify the MIS, CT has drawbacks due to its limited
soft-tissue contrast (40, 42, 43). In addition, radiation exposure is
another concern (40, 42–44). The mpMRI, including
conventional sequences like T2-weighted imaging (T2WI) and
functional sequences such as diffusion-weighted imaging (DWI)
with corresponding apparent diffusion coefficient (ADC) maps
and dynamic contrast-enhanced imaging (DCE), may well
overcome these drawbacks and enhance the diagnostic
performance (Figure 1) (30, 39, 40, 44).

T2WI has the capability to illustrate the detailed structural
information of the lesion and bladder wall, thus can potentially
reflect the invasion depth of BCa into bladder wall. However, it
may result in overstaging since tumor-associated inflammation
has the same appearance of low signal intensity as that of the
muscularis propria (20, 37, 40, 44). DWI and ADC have the
favorable capability to reflect the signal intensity differences
among muscle, peritumoral inflammation and fibrosis (36, 38,
44–47). The finding of a thickened hypointense submucosa
beneath the NMIBC (inchworm sign or stalk) on DWI is a
milestone for MIS identification and prognosis (13, 30, 41, 48).
A B

FIGURE 1 | Application of CT and mpMRI for the preoperative prediction of the muscle invasion status of BCa. A lesion of a patient confirmed with NMIBC is
discernible on Contrast-enhanced CT (CECT) image (A), but the boundaries and basal part of this lesion is rarely distinguishable. The mpMRI (B) including the T2WI,
DCE, DWI and its corresponding ADC map can provide more important signs and information like the stalk at the tumor base and submucosal linear enhancement
(SLE) for accurate diagnosis of muscle-invasive status (MIS) of BCa (38).
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Submucosal linear enhancement (SLE) at the basal part of the
tumor on DCE images has currently been recognized as another
sign for precisely determining MIS (13, 30, 38, 39, 47), but its
diagnostic performance is controversial (47, 49, 50).

Summarizing all these important clinical findings, Panebianco
et al. proposed a Vesical Imaging-Reporting and Data System
(VI-RADS), which uses tumor morphological signs, stalks
and SLE on mpMRI to obtain a five-point rating score for
the estimation of MIS (30, 39, 40, 51–53). However, it is a
semiquantitative score which also relies most on experienced
radiologists’ visual perception, making it an expert-dependent
tool for BCa diagnosis. In addition, the VI-RADSmodel, together
with the existing noninvasive imaging tools, is still incapable of
predicting BCa recurrence.

During the past 20 years, the field of computer-assisted
medical image analysis has grown dramatically, resulting in
many successful applications in the noninvasively accurate
diagnosis and prognostication of cancers such as breast cancer,
colorectal cancer and lung cancer (54–57). These advances have
prompted the attempt of extracting high-throughput
quantitative image features, namely, radiomics, to characterize
different tissue properties and to accumulate certain strategies for
BCa phenotypes diagnosis and recurrence risk prediction (24, 26,
58–61). However, most of these radiomics strategies only focus
on the tumor region, regardless of the normal wall region and the
basal part of tumor region that may also provide abundant
information for this task (57, 59, 60, 62). Automated and
accurate delineation of regions of interest (ROI) including the
tumor, its basal part and the normal wall region is an essential
step toward radiomics-based bladder cancer diagnosis and
prognosis. With the increasing development of radiomics,
systematic analyses of these multiple regions on noninvasive
bladder images would allow for a better understanding of the
disease and support more personalized treatment approaches.
Therefore, this review aims to extensively discuss CT- and MRI-
based imaging tools and radiomics in decoding BCa phenotypes
and recurrence risk, inspiring methodological progression and
broadening their clinical applications in the near future.
SEARCH CRITERIA

In this study, we systematically retrieved peer-reviewed papers
published from 2000 to 2021 (last query 04-20-2020). If a study
appears in multiple publications, only the latest version was
analyzed. The querying terms we used with the PubMed database
were as:

(((((((((((((((bladder cancer[Title/Abstract]) OR (bladder
tumor[Title/Abstract])) AND (CT[Title/Abstract])) OR (MRI
[Title/Abstract])) OR (multiparametric MRI[Title/Abstract])) OR
(radiomics[Title/Abstract])) OR (biomarker[Title/Abstract])) OR
(exosome[Title/Abstract])) OR (VI-RADS[Title/Abstract]))
OR (radiomics[Title/Abstract])) AND (grade[Title/Abstract]))
OR (grading[Title/Abstract])) OR (stage[Title/Abstract])) OR
(staging[Title/Abstract])) OR (muscle invasive bladder cancer
[Title/Abstract])) OR (recurrence[Title/Abstract]).
Frontiers in Oncology | www.frontiersin.org 3
We excluded the papers according to the following criteria:
i) studies focused on nonhuman subjects; ii) studies intended to
repeatedly validate the previous developed tools or important
findings; iii) studies published in conference proceedings or
paper responses. For each paper enrolled, the publication year,
study aims, patient cohorts, methodologies, findings and
limitations were specifically analyzed to extract the valuable
information we need to outline the main topic of study
progress on noninvasive imaging and radiomics for decoding
the phenotype and recurrence risk of BCa.
OVERALL WORKFLOW

According to previous studies, the overall workflow of
noninvasively decoding the BCa phenotypes and recurrence
risk is illustrated in Figure 2. Currently, the widely used
imaging tools for BCa diagnosis mainly include CT, contrast-
enhanced CT (CECT) and mpMRI (42, 51, 52), from which
important imaging signs, such as tumor intensity distribution
inhomogeneity, stalk, and SLE, can be observed by radiologists
for image interpretation. After that, two radiomics pipelines,
namely Path1 and Path 2 in Figure 2, are widely used to extract
the high-throughput features that well reflect tumor properties
for BCa phenotype prediction and recurrence risk assessment
(59, 60, 62).

