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Objectives: Accurate prediction of prognosis will help adjust or optimize the treatment of
cervical cancer and benefit the patients. We aimed to investigate the incremental value of
radiomics when added to the FIGO stage in predicting overall survival (OS) in patients with
cervical cancer.

Methods: This retrospective study included 106 patients with cervical cancer (FIGO stage
IB1–IVa) between October 2017 and May 2019. Patients were randomly divided into a
training cohort (n = 74) and validation cohort (n = 32). All patients underwent contrast-
enhanced computed tomography (CT) prior to treatment. The ITK-SNAP software was
used to delineate the region of interest on pre-treatment standard-of-care CT scans. We
extracted 792 two-dimensional radiomic features by the Analysis Kit (AK) software.
Pearson correlation coefficient analysis and Relief were used to detect the most
discriminatory features. The radiomic signature (i.e., Radscore) was constructed via
Adaboost with Leave-one-out cross-validation. Prognostic models were built by Cox
regressionmodel using Akaike information criterion (AIC) as the stopping rule. A nomogram
was established to individually predict the OS of patients. Patients were then stratified into
high- and low-risk groups according to the Youden index. Kaplan–Meier curves were used
to compare the survival difference between the high- and low-risk groups.

Results: Six textural features were identified, including one gray-level co-occurrence
matrix feature and five gray-level run-length matrix features. Only the FIGO stage and
Radscore were independent risk factors associated with OS (p < 0.05). The C-index of the
FIGO stage in the training and validation cohorts was 0.703 (95% CI: 0.572–0.834) and
0.700 (95% CI: 0.526–0.874), respectively. Correspondingly, the C-index of Radscore
was 0.794 (95% CI: 0.707–0.880) and 0.754 (95% CI: 0.623–0.885). The incorporation of
the FIGO stage and Radscore achieved better performance, with a C-index of 0.830 (95%
CI: 0.738–0.922) and 0.772 (95% CI: 0.615–0.929), respectively. The nomogram based
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on the FIGO stage and Radscore could individually predict the OS probability with good
discrimination and calibration. The high-risk patients had shorter OS compared with the
low-risk patients (p < 0.05).

Conclusion: Radiomics has the potential for noninvasive risk stratification and may
improve the prediction of OS in patients with cervical cancer when added to the FIGO stage.
Keywords: cervical cancer, computed tomography, radiomics, nomogram, overall survival
INTRODUCTION

Cervical cancer is one of the fourth most common female
malignancies worldwide (1). More than 80% of patients are
typically diagnosed at a locally advanced stage (2). Five-year
overall survival (OS) can be significantly distinct, ranging from
80% (stage IB) to 15% (stage IVa-b) (3). Despite the fact that
outcomes of cervical cancer had been improvedwithmultimodality
treatment, around 30%–40% of patients still suffer from recurrence
(4).Thus, it is of great significance to identify high-risk patientswho
may benefit from aggressive treatment.

The International Federation of Gynecology and Obstetrics
(FIGO) stage has been established as the most crucial prognostic
factor for cervical cancer (5). The treatment modality choice is
mainlybasedon theFIGOstage andNstaging (6).However, clinical
outcomes aremarkedly different among patientswith similar stages
(6). Imaging plays an essential role in the pre-treatment evaluation
of cervical cancer. However, conventional medical images only
provide structural information of cancer; it fails to detect the
intratumoral heterogeneity associated with treatment response
and prognosis (7). Thus, the search for new non-invasive
biomarkers with the potential to offer more specific tumor
characterization before therapy is urgently needed, which may
inform clinicians to make a more individualized treatment plan.

Statistical models, medical images, and machine learning have
been widely used for outcome prediction in cervical cancer.
Machine learning has merits in dealing with the complexity of
high-dimensional data and discovering prognostic factors.
Radiomics refers to a variety of mathematical methods such as
machine learning that converts digital medical images into a huge
number of minable high-dimensional features for cancer diagnosis
or prediction (8, 9). Radiomic signature can be used as a surrogate
biomarker for biological tumor traits such as tumor morphology
and intratumor heterogeneity (10, 11). Currently, radiomics has
been used to predict tumor stage, histological type, lymph node
metastasis, relapse, and survival in patients with cervical cancer
(12). However, the additional value of radiomics to the FIGO stage
in prognostication of cervical cancer remains unclear. Thus, this
studyaimed todevelopandvalidatea radiomicmodel forpredicting
survival in patients with cervical cancer.
MATERIALS AND METHODS

