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Combination treatment with tyrosine kinase inhibitors (TKIs) and immunotherapies has
shown efficacy in the treatment of multiple cancers, but the immunomodulatory effect of
TKIs on the tumor cell phenotype remains unknown in hepatocellular carcinoma (HCC).
Given that human lymphocyte antigen class I (HLA-I) is essential for tumor antigen
presentation and subsequent antitumor immunity, we examined the effects of
regorafenib, as well as other TKIs (sorafenib, lenvatinib and cabozantinib) on HLA-I
expression in HCC cell lines. Regorafenib increased cell surface HLA-I and b2-
microglobulin protein expression in the presence of interferon g (IFNg). The expressions
of various genes associated with the HLA-I antigen processing pathway and its
transcriptional regulators were also upregulated by regorafenib. Furthermore, we found
that regorafenib had an activating effect on signal transducers and activators of
transcription 1 (STAT1), and that regorafenib-induced HLA-I expression was dependent
on the augmented IFNg/STAT1 signaling pathway. Trametinib, an inhibitor of the
extracellular signal-regulated kinase (ERK) kinase MEK, also activated IFNg/STAT1
signaling and increased HLA-I expression, whereas the phosphatidylinositol 3-kinase
(PI3K) inhibitor buparlisib did not. Given that regorafenib directly inhibits Raf/MEK/ERK
signaling, the downregulation of the MEK/ERK pathway appears to be one of the
mechanisms by which regorafenib promotes STAT1 activation. Sorafenib, lenvatinib,
and cabozantinib also showed the same effects as regorafenib, while regorafenib had
most potent effects on HLA-I expression, possibly dependent on its stronger inhibitory
activity against the MEK/ERK pathway. These results support the clinical combination of
TKIs with immunotherapy for the treatment of HCC.

Keywords: human lymphocyte antigen class I, tyrosine kinase inhibitor, regorafenib, signal transducers and
activators of transcription 1, mitogen-activated protein kinase, hepatocellular carcinoma
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INTRODUCTION

Hepatocellular carcinoma (HCC) is one of the most common
malignant solid tumors and the fourth most frequent cause of
cancer-related mortality worldwide (1). HCC is a malignant
disease that develops predominantly in patients with
underlying chronic liver disease and cirrhosis, thus providing a
strong rationale for immune therapy. In recent years, several
immune checkpoint inhibitors (ICIs) targeting the programmed
death receptor-1 (PD-1) and programmed death ligand 1 (PD-
L1) pathway have been tested for the treatment of HCC (2).
Preliminary results from early-phase clinical trials in HCC
indicated a superior treatment response when anti-PD-1 or
anti-PD-L1 agents were combined with tyrosine kinase
inhibitors (TKIs), including sorafenib, lenvatinib, regorafenib,
and cabozantinib (3, 4). The high efficacy of the combination
of ICIs and TKIs is not only due to their additive effects
on tumor growth, but also to immunomodulatory effects of
TKIs. In vivo and in vitro studies on several types of cancers
including HCC demonstrated that TKIs enhanced antitumor
immunity by increasing T cell infiltration and function, and
regulating immunosuppressive cells such as tumor-associated
macrophages, regulatory T cells, and myeloid-derived suppressor
cells (5–9). While these effects are linked to modulation of
the tumor microenvironment due to an inhibitory effect on
vascular endothelial growth factor receptor (VEGFR), the
immunomodulatory effect of TKIs on tumor cell phenotypes
has not been investigated in HCC.

Human lymphocyte antigen class I (HLA-I) is required for
tumor antigen presentation and subsequent cell killing by
cytotoxic T lymphocytes (CTLs) and, thus, plays an extremely
important role in antitumor immunity (10). Interferon g (IFNg)
produced by tumor-infiltrating T cells induces signal transducers
and activators of transcription 1 (STAT1) activation in tumor
cells, promoting HLA-I expression. Therefore, dysfunction of the
HLA-I antigen processing pathway (HLA-I APP) or the IFNg
response pathway in tumor cells has been identified as a frequent
cause of both primary and acquired resistance to ICIs, often
correlating with worse prognosis (11–13). In HCC, it has been
reported that the expression of HLA-I is downregulated in 40%
to 50% of cancer cells (14–16). Early-stage HCC has sufficient
levels of cell surface HLA-I expression, whereas the expression of
HLA-I is significantly reduced with increased progression of
tumor stage and histological grading of tumor differentiation in
HCC tissue (17, 18). Although the mechanism of HLA-I
downregulation in HCC is not well understood, treatment with
IFNs induces recovery of HLA-I expression in HCC cell lines (19,
20), suggesting that this defect is reversible. Given that CTL
recognition of HCC cells is dramatically improved after
increasing cell surface HLA-I expression (18, 19), promoting
HLA-I expression might be a viable therapeutic approach to
enhance the effects of ICIs in HCC.