Apparent differences between these two pipelines are the
strategies for multiregion ROIs segmentation, including the
tumor region, its basal part and the normal wall region.
Manual segmentation of multiregion ROIs of BCa is the first
choice to many researchers. However, it is a tedious process with
a huge workload. Exploring the automatic segmentation
methods based on specific mathematical theorems (model-
driven methods), such as level sets and Markov random fields
(MRFs), becomes a more practical way. Nevertheless, owing to
the intrinsic mathematical limitations, most of these methods
just focus on the accurate segmentation of inner border (IB) and
outer border (OB) of the bladder, incapable of segmenting the
bladder multiregion on images. Consequently, some people turn
to adopt the data-driven strategies like the modified UNet frame
with convolutional neural network (CNN) module in Path 2 to
deal with this issue.

After image segmentation, feature extraction is the next
important step. Currently, three kinds of radiomics features are
commonly used, including morphological features, intensity-
based features and texture features (59, 63–72). In addition,
other features, such as the invasion depth of the BCa, which
quantitatively measures the relative invasive depth of the tumor
into the bladder wall (73), have also been gradually developed.
Given that redundancy among features might severely affect the
predictive performance, feature selection is indispensable toward
developing an optimal predictive mode. Statistical analyses in
combination with other high-level selection strategies, such as
support vector machine (SVM)-based recursive feature
elimination (SVM-RFE), least absolute shrinkage and selection
operator (LASSO), max-relevance and min-redundancy
July 2021 | Volume 11 | Article 704039
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(mRMR), are widely used (26, 61, 74, 75). With the features
selected, many machine learning classifiers, such as SVM,
random forest (RF), and logistic regression, can be used for
prediction model development (24, 58, 74–76). These steps in
Paths 1 and 2 constitute the traditional radiomics pipelines for
noninvasive prediction of BCa phenotype and recurrence risk.

Considering the rapid development of deep learning (DL)
methods in disease definition and identification, we also illustrate
new radiomics pipeline in Path 3 for this task. It includes two
main steps, including i) a segmentation step that automatically
segments multiregion ROIs of BCa from the original images by
using a specific CNN module and ii) a diagnostic step that
calculates deep features from these multiregion ROIs to develop
a classifier for diagnosis by using another CNN module. Owing
to the “black box” nature and complex procedures used in model
building, this pipeline has yet to be comprehensively
investigated. With the advent of explainable artificial
intelligence (AI), we believe that Path 3 will receive much
more attention and investigation in the future.
MULTIREGION ROIS EXTRACTION

According to previous studies (77–82), the bladder wall and
tumor regions contain plenty of information for BCa diagnosis
and prognosis. A recent study (74) indicated that the basal part of
bladder tumors on MRI has potential in determining MIS
(Figure 3). Therefore, accurate delineation of the multiregion
ROIs on bladder images other than using manual annotation is
an essential step toward radiomics-based BCa diagnosis (83, 84).

Precise segmentation of bladder images is full of challenges,
including partial volume effects, which usually occur where
Frontiers in Oncology | www.frontiersin.org 4
multiple tissues contribute to a single pixel in the image and
cause blurry tissue boundaries, bladder shape variation, motion
artifacts in the urine region and bladder wall, and complicated
outer wall intensity distributions (83, 84). When further
considering the precise segmentation of tumors in the bladder
lumen, the problem becomes even more complicated (83). To
address these challenges, many algorithms have been proposed
since 2004 (83, 85, 86), as shown in Table 1. Li et al. (85, 86) first
adopted the Markov random field to extract the IB of the bladder
and to reduce the partial volume effects. Garnier et al. (87)
adopted an active region growing strategy in a deformable model
to realize the segmentation of both the IB and the OB. However,
its performance for OB segmentation is far from satisfactory due
to the complex tissue distribution surrounding the bladder (83).

Almost at the same time, level-set-based methods were
introduced to extract both the IB and OB (77, 79, 80, 88, 89,
93). Duan et al. (80, 93) first proposed a coupled level-set
framework with the modified Chan–Vese model to locate IB
and OB from T1-weighted imaging (T1WI) in a 2-dimensional
(2D) slice fashion. Based on the merits of this method for IB
segmentation, Duan et al. (78, 79) further proposed an adaptive
window-setting scheme with volume-based features to extract
tumors on IB. Shortly afterward, Ma et al. (88) introduced the
geodesic active contour (GAC) scheme into the Chan-Vese
model to realize the shape-guided deformation of both IB and
OB on the T2WI. A limitation of this approach is the intensity
bias induced by the tumors inside the bladder lumen that easily
leads to the leakage of IB segmentation. To overcome this
limitation, Qin et al. (77) proposed an adaptive shape prior
constrained level-set algorithm that evolves both IB and OB
simultaneously from T2WI, greatly improving the accuracy for
IB and OB segmentation. However, level-set-based methods are
FIGURE 2 | Overall workflow of the radiomics strategy for decoding BCa phenotype and recurrence risk.
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TABLE 1 | Related studies and methodology of CT-/MRI-based bladder image segmentation during the past 20 years.

Study Imaging Approach or strategy Region
focused

Performance and Merits

Li et al.,
2004 (86)

Multispectral
MRI

Partial volume (PV) scheme IB More information extracted from the multispectral images, and feasible for the
IB.

Li et al.,
2008 (85)

Multispectral
MRI

Markov random field (MRF) IB Realizing the inhomogeneity correction and overcoming the influence of partial
volume and bias field.

Duan et al.,
2010 (80)

T1WI Coupled level-sets *IB/OB Realizing the simultaneous extraction of both IB and OB of the bladder.

Garnier et al.,
2011 (87)

T2WI 3D deformable model based on active
region growing strategy

IB/OB Achieving good performance for the IB segmentation when tumors were not
existed in the bladder lumen.

Duan et al.,
2011 (78)

T1WI Coupled level-sets + volume-based features Tumor Realizing the automatic detection of BCa.

Duan et al.,
2012 (79)

T1WI Coupled level-sets + volume-based features
+ Adaptive window-setting scheme

Tumor Realizing the automatic detection and extraction of BCa.

Ma et al.,
2011 (88)

T2WI Geodesic active contour (GAC) + shape-
guided Chan-Vese

IB/OB Achieving good segmentation performance for both bladder borders without
tumor regions using two datasets with 2D images.

Han et al.,
2013 (89)

T1WI Adaptive MRF with coupled level-set
constraints

IB/OB Fast convergence, robustness to initial estimates, and robustness against noise
contaminations, as well as local shape variations of the bladder wall.