Patient Cohort
This retrospective study included patients with a diagnosis of
cervical cancer between October 2017 and May 2019 at our
2

institution. Inclusion criteria were (1) patients with histologically
confirmed cervical cancer, (2) patients with tumor staged IB1-
IVa (FIGO 2009 definition), (3) patients who were not previously
treated with any anti-cancer treatment, and (4) patients who
underwent a pre-treatment contrast-enhanced computed
tomography (CT) scan. Exclusion criteria were (1) patients
with a history of previous chemotherapy or radiotherapy, (2)
patients with a diagnosis of other cancers, or (3) patients with
distant metastatic disease (para-aortic nodes involvement was
not included). Institutional ethics review board approval was
acquired for this study and written informed consent was waived.
Finally, a total of 106 patients (mean age, 63.8 years) were
included in this study. Eligible patients for the radiomic study
were randomly divided into a training cohort (n = 74) and a
validation cohort (n = 32). The clinical information of patients
was collected from electronic medical records, including age,
FIGO stage, histological type, differentiation, lymph node
metastasis (LNM), and treatment regimens. Of note, a lymph
node with a short-axis diameter larger than 10 mm was
considered to be metastasis (13).

Treatment Characteristics and Follow-Up
All patients were treated with image-guided external beam
radiotherapy (EBRT) and brachytherapy (BT), to a total dose
of 85–90 Gy (EQD2, equivalent dose in 2 Gy single dose
fractions). EBRT was delivered in 1.8–2.0 Gy/fraction, to a
range of 45–50 Gy, using a 3D conformal technique. BT boost
was volumetrically planned and delivered as weekly high-dose-
rate fractions of 8 Gy EQD2 each after 15 times of EBRT. The
external irradiation was not performed on the day of
intracavitary and interstitial after loading BT. The radiation
volumes covered the pelvic cavity and, if clinically indicated,
the para-aortic and/or inguinal nodal regions. CT-positive lymph
nodes were simultaneously boosted to a total dose of 55–60 Gy.
Concurrent weekly chemotherapy with cisplatin (40 mg/m2) was
delivered for 4–6 weeks or carboplatin (AUC = 2) when feasible.
The endpoint OS was defined as the interval from the date of
treatment to death from any cause. The patients were followed
up until November 19, 2020.

CT Image Acquisitions
CT scans were performed on a 64-row CT scanner (Somatom
definition AS large-aperture, Siemens Healthcare) using the
following parameters: 120-kVp tube voltage, 252-mAs tube
current, a field of view (FOV) of 384 × 384 mm2, a width of
detector of 40 mm, a beam pitch of 0.6, a gantry rotation time of
August 2021 | Volume 11 | Article 706043
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0.5 s, and a slice thickness of 5 mm. Iohexol (350 mg I/ml) was
administrated with a rate of 2.5–3.0 ml/s through the elbow vein
by a high-pressure injector. Enhanced CT images were obtained
at 30 s after injection.
Radiomic Analysis
Our radiomic workflow is illustrated in Figure 1.

Image Segmentation
We used an open-source ITK-SNAP software (version 3.6.0, www.
itksnap.org) for manual segmentation on CT images (Figure 2).
Tumor lesion segmentation was performed on the maximum level
of tumor by a radiologist (with 6-year experience) and subsequently
reviewed by a board-certified radiologist (>10 years experience).

Feature Extraction
The radiomic features were automatically calculated by AK
software (Artificial Intelligence Kit, GE Life Sciences, AA R&D
team, Shanghai, China), which comply with the standards set by
the Image Biomarker Standardization Initiative. In total, 792
radiomic features were extracted from pre-contrast and post-
Frontiers in Oncology | www.frontiersin.org 3
contrast CT images, including (1) histogram features, such as
energy, entropy, uniformity, skewness, and kurtosis; (2) form
factor features, such as sphericity, surface area, compactness,
surface volume ratio, maximum 3D diameter, spherical
disproportion, volume CC, and volume MM; and (3) texture
features including gray-level co-occurrence matrix (GLCM),
gray-level size zone matrix (GLZSM), gray-level run-length
matrix (GLRLM), and Haralick parameters. The offsets of
GLCM and GLRLM were 1, 4, and 7.