Qin et al.,
2014 (77)

T2WI Coupled directional level-sets with adaptive
shape prior constraints

IB/OB With the average DSC of 0.96 and 0.946, respectively, for the IB and OB
segmentation using 11 datasets.

Cha et al.,
2014 (90)

#CECT Conjoint level set analysis and segmentation
system (CLASS)

IB/OB With the average DSC of 0.842 for the IB segmentation using 182 datasets.

Dolz et al.,
2018 (83)

T2WI Progressive dilated convolution-based
U-NET model

IB/OB/
Tumor

With the average DSC of 0.9836, 0.8391 and 0.6856, respectively, for the IB,
OB and tumor region segmentation using 60 datasets.

Gordon
et al., 2018
(91)

CECT Deep-learning convolutional neural network
(DL-CNN)

IB/OB With the average DSC of 0.9869 and 0.875, respectively, for the IB and OB
segmentation using 172 datasets.

Ma et al.,
2019 (92)

CECT U-Net–based deep learning approach
(U-DL)

IB With the average DSC of 0.934 for the IB segmentation using 173 datasets.
Frontiers in On
cology | www.
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*IB and OB represent the inner and outer borders of bladder, respectively.
#CECT indicates contrast-enhanced CT.
FIGURE 3 | Structure diagram of the multiregion of bladder on the noninvasive image.
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modality-dependent and cannot be freely applied among
different sequences or modalities. In addition, none of these
methods can realize the simultaneous location and evolution of
IB, OB and tumor regions.

Recently, CNN-based DL strategies have emerged as powerful
tools for the semantic segmentation of bladder lumen CT images
(90–92). During 2018, our group (83) proposed a modified UNet
framework with a progressive dilated CNN module, realizing the
simultaneous segmentation of IB, OB and BCa on T2WI for the
first time. The average Dice’s coefficient (DSC) of IB and OB
were 0.9836 and 0.8391, respectively, but that of the tumor
region was only 0.6856 (83).

Considering that different imaging sequences could provide
complementary information for BCa diagnosis, how to realize
the simultaneous segmentation of the multiple target regions on
mpMRI bladder images becomes the ultimate goal in the
workflow (Figure 1). To this end, we design an automatic
bladder multiregion segmentation framework in Figure 4,
which is based on the Mask-R-CNN (94) and mpMRI fusion
strategy (95) with multiple labels to realize multiregion
segmentation of mpMRI bladder images.
RADIOMICS-EMPOWERED DIAGNOSIS
OF BCa PHENOTYPE

BCa Grading
The histological grade of BCa is a critical factor for the treatment
decisions and prognosis (96). Cystoscopic resection and biopsy
remains standard reference for BCa grading (76), but may easily
cause diagnostic error due to the heterogeniety of tumor
tissues (76).

With the development of noninvasive imaging, the
imaging signs that reflect the BCa grade have been successively
Frontiers in Oncology | www.frontiersin.org 6
unearthed (96–102). For example, the peak time enhancement in
the first minute (Emax/1) after contrast administration and the
steepest slope of the DCE were first reported to be closely related
to tumor angiogenesis (97). ADC values, including the mean
ADC value and the normalized ADC value derived from DWI,
have been demonstrated to be useful for BCa grading (98–103).
In particular, Rosenkrantz et al. (37) adopted the quantitative
metrics extracted from the tumor region on T2WI and DWI,
including the tumor diameter, normalized T2 signal intensity
and mean ADC value, for the assessment of tumor grade, as
shown in Table 2. Although statistical analysis indicated that
only the mean ADC value was a significant predictor, an area
under the curve (AUC) of 0.804 was achieved for BCa grading
(37), which could be recognized as the embryonic form of the
mpMRI radiomics concept for BCa diagnosis.

In 2017, our group proposed a radiomics framework and
investigated its feasibility for BCa grading (25). We adopted 102
radiomics features involving the histogram features and gray-
level co-occurrence matrix-based (GLCM) features from the
DWI and ADC maps to quantitatively describe the tumor
properties. Then, the Mann–Whitney U-test and SVM-RFE
were adopted for feature selection and diagnostic model
development. The results based on 61 patients showed that the
diagnostic model achieved a favorable performance for BCa
grading, with an AUC of 0.861, which was significantly better
than that of using the mean ADC values alone. Afterward, Wang
et al. (76) investigated the performance of using the radiomics
strategy with T2WI, DWI and ADC maps for BCa grading,
achieving a more favorable diagnostic performance with an AUC
of 0.9276 (76).

In addition, several studies have attempted to extract texture
features from the tumor region on CT images for BCa grading.
First-order texture features, such as the mean, standard deviation
(SD), entropy, mean of positive pixels (MPP), skewness and
kurtosis, and second-order features, such as GLCM features and
FIGURE 4 | Future framework of simultaneous segmentation of the multi-target regions from the bladder mpMRI. The Gt_class_id, Gt_boxes, and Gt_masks
represent the ground truth of the multiregion anatation, position of the regions to be detected and focused, and segmentation mask (94).
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TABLE 2 | Related studies and strategies of CT-/MRI-based BCa grading during the past 20 years.

Study Patient Imaging Target Approach or strategy Results and findings

Tuncbilek
et al., 2009
(97)

24
patients
from
single
center

DCE Tumor Extracting peak time
enhancement in the first (Emax/1), second (Emax/2), third
(Emax/3), fourth (Emax/4) and fifth (Emax/5) minute after
contrast administration, and the steepest slope for
statistical analysis with tumor grade.

Emax/1and steepest slope had statistically significant
correlation with tumor grade.

Avcu et al.,
2011 (98)

63
patients
from
single
center

DWI Tumor Mean ADC values were measured from the tumor
mass.

The mean ADC value were significantly different between the
high- and low-grade BCa.

Rosenkrantz
et al., 2013
(37)

37
patients
from
double
centers

T2WI,
DWI

Tumor Tumor diameter, normalized T2 signal intensity and
mean ADC value were extracted.

Mean ADC value was statistically significant between the
high- and low-grade BCa, with an AUC of 0.804 for the
classification of this two groups.

Kobayashi
et al., 2014
(104)

132
patients
from
single
center

DWI Tumor Mean ADC value was calculated. Mean ADC value was significantly lower in tumors with
higher Ki-67 Lis and higher grade.

Sevcenco
et al., 2014
(105)

43
patients
from
single
center

DWI Tumor Mean ADC value was obtained. Mean ADC value achieved favorable performance in
predicting tumor grade, with an AUC of 0.906.

Sevcenco
et al., 2014
(106)

41
patients
from
single
center

DWI Tumor Mean ADC value, p53 and p21 were obtained. Mean ADC value and p21 were the independent predictors
for BCa grade, with an AUC of 0.981.

Wang et al.,
2014 (102)

30
patients
from
single
center

DWI Tumor and
referenced
regions like
urine

Mean ADC value and normalized ADC (nADC) values
were calculated.

The performance of using the nADC with urine as reference
was the best, with the AUC of 0.995.

Zhang et al.,
2017 (107)

128
patients
from
single
center

*CECT Tumor Six texture features, including mean, SD, entropy,
mean of positive pixels (MPP), skewness and kurtosis,
were extracted.

Mean, entropy and MPP were significantly different between
the high-grade BCa and low-grade on both unenhanced
and enhanced images. MPP obtained from unenhanced
images achieved the best performacne, with the AUC of
0.779.

Mammen
et al., 2017
(108)

48
patients
from
single
center

CT Tumor Texture features including Kurtosis, skewness and
entropy, were extracted.

Only entropy showed significant inter-group differences, and
it achieved an AUC of 0.83 in differentiation of low- and
high-grade BCa.

Zhang et al.,
2017 (25)

61
patients
form
single
center

DWI
ADC
maps

Tumor 102 radiomics features, including the histogram and
GLCM features

The model developed could achieve favorable performance
for BCa grading, with the AUC of 0.861, significantly better
than that of using the ADC value alone.

Wang et al.,
2019 (76)

100
patients
from
single
center

T2WI,
DWI and
ADC
maps

Tumor 924 features were extracted, including morphological
features and six categories of texture features like
histogram features, GLCM features, *GLRLM features,
*GLSZM features, *NGTDM features, and *GLDM
features.

The multi-modal MRI-based radiomics approach has the
potential in preoperative grading of BCa, with the AUC of
0.9276.

Wang et al.,
2020 (15)

58
patients
from
single
center

T2*-
weighted
imaging
and DWI

Tumor Apparent transverse relaxation rate R2* and mean ADC
value were calculated.

R2* and mean ADC value were significantly different
between low- and high-grade BCa, with the AUC of 0.714
and 0.779 in the classification process, respectively.

Zhang et al.,
2020 (109)

145
patients

CT Tumor 1316 radiomics features, involving
the morphological features, histogram features, GLCM

The proposed radiomics model achieved a good
performance, with AUC of 0.85 using the testing cohort.

(Continued)
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gray-level run-length matrix (GLRLM) features, are commonly
used and achieved the highest AUC of 0.83 (107–109).

MIS Prediction and Staging
Accurately predicting the stage and MIS of BCa is also crucial in
making treatment decisions (37, 47, 105, 106). Pathological
examination of transurethral resection of bladder tumor
(TURBT) specimens is the first-line reference for preoperative
BCa staging (38, 44, 47, 49, 51, 110). However, it may cause
diagnostic errors such as understaging, misleading clinicians in
making decisions (38, 44, 47, 51, 110, 111). A previous study
reported that the error rate for preoperative BCa staging varies
from 20 to 80% (20).

In current clinical practice, noninvasive imaging tools such as
CT and MRI are also widely used for BCa staging and MIS
prediction (15, 49, 51, 52, 112). However, the precision and
robustness of using these imaging tools are unsatisfactory due to
the challenges of discriminating between submucosal invasion and
muscle invasion and between muscle invasion and perivesical fat
proliferation by visual perception (15, 47, 50, 51, 112).

During 2000, Hayashi et al. (49) observed that the image sign
of SLE often appears on NMIBC patients’ DCE images (50). This
finding is undoubtedly a milestone in imaging-based diagnosis of
BCa stage and MIS. Afterward, Takeuchi et al. (44, 50) reported
another important sign named the submucosal stalk or
“inchworm” sign found among most NMIBCs on DWI,
fortifying the precision and robustness of imaging-based
diagnosis of BCa stage and MIS (49). Then, many studies
found that the ADC values derived from high-stage (≥ T2)
bladder tumors on DWI were significantly lower than those
from low-stage (≤ T1) bladder tumors and thus could be used for
the quantitative diagnosis of BCa stage and MIS with AUCs
roughly between 0.65 and 0.96 (37, 38, 47, 49, 52, 104, 105, 110),
as shown in Table 3.

By integrating all of these imaging signs, Panebianco et al.
(114) proposed VI-RADS to quantify these signs on mpMRI and
further standardize the image-based diagnostic procedures for
MIS prediction (44, 45, 114). The performance was then
evaluated by three groups, with the AUC varying between
0.873 and 0.94 (39, 40, 51, 111). Although VI-RADS has
integrated all of the existing imaging signs, such as tumor
intensity inhomogeneity, stalk and SLE, into the scoring
system for MIS prediction, it is still a semiqualitative and
expert-dependent process. Radiomics models based on high-
throughput quantitative image features to implement automatic
prediction of tumor phenotypes are considered a more
practical method.
Frontiers in Oncology | www.frontiersin.org 8
In fact, before VI-RADS was proposed, we reported the
first radiomics strategy for the MIS prediction of BCa (24).
This strategy utilized 63 radiomics features, including the
histogram-based features and GLCM features extracted from
the original T2WI and its high-order derivative maps for tumor
characterization, achieving an AUC of 0.861 in MIS prediction
(24). Shortly afterward, we extracted the GLCM and GLRLM
features from the T2WI, DWI and ADC images and achieved a
great performance improvement in MIS prediction, with an
AUC of 0.9756 (26). Then, Zhang et al. (30) creatively
included both the tumor region and the basal part with a
radiomics nomogram that was proposed by Wu (29, 113),
indicating that the basal part of bladder tumors is also critical
for BCa MIS prediction.