Feature Pre-Processing and Selection
Feature pre-processing was done in two steps: step 1—outliers
and null values were replaced by mean values, and step 2—values
standardization was carried out to eliminate the influence of the
dimension (14). Feature selection is a critically important step for
better generalization of models because high-dimensional data
usually comprise a large number of irrelevant, redundant, and
noisy features, which may result in the curse of dimensionality
and model overfitting (15). In terms of feature selection, Pearson
correction coefficient (PCC) analysis was used to assess the
correlation between feature pairs, and one feature was
randomly excluded from each pair with a correlation
FIGURE 1 | Schematic diagram exhibition of the radiomic workflow. A radiomic study design and workflow mainly include (I) Image segmentation, (II) Radiomic
feature extraction, (III) Dimension reduction and feature selection, (IV) Statistics analysis and model building. CT, computed tomography; GLCM, gray-level co-
occurrence matrix; GLZSM, gray-level size zone matrix; GLRLM, gray-level run-length matrix; PCC, Pearson correction coefficient.
August 2021 | Volume 11 | Article 706043
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coefficient >0.9. After this process, the dimension of the variable
space was reduced, and each variable was independent of each
other. Then, we used Relief, a feature weighting algorithm, to
detect the most discriminatory features. Finally, radiomic
signature (i.e., Radscore) based on the selected features was
constructed via Adaboost with Leave-one-out cross-validation.

Prognostic Model Construction
Variables with missing data of more than 20% were excluded for
analysis. The significant variables were identified by the
univariate and multivariate Cox regression model. The
variables with p < 0.10 in the univariate analysis were entered
into multivariate analysis to obtain independent risk factors for
OS (p < 0.05). The prognostic models were constructed by Cox
proportional hazard model, using the Akaike information
criterion (AIC) as the stopping rule. For convenient use by
clinicians, we built a nomogram to individually predict the OS
of patients based on the optimal prognostic model. The
calibration curves reflecting the goodness of fit of the
nomograms generated were assessed by plotting the predicted
probabilities against the observed event proportions. The
receiver operating characteristic (ROC) curve was used to
determine cutoff values of models according to the Youden
index to generate Kaplan–Meier curves for OS in the training
and validation cohorts. The Log-rank test was used for
comparisons in the Kaplan–Meier curves.
Frontiers in Oncology | www.frontiersin.org 4
Statistical Analysis
The clinicopathologic characteristics were assessed by applying
two-sample t-test, chi-squared test, or Mann–Whitney U-test in
the training and validation cohorts, where appropriate. The
discrimination of each model was quantified by the C-index
and 95% confidence interval (CI). The models were subjected to
bootstrapping validation (1000 bootstrap resamples) to obtain a
relatively corrected C-index. All statistical analyses were
performed using 3.6.0 R software (http://www.Rproject.org). A
two-tailed p < 0.05 was considered statistically significant.
RESULTS

The Patient Cohort of the Radiomic Study
There were no significant differences in the clinicopathologic
characteristics between the training and validation cohorts (all P
values >0.05) (Table 1).

Feature Selection and Radscore
Construction
Atotal of 428radiomic featureswere retainedafterPCCanalysis; only
six texture featureswere then selected byRelief, including oneGLCM
feature (pre_GLCMEntropy_AllDirection_offset7_SD) and five
GLRLM features (post_LongRunEmphasis_angle135_offset1.1, pre_
LongRunEmphasis_AllDirection_offset1_SD.1, pre_LongRunLow
FIGURE 2 | Illustration of tumor segmentation on the maximum level of tumor. (A) Raw pre-contrast image; (B) pre-contrast image after delineation; (C) raw post-
contrast image; and (D) post-contrast image after delineation.
August 2021 | Volume 11 | Article 706043
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GreyLevelEmphasis_AllDirection_offset1 , post_LongRun
Emphasis_angle45_offset1 , and post_LongRunHighGrey
LevelEmphasis_AllDirection_offset4_SD.1). Pre_ and post_ denote
the pre-contrast and post-contrast features, respectively. The
histogram and form factor features were omitted. The Radscore
was built by the Adaboost classifier based on the six textural features.

Independent Indicators of OS
Multivariate Cox regression analysis showed that among
clinicopathologic characteristics, only the FIGO stage was an
independent factor of OS (p < 0.002). The hazard ratio (HR) for
the FIGO stage was 3.24 (95% CI: 1.55–6.76). When adding the
Radscore to the aforementioned features, only Radscore was an
independent indicator of OS (p = 0.002). The HRs for the FIGO
stage and Radscore were 2.07 (95% CI: 0.89–4.83) and 153.0
(95% CI: 6.29–3721.16), respectively.

Performance of Prognostic Models
The C-index of the FIGO stage in the training and validation
cohorts was 0.703 (95% CI: 0.572–0.834) and 0.700 (95% CI: 0.526–
0.874), respectively (Table 2). The C-index of Radscore was 0.794
(95%CI: 0.707–0.880) and 0.754 (95%CI: 0.623–0.885), respectively
Frontiers in Oncology | www.frontiersin.org 5
(Table 2). The incorporation of the FIGO stage and Radscore
achieved better performance, with a C-index of 0.830 (95% CI:
0.738–0.922) and 0.772 (95% CI: 0.615–0.929), respectively
(Table 2). The nomogram based on the FIGO stage and Radscore
could individually predict the OS probability (Figure 3). Calibration
curves demonstrated good agreement between the predicted
probability and observed probability (Figure 3).