All of these radiomics-based studies were based on single-
center data. In 2020, we collected a double-centered mpMRI
database involving 106 eligible patients, and adopted five
categories of texture features and clinical factors to develop a
new nomogram model for MIS prediction, achieving AUCs of
0.924 and 0.877 in both the training and validation cohorts,
respectively (115).
RADIOMICS-EMPOWERED
STRATIFICATION OF BCa
RECURRENCE RISK

A high recurrence rate is a distinguishing epidemiological
property of BCa. The recurrence rate of NMIBC patients who
underwent TURBT at one year was as high as 70% (8, 10, 112).
However, as many as 50% of MIBC patients who undergo radical
cystectomy (RC) with bilateral lymph node dissection and ileal
conduits develop local or metastatic recurrence during the next
24 months (61, 116, 117). Preoperatively predicting the
recurrence risk of BCa patients is pivotal for facilitating
appropriate adjuvant treatment strategies and the management
of patients.

At present, the EAU has provided guidelines to stratify BCa
patients into different groups to recommend more specific
adjuvant therapy (8, 10, 15, 29, 112), as shown in Figure 5.
The guidelines categorize NMIBC patients into low-,
intermediate- and high-risk groups of recurrence using the
European Organization for the Research and Treatment of
Cancer (EORTC) risk table and recommend TURBT +
intravesical chemotherapy (IVC), TURBT + one-year Bacillus
Calmette-Guérin (BCG), and RC. Nevertheless, this risk table
merely considers six predominant clinical and histopathological
TABLE 2 | Continued

Study Patient Imaging Target Approach or strategy Results and findings

from
single
center

features, GLRLM features, GLSZM features, GLDM
features, were calculated.
*CECT indicates the contrast enhanced CT.
*GLRLM indicates the gray-level run length matrix; GLSZM indicates the gray-level size zone matrix; NGTDM indicates the neighborhood gray tone difference matrix; GLDM indicates the
gray-level dependence matrix.
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TABLE 3 | Related studies and strategies of CT-/MRI-based BCa staging and MIS prediction during the past 20 years.

Study Patient Imaging Target Approach or strategy Results and findings

Hayashi
et al., 2000
(49)

71
patients
from
single
center

DCE Tumor Submucosal linear enhancement (SLE) SLE achieved an accuracy of 83% for BCa
staging, and 87% for MIS prediction,
respectively.

Takeuchi
et al., 2009
(41)

40
patients
with 52
bladder
tumors
from
single
center

T2WI,
DWI,
DCE

Tumor Submucosal stalk The overall accuracy of T stage diagnosis was
67% for T2WI alone, 88% for T2WI+ DWI, 79%
for T2WI+DCE, and 92% for all three image types
together.

Rosenkrantz
et al., 2013
(37)

37
patients
from
double
centers

T2WI,
DWI

Tumor Tumor diameter, normalized T2 signal intensity and mean ADC
value were extracted.

High-stage (≥ T2) tumors showed greater tumor
diameter and lower mean ADC value than the
low-stage (≤ T1) tumors. The AUC for MIS
prediction was 0.804 by jointly using the tumor
diameter and mean ADC value.

Kobayashi
et al., 2014
(104)

132
patients
from
single
center

DWI Tumor Mean ADC value was calculated. Mean ADC value was significantly lower with
higher T stage bladder tumors.

Sevcenco
et al., 2014
(105)

43
patients
from
single
center

DWI Tumor Mean ADC value was obtained. Mean ADC value achieved good performance in
predicting MIS, with an AUC of 0.884.

Wang et al.,
2016 (38)

59
patients
from
single
center

T2WI,
DWI,
DCE

Tumor SLE, submucosal stalk The staging accuracy of DWI was 91.3%. When
combining with DCE, the accuracy was improved
to 94.6%.

Xu et al.,
2017 (24)

68
patients
from a
single
center

T2WI Tumor *A total of 63 three-dimensional radiomics features, including
the histogram-based features and GLCM features, were
extracted from the original images and their high-order
derivative maps in association with the Student’s t-test and
SVM-RFE for feature selection and SVM classifier for the
diagnostic model development.

13 features were finally selected, with an optimal
AUC of 0.8610 for MIS diagnosis, which for the
first time introduced the radiomics strategy into
the preoperative MIS identification and
demonstrated its feasibility.

Wu et al.,
2017 (113)

118
patients
from
single
center

CT Tumor # A radiomics signature was determined by the optimal
features selected from the original 150 radiomics features uing
the LASSO approach. In combination with the clinical factors, a
radiomics nomogram was then developed.

The radiomics nomogram showed good
discrimination in training and validation cohorts
for the prediction of lymph node metastasis, with
the AUC of 0.9262 and 0.8986, respectively.

Panebianco
et al., 2018
(114)

/ T2WI,
DWI,
ADC,
DCE

Tumor and
submucosal
layer

Quantitatively scoring the imaging signs like tumor shape, stalk
and SLE on the multiparametric MRI.

The Vesical Imaging-Reporting and Data System
(VI-RADS) could be a standard and useful tool to
half quantify these imaging signs on the
multiparametric MRI for BCa staging and MIS
diagnosis.

Wu et al.,
2018 (29)

103
patients
from
single
center

T2WI Tumor A radiomics signature was determined by nine optimal features
selected from the original 718 radiomics features uing the
LASSO approach. In combination with the clinical factors, a
radiomics nomogram was then developed.

The radiomics signature achieved the AUC of
0.8447 for the prediction of lymph node
metastasis. And the nomogram consisted of the
radiomics signature with the clinical factors
achieved more favorable performance, with the
AUC improved to 0.8902 in the validation cohort.

Xu
et al.,2019
(26)

54
patients
from
single
center

T2WI,
DWI,
ADC

Tumor Radiomics features like histogram-based, GLCM and GLRLM
features were extracted from the multimodal MRI data with the
multi-grayscale normalization strategy.

The optimal 19 features derived from the three
modalities finally achieved the best performance,
with the AUC of 0.9756 for MIS diagnosis,
indicating the great capacity of the multimodal
MRI-based radiomics strategy for the
preoperative MIS identification.

Zheng et al.,
2019 (30)

199
patients

T2WI Tumor and
basal part

2602 radiomics features were extracted from both the
tumorous region and basal part of the images. A radiomics

The radiomics signature showed good
performance in MIS prediction. Integrating with

(Continued)
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factors, including the number of tumors, tumor size, prior
recurrence rate, T stage, grade, and presence of concurrent
tumors in situ (Tis), to achieve a quantitative prediction of the
recurrence risk (10, 29).
Frontiers in Oncology | www.frontiersin.org 10
Then, the Club Urológico Español de Tratamiento
Oncológico (CUETO) developed a new risk table to predict the
short- and long-term recurrence risks for NMIBC patients with
postoperative BCG treatment (15). Many studies subsequently
TABLE 3 | Continued

Study Patient Imaging Target Approach or strategy Results and findings

from
single
center

signature was determined uing the LASSO approach. In
combination with the clinical factors, a radiomics nomogram
was then developed.

the clinical factor, nomogram achieved much
better diagnostic power, with the AUC improved
to 0.876 in the validation cohort.

Barchetti
et al., 2019
(51)

78
patients
from
single
center

T2WI,
DWI,
ADC,
DCE

Tumor and
submucosal
layer

VI-RADS The VI-RADS achieved favorable performance for
MIS diagnosis, with the AUC of 0.926 and 0.873
when conducted by reader 1 and 2, respectively.

Ueno et al.,
2019 (39)

74
patients
from
single
center

T2WI,
DWI,
ADC,
DCE

Tumor and
submucosal
layer

VI-RADS The VI-RADS achieved favorable performance for
MIS diagnosis, with pooled AUC of 0.90 when
conducted by five readers.

Wang et al.,
2019 (40)

340
patients
from
single
center

T2WI,
DWI,
ADC,
DCE

Tumor and
submucosal
layer

VI-RADS The VI-RADS achieved excellent performance for
MIS diagnosis, with the AUC of 0.94 when
conducted by two readers in consensus.

Wang et al.,
2020 (115)

106
patients
from
double
centers

T2WI,
DWI,
ADC

Tumor 1404 radiomics features were extracted. A radiomics signature
was generated using the SVM-RFE and logistic regression. A
nomogram was then developed using the signature and MRI-
determined tumor stalk.

The signature alone achieved a good
performance in MIS prediction. The nomogram
integrating with the signature and tumor stalk
achieved much better diagnostic performance,
with the AUC improved to 0.877 in the validation
cohort.
*SVM-RFE indicates the support vector-machine-based recursive feature elimination algorithm.
#LASSO indicates the least absolute shrinkage and selection operator algorithm for feature selection.
FIGURE 5 | Treatment recommendations for BCa patients based on the MIS, grade and recurrence risk stratification.
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reported that the precision of the EORTC and CUETO risk tables
was far less than satisfactory in the recurrence risk stratification
of NMIBC, with Harrell’s C-index ranging between 0.51 and 0.77
(8, 10, 35, 48, 118–122), as shown in Table 4. Other studies also
reported that tumor sites in the bladder neck and/or trigone,
grade and stage are independent risk factors for the prediction of
BCa recurrence (48, 117, 123). In 2019, Yajima et al. (48) found
that the tumor stalk (inchworm sign) on DWI is a significant sign
for BCa prognosis.

Considering that the high-throughput radiomics features of
the underlying tumor region have the potential to reflect tumor
heterogeneity and the microenvironment, which are closely
related to tumor recurrence, making full use of these features
may achieve a more accurate prediction of the risk of
BCa recurrence.

With this assumption, our group retrospectively collected the
preoperative T2WI, DWI, ADC and DCE images of 71 patients
who were confirmed with NMIBC or MIBC, treated with
TURBT or RC accordingly, and followed for 2 years (61).
Then, 1872 radiomics features were extracted from the tumor
regions of their preoperative mpMRI, including histogram
features, GLCM features, GLRLM features, neighborhood gray-
tone difference matrix (NGTDM) features and gray-level size
zone matrix (GLSZM) features. After that, these features in
combination with important clinical risk factors, such as age,
sex, grade, MIS, stalk, SLE, tumor size, number of lesions and
surgery choice (TURBT or RC), were used for radiomics-clinical
nomogram development. The performance of the nomogram
model obtained AUCs of 0.915 and 0.838 for the training and
validation cohorts, respectively. These results suggest that the
radiomics strategy has excellent potential in the preoperative
prediction of BCa recurrence.
DISCUSSION AND FUTURE
PERSPECTIVES

Urinary bladder cancer is a highly prevalent disease among aged
males (1–3). Accurate diagnosis of tumor phenotypes and
recurrence risk serves as the “bedrock” of appropriate clinical
therapeutic strategy and is of vital importance in the follow-up
management of BCa patients. The standard reference for
preoperatively diagnosing BCa phenotypes is cystoscopic
biopsy, which is an invasive procedure that carries certain risks
of bladder perforation (30). More importantly, a significant risk
of misdiagnosis such as understaging or overstaging, may occur
that induces incorrect estimation of the recurrence risk based on
EORTC, and delays the proper radical treatment (8, 10, 13, 30).

In recent years, reading preoperative radiographic images
produced by CT, CECT, PET, mpMRI, or US plays an
essential role in the noninvasive diagnosis and recurrence
prediction of BCa, in which radiomics strategies have also
demonstrated their great power of identifying complex
patterns precisely, effectively and stably (124). Integrating
radiomics strategies with noninvasive imaging in the clinical
setting is expected to provide more valuable supplementary
Frontiers in Oncology | www.frontiersin.org 11
information to the urologist for BCa diagnosis and
prognosis, preoperatively.

However, the clinical application of noninvasive imaging-
based radiomics strategies for preoperatively decoding BCa
phenotypes and recurrence risk is still in its infancy. In this
study, we reviewed the rapid progress in the field during the past
20 years, summarizing the entire pipeline of the radiomics
strategy including region of interest definition, radiomics
feature extraction, tumor phenotype prediction and recurrence
risk stratification, sincerely hoping to further promote massive
clinical applications of noninvasive radiomics tools for the
preoperative BCa diagnosis and prognosis in the near future.