Kaplan–Meier Survival Analysis
Kaplan–Meier curves demonstrate that by using a cutoff value of
0.59, Radscore alone could stratify patients into the low- and
high-risk groups, with significant OS differences. The high-risk
patients had significantly shorter OS than the low-risk patients
(training cohort: p < 0.0001; validation cohort: p = 0.03). The
combined FIGO stage and Radscore could achieve better risk
stratification using a cutoff value of 0.57 (training cohort: p <
0.0001, validation cohort: p = 0.02) (Figure 4).

DISCUSSION

In this radiomic study, we demonstrated that capturing
intratumoral radiomics from pretherapy CT images could
TABLE 1 | Patients’ characteristics.

Characteristics Training cohort (n = 74) Validation cohort (n = 32) p-value

Age (years) 59.0 ± 8.3 60.3 ± 9.7 0.495
FIGO stage 0.427
IB 1 (1.4) 2 (6.3)
II 41 (55.4) 20 (62.5)
III 28 (37.8) 9 (28.1)
IVa 4 (5.4) 1 (3.1)

Histological type 0.866
Squamous 68 (91.9) 30 (93.8)
Adenocarcinoma 4 (5.4) 1 (3.1)
Adenosquamous carcinoma 2 (2.7) 1 (3.1)

Lymph node involvement on CT 0.206
Uninvolved 29 (39.2) 17 (53.1)
Involved 45 (60.8) 15 (46.9)

Differentiation 0.999
Poor 3 (4.1) 1 (3.1)
Poor-moderate 12 (16.2) 5 (15.6)
Moderate 41 (55.4) 18 (56.3)
Well-moderate 4 (5.4) 2 (6.3)
Unknown 14 (18.9) 6 (18.8)

Concurrent chemotherapy 0.602
With 60 (81.1) 24 (75.0)
Without 14 (18.9) 8 (25.0)

Median OS (months) 27.0 28.0 0.756
August 2021 | Volume 11 | Article
Data were expressed as number (percentage) or mean (standard deviation). FIGO, International Federation of Gynecology and Obstetrics; OS, overall survival.
TABLE 2 | The performance of FIGO stage, Radscore, and the combined model for OS evaluation in patients with cervical cancer.

Models AIC C-index (95% CI)

Training cohort Validation cohort

FIGO stage 132.9 0.703 (0.572–0.834) 0.700 (0.526–0.874)
Radscore 121.4 0.794 (0.707–0.880) 0.754 (0.623–0.885)
Combined model 120.5 0.830 (0.738–0.922) 0.772 (0.615–0.929)
FIGO, International Federation of Gynecology and Obstetrics; AIC, Akaike information criterion; CI, confidence interval; OS, overall survival.
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significantly improve the performance of the FIGO stage for OS
evaluation. The combined model yielded the optimal
Frontiers in Oncology | www.frontiersin.org 6
performance for OS prediction in patients with cervical cancer.
We established a radiomic nomogram derived from a combined
model to individually estimate the OS of patients. The
nomogram could successfully stratify these patients into high-
risk and low-risk subgroups, and these two subgroups had
different OS in both training and validation cohorts.

Prognosis evaluation in advance will greatly improve the
treatment outcome in patients with cervical cancer. The most
relevant tumor-related prognostic factors for locally advanced
cervical cancer are tumor size at diagnosis, FIGO stage, and LNM
(6, 16). However, our work showed that only the FIGO stage was
an independent risk factor of OS in stage IB1–IVa cervical
cancer. FIGO stage is the current standard staging system for
cervical cancer based on findings from physical inspection and
imaging examinations (17). The limitations of the FIGO stage are
that it depends on many examinations and its classification is not
objective enough (18). Therefore, an objective and efficient
evaluation method that complements cervical cancer staging is
of clinical significance.