In this section, we particularly focused on the current pitfalls,
challenges and opportunities of this field.
Public Imaging Datasets for BCa
Data collection is the first step to adopt radiomics strategies for
the BCa phenotype and recurrence risk prediction. At present,
there are several public databases for BCa research, including the
National Cancer Database (NCDB), the National Cancer
Institute’s Surveillance, Epidemiology, and End Results cancer
database (SEER) (125), and The Cancer Imaging Archive
database (TCIA). Although the first two databases contain
nearly 100 thousand BCa patients, most of them only contain
the clinical diagnoses, treatments and end results, without the
imaging datasets attached. TCIA aims to deidentify and host a
large archive of medical images of cancer accessible for public
research. However, it contains only 139 BCa patients’ medical
images. Therefore, the current public datasets are very limited for
developing a radiomics model with sufficient training and testing
for the prediction task.
Simultaneous Segmentation of Multiple
Regions From Multimodal Bladder Images
Precise segmentation of multiple regions of the bladder on
images, including tumor regions, basal parts, and bladder wall
regions, is a critical step toward further extracting features for
tumor phenotype prediction. Several previous studies adopted a
two-step strategy to first segment the mixed region between IB
and OB from the original image and then separate the tumor
lesion from its adherent wall region (78, 79, 81). This strategy not
only reduces the segmentation precision but also increases the
complexity and time consumption.

So far, only one study implemented the simultaneous
segmentation of the IB, OB and tumor regions from the
bladder images (83), but its performance for tumor
segmentation was unsatisfactory. As indicated in Figure 4, it is
expected that the end-to-end framework based on the DL
networks could facilitate better segmentation performance
(126–129). In particular, with more domain priors, such as the
bladder wall thickness distribution, shape variation and attention
mechanism of the integrated target region (13, 30, 39, 53), more
precise and robust DL-based models could be established to
improve the accuracy and efficiency of multiregional bladder
segmentation from multimodal images, such as mpMRI.
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TABLE 4 | Related studies and strategies of BCa recurrence risk prediction during the past 20 years.

Study Patient Treatment Follow-
up/years

Predictionmodel Findings Conclusion

Sylvester
et al.,
2006 (118)

2596
NMIBC
patients
from 7
EORTC
trials

TURBT + Intravesical
treatment (78.4% of
the patients)

Median
follow-up
of 3.9
years and
maximum
follow-up
of 14.8
years

Univariate and
multivariate analyses

The EORTC risk table was derived
based on the number and size of
tumors, prior recurrence rate, T
category, carcinoma in situ, and
grade.

EORTC risk table is a useful tool for
the urologist to discuss the different
options with the patient to determine
the most appropriate treatment and
frequency of follow-up.

Fernandez
et al.,
2009 (8)

1062
NMIBC
patients
from 4
CUETO
trials

TURBT + BCG with 12
instillations

5 years Univariate and
multivariate analyses

The CUETO risk table was
developed using gender, age, grade,
tumor status, multiplicity and
associated Tis.

The recurrence risks calculated by
the CUETO table were lower than
those obtained with EROTC table.

Seo et al.,
2010 (122)

251
patients
from
single
center

TURBT + full-doze
maintenance BCG

5 years
and 9
months

EORTC C-index: 0.62 The recurrence rate and progression
rate were almost similar to the
EORTC risk tables. However, the
recurrence rate was low in the
intermediate-risk group.

Xylinas
et al.,
2013 (120)

4784
patients
from 8
centers

TURBT +51% cohort
of immediate single
postoperative
chemotherapy + 11%
cohort of BCG

4 years
and 9
months

EORTC, CUETO C-index: 0.60, 0.52 Both models exhibited poor
discrimination. Specific biomarkers
should be exploited for improving the
performance.

Xu et al.,
2013 (48)

363
NMIBC
patients
from
single
center

TURBT +79% cohort
of immediate single
postoperative
chemotherapy + 100%
cohort of the entire
course of intravesical
chemotherapy

3 years EORTC, CUETO C-Index: 0.71, 0.66 The EORTC model showed more
value in predicting recurrence and
progression in patients with NMIBC.

Kohjimoto
et al.,
2014 (121)

366
NMIBC
patients
from
single
center

TURBT + BCG 5 years EORTC, CUETO C-index: 0.51, 0.58 Although both exhibited poorly for
recurrence prediction, CUETO was a
little better.

Vedder
et al.,
2014 (35)

1892
NMIBC
patients
from 18
centers

TURBT +13~22%
cohort of the entire
course of intravesical
chemotherapy
+17~30% cohort of
BCG + 0.55~0.61%
cohort of Re-TURBT

10 years EORTC, CUETO C-index: 0.56-0.59,
0.64-0.72

The discriminatory ability for BCa
recurrence was unsatisfactory.

Cambier
et al.,
2016 (10)

1812
NMIBC
patients
from 2
EORTC
trials

TURBT + 1~3 years of
maintenance BCG

7 years 5
months

Updated EORTC C-index: 0.59. NMIBC patients treated with1~3
years of maintenance BCG had a
heterogeneous prognosis among the
high-risk patients, and early
cystoscopy should be considered.

Dalkilic
et al.,
2018 (119)

400
NMIBC
patients
from
single
center

TURBT + BCG (45.3%
of the patients)

5 years EORTC, CUETO C-index: 0.777, 0.703 EORTC risk table was better than
the CUETO table for the recurrence
prediction.

Kim et al.,
2019 (35)

970
NMIBC
patients
from
single
center

TURBT + BCG 5 years New model, EORTC AUC: 0.65, 0.56 The new model developed by using
gross hamartia, previous or
concomitant upper urinary tract
urothelial carcinoma, stage, grade,
number of tumors, intravesical
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Quantitative Invasion Depth Definition
for BCa Staging
Almost all of the previous studies were focused on the tumor
region for feature extraction (24, 107, 109, 130, 131). Currently,
only one study considered both the tumor region and the basal
part for radiomics feature calculation and it reported the
superiority of this new strategy for staging and MIS prediction
(74). Considering that the bladder wall region also contains
useful information such as bladder wall thickness (BWT) for
BCa detection and diagnosis (81, 132), more features are
expected to be designed for BCa staging and MIS prediction.
For instance, using the tumor location and BWT distributed on
the wall region, the invasive depth of BCa (Din) might be defined
by the entropy of minimum BWT (BWTmin) of the cancerous
region and the average BWT (BWTaver) other than the cancerous
region, as shown in Figure 6.