The current radiomic workflow consists of adding quantitative
data to visual analysis rather than replacing it entirely (19). In the
A

B C

FIGURE 3 | The nomogram (A) based on the FIGO stage and Radscore was used to estimate OS individually, along with the assessment of the model calibration.
Calibration curves for the nomogram to the 1-year and 2-year OS rate in the training (B) and validation cohorts (C). FIGO, International Federation of Gynecology and
Obstetrics; OS, overall survival.
FIGURE 4 | Kaplan–Meier curves of the high- and low-risk patients stratified
by the combined model in the training cohort and validation cohort.
August 2021 | Volume 11 | Article 706043
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field of oncology, translational approaches are increasingly
explored, for instance, Radiogenomics. Such studies usually need
“big data” approaches and collaborative research (20). In this work,
we proposed a new approach, translational but able to be quickly
implemented for clinicians. To the best of our knowledge, this is the
first study to integrate accessible FIGO stage and radiomic features
extracted from pre-treatment CT images to predict the survival of
cervical cancer. Radscore may be a more powerful predictor
compared with the FIGO stage. With the help of Radscore, the
prognostic value of the FIGO stage was significantly improved,
leading to better risk stratification of patients. This score may be
used for adaptive strategies to improve patient outcomes.

Radiomics has been involved in many aspects of cervical
cancer, including prediction of tumor staging (21, 22),
histological grading (23, 24), lymphovascular space invasion
(LVI) (25), LNM (26–36), treatment response (37–42), and
outcome (43–48) based on multimodal imaging tools (e.g., CT,
MRI, and PET/CT). In clinical practice, the issues of most
concern may be the evaluation of LNM, treatment response,
and survival prediction. Hence, most radiomic studies focused
on the evaluation of these in a non-invasive way. LNM is a key
prognostic factor that affects the treatment decision and survival
in cervical cancer. Song et al. combined the Radscore and
morphological features of lymph nodes to assess the LNM in
cervical cancer patients (26). Some studies developed radiomic
models based on Radscore and clinical factors (e.g., MRI-
reported lymph node status and FIGO stage) for predicting
LNM in cervical cancer (27–36). Treatment response to
neoadjuvant or concurrent chemotherapy may have a
significant impact on patient management by identifying
tailored approaches for patient subgroups to achieve a better
clinical outcome. All relevant studies showed the additional value
of radiomics to clinical factors and its potential to screen patients
who are sensitive to chemotherapy (37–42). Survival evaluation
is an eternal proposition for the field of oncology, which may
benefit treatment strategies and follow-up plans. Ferreira et al.
tested the feasibility of PET radiomic features combined with
clinical information in predicting disease-free survival (DFS) in
patients with cervical cancer (43). Fang et al. used MRI-based
Radscore, LNM, and LVI to predict the DFS of early-stage
cervical cancer (45). Lucia et al. found that the combination of
PET/CT and MRI could result in more favorable survival
prediction (47). Another study suggested that Radscore could
enhance the prediction efficiency of conventional PET
parameters in cervical cancer (48). In this current study, the
results indicated that Radscore was an independent risk factor
strongly associated with OS of cervical cancer and only texture
features contributed to the survival prediction in cervical cancer.
The HR of the Radscore was significantly higher than that of the
FIGO stage, suggesting that the Radscore may provide more
prognostic information than the FIGO stage in predicting
the OS.

This study also had some limitations. First, selection bias was
inevitable because of a retrospective study. Second, the sample
size was small for a radiomic study. However, we performed a
bootstrap to obtain corrected results. Third, the overall treatment
Frontiers in Oncology | www.frontiersin.org 7
times were not readily available, which is a well-recognized factor
in cervical cancer outcomes. Fourth, this study had no local/
regional failures, recognizing the short follow-up time. The
additional evaluation of local control could be more clinically
significant. Fifth, our radiomic features were extracted from CT
images; those features fromMRI or PET/CT images may provide
different information about intratumoral heterogeneity. Sixth,
the image analysis was based on the maximum level of the tumor
instead of the whole tumor. However, some previous studies (45,
49) showed that the predictive performance of features extracted
from the maximum level of the tumor was higher than that of
those features extracted from the whole tumor. Two-dimensional
features may increase the robustness of features compared with
three-dimensional features. Seventh, the biological interpretation
of radiomics remains an open question warranting further
investigation (50). Finally, this is a single-institution study that
needs external validation of the findings.

In conclusion, this present study provided a combined model,
incorporating the FIGO stage and a Radscore derived from CT-
based textural features, with favorable performance, and the
study developed a noninvasive radiomic nomogram based on
the results of the combined model for the pretherapy and
personalized estimation of OS in patients with cervical cancer.
In addition, the combined model serves as a collection of
potential biomarkers and perfectly stratifies these patients into
high-risk and low-risk subgroups. The identification of high-risk
patients at diagnosis can allow tailored treatments involving
higher doses of radiation boost, consolidation chemotherapy,
and/or adjuvant hysterectomy, when indicated, and should be
confirmed in external cohorts and prospective studies.
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