Fully Using VI-RADS for BCa
Phenotype Prediction and
Recurrence Risk Stratification
During the past 20 years, mpMRI is increasingly introduced into
pre-TURBT diagnosis, achieving favorable accuracy in BCa
staging and differentiation of NMIBC and MIBC (30, 39, 40).
Despite the undeniable advances in mpMRI for bladder imaging,
a lack of standardization of imaging protocols and reporting
basis becomes the main cause of performance variation. To this
end, VI-RADS scoring system defines a standardized approach
to imaging and reporting mpMRI for BCa (39). Nevertheless,
most of the previous studies only focused the performance of
using VI-RADS for the pre-TURBT discrimination between
NMIBC and MIBC (13, 30, 51, 53), regardless of other
valuable diagnostic information VI-RADS may contain for
therapeutic strategy (133, 134).
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Del Giudice et al. (135, 136), recently reported that i) VI-RADS
could provide valuable information for the selectionof patientswho
are candidate for repeated-TURBT among the high-risk NMIBC
cases; ii) VI-RADS could be valid and reliable in discriminating
between BCa patients with extravesical disease and those with
muscle-confined BCa before TURBT, and VI-RADS score 5
could be used to predict significant delay in time-to-cystectomy
independently from other clinico-pathological factors. Given that
themuscle invasive status is significantly related to BCa recurrence,
VI-RADS that well reflect the imaging difference between NMIBC
and MIBC, may have potential in recurrence risk stratification of
BCa patients.

In addition, concerning that many surgical subspecialties,
including urology, have suspended elective services and delayed
many time-sensitive surgeries during the midst of COVID-19
pandemic, BCa staging is considered a priority because of the
potential aggressive behavior of this disease (137). VI-RADS at the
present time period may help urologist to dramatically minimize
elective procedures and realize an accurate evaluation of tumor
staging from a single examination, providing a prognostic criterion
for adjusting oncologic class priority among overwhelmed waiting
lists (137).

Integrating the “Shallow” Features
With the “Deep” Features for BCa
Phenotype Diagnosis
Currently, the radiomics features adopted mainly involve the
morphological features describing the geometric properties of
the target region and texture features depicting the global, local
and regional intensity distribution patterns of the target region
(74, 115), which are designed based on certain physical or
mathematical theories of the pixel intensity distribution
characterized on the original images and thus can be regarded
TABLE 4 | Continued

Study Patient Treatment Follow-
up/years

Predictionmodel Findings Conclusion

treatment performed better than the
EORTC risk table.

Yajima
et al.,
2019 (48)

91 NMIBC
patients
from
single
center

TURBT 5 years Inchworm sign (tumor
stalk) on the DWI and
ADC images

The progression rate of inchworm-
sign-negative cases was significantly
higher than that of inchworm-sign-
positive cases, whereas there was
no significant difference in the
recurrence rate between two
groups.

The absence of an inchworm sign
and histological grade 3 were
independent risk factors for
progression.

Xu et al.,
2019 (61)

71
patients
including
36 NMIBC
patients
and 35
MIBC
patients
from
single
center

TURBT for the NMIBC
patients and RC for the
MIBC patients

2 years Radiomics nomogram
developed based on the
radiomics features
extracted from T2WI,
DWI, ADC, and DCE
MRI data, and the
clinical risk factors

The proposed radiomics nomogram
exhibited good performance both in
the training cohort (AUC: 0.915) and
the validation cohort (AUC: 0.838)
for the prediction of the BCa
recurrence during 2 years after
operation.

The proposed radiomics-clinical
nomogram has potential in the
preoperative prediction
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as manual or “shallow” features. In recent years, the radiomics
features extracted by using CNN-based deep learning networks
have been increasingly used to characterize the deep properties of
tumors for cancer diagnosis (126, 138, 139). Owing to the black-
box nature of CNN networks, the “deep” feature selected and the
model developed seem hard to explain, limiting their
applications in clinics. With the improvements in the
interpretability of deep features, it is expected that the
integration of shallow and deep features would provide a more
precise preoperative diagnosis of the BCa phenotype.

Macro-meso-micro Multiomics
Information Fusion for More Precise,
Explainable BCa Recurrence Prediction
Although both the EORTC and CUETO risk tables are
extensively used as the clinical reference for NMIBC recurrence
risk stratification (10), their predictive performance is far less
than satisfactory (29, 120, 121, 140–142). Given that most of
features in these two risk tables are macroscopic clinical factors,
they may not well describe the hidden properties of BCa that are
closely related to recurrence. Until now, only one study (61) has
reproted the feasibility and performance of the radiomics
strategy for BCa recurrence risk prediction, in which manually
extracted or shallow features from a mesoscopic view were
adopted in the framework.

It is now appreciated that bladder tumors are heterogeneous
at the metabolomics and genomics levels (5). For example,
the specific proteins and RNAs of exosomes in urine can
be used as noninvasive biomarkers for BCa screening and
phenotype prediction (143–149). Low-grade carcinomas can be
characterized at the molecular level by loss of heterozygosity
(LOH) of chromosome 9 and activating mutations of genes
encoding fibroblast growth factor receptor 3 (FGFR3) and
telomerase reverse transcriptase (TERT), while MIBC is thought
to arise via flat dysplasia and Tis (5). The human epidermal growth
factor receptor-2 (HER2) has been reported with overexpression
Frontiers in Oncology | www.frontiersin.org 14
among aggressive BCa for the past decade, suggesting that this
biomarker might aid in patient risk stratification and treatent
selection (150, 151). Ferro et al. reported that absolute basophil
count is closely related to time to recurrence among patients with
high-grade T1 BCa receiving BCG after TURBT (152). Whether
these biomarkers can be used for BCa recurrence prediction,
remains unknown. Therefore, in the future, it is believed that
with macro-meso-micro information fusion of the multiomics
features and multidisciplinary knowledge, the predictive
performance of the recurrence risk will be greatly improved.
CONCLUSION

Noninvasive imaging technologies, such as CT, contrast-
enhanced CT and multiparametric MRI, and radiomic
strategies can promote the overall performance of the
phenotype diagnosis and recurrence risk prediction for patients
with bladder cancer.
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