Sorafenib, lenvatinib, regorafenib, and cabozantinib are broad
TKIs that have approved by the FDA for the treatment of
advanced HCC. Among them, regorafenib and cabozantinib
have been reported to have the ability to increase HLA-I
expression in melanoma and colon cancer cell lines,
Frontiers in Oncology | www.frontiersin.org 2
respectively, rendering the cells more sensitive to CTL-mediated
killing (5, 8). In addition, various oncogenic pathways have been
reported to affect expression of HLA-I in cancer, including
mitogen-activated protein kinase (MAPK) and epidermal
growth factor receptor (EGFR) (21–23). MAPK pathway
activation has been shown to negatively influence HLA-I
expression via decreased STAT1 expression (22, 24). Hence,
downregulation of MAPK signaling by anti-EGFR antibodies, or
inhibitors of EGFR, MEK, and BRAF enhances the expression of
HLA-I in several types of tumors, such as lung cancer, melanoma,
and head and neck squamous cell cancer (21, 22, 25, 26).

This study sought to investigate whether TKIs may also
promote the induction of HLA-I molecules in HCC cells. We
focused on regora fen ib as a mode l to s tudy the
immunomodulatory effect of TKIs because it directly targets
not only VEGFR, Tie2, and platelet-derived growth factor
receptor (PDGFR), but also BRAF and subsequent MAPK
signaling. We found that regorafenib, as well as other TKIs,
induces elevated HLA-I expression in HCC cells through
enhancement of STAT1 activation by IFNg, and that
downregulation of MAPK signaling might be a mechanism by
which TKIs promote HLA-I induction.
MATERIALS AND METHODS

Human HCC Cell Lines and Reagents
The HCC cell lines SNU398, SNU387, Huh7, HepG2, and PLC/
PRF/5 were obtained from ATCC. Cells were grown in Roswell
Park Memorial Institute (RPMI) medium or Dulbecco’s
Modified Eagle’s Medium (DMEM); supplemented with 10%
fetal bovine serum (FBS), penicillin, and streptomycin; and
maintained at 37°C with a 5% CO2 atmosphere. Regorafenib
(#CS-1205) and sorafenib (#CS-0164) were purchased from
ChemScene. Lenvatinib (#19375) and cabozantinib (#18464)
were purchased from Cayman Chemical. Trametinib (#S-2673)
was purchased from Selleck Chemicals, and buparlisib (#HY-
70063) was from MedChem Express. Recombinant human IFNg
(#300-02) was obtained from PeproTech. Cell viability was
quantified with Cell Count Reagent SF (nacalai tesque).
Absorbance at 450 nm was measured on a micro- plate reader.
For quantification of cytotoxicity, we used LDH Cytotoxicity
Assay Kit (nacalai tesque). The absorbance value at 490 nm
was measured.

Flow Cytometry
Cells were trypsinized, washed with ice-cold phosphate buffered
saline (PBS), and pelleted by centrifugation. Cell pellets were
then resuspended in anti-HLA-ABC (clone W6/32, #311403,
BioLegend) conjugated to fluorescein isothiocyanate (FITC)
(300:1 dilution), anti-b2-microglobulin (B2M) (clone 2M2,
#316304, Biolegend) conjugated to FITC (300:1 dilution), or
isotype control antibodies. Cells were incubated for 30 min at 4°C.
After washing, cells were analyzed using a FACScalibur flow
cytometer and CellQuestTM Pro version 6.0 software (both from
Becton-Dickinson and Co.).
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Quantitative Real-Time PCR
Total RNA was isolated with Trizol reagent (Invitrogen/Thermo
Fisher Scientific) and Direct-zol™ RNA Microprep (Zymo
Research). A 500-ng quantity of total RNA was used for the
synthesis of first-strand cDNA using a PrimerScript RT cDNA
Synthesis Kit (Takara Bio). Individual gene expression was
quantified by real-time (RT) PCR using SYBR FAST qPCR
Master Mix (KAPA BIOSYSTEMS) and a LightCycler 96 Real-
Time PCR system (Roche Diagnostics). Gene expression was
normalized to the amount of glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) mRNA as an internal control. The
primers used for RT-PCR analyses are listed in the
Supplementary Table 1. The primers were obtained from
Invitrogen/Thermo Fisher Scientific.

Immunoblot Analysis
Harvested HCC cells were homogenized in RIPA buffer, and
cellular proteins were then fractionated via SDS-PAGE and
transferred onto a polyvinylidene fluoride membrane. The
membrane was incubated with antibodies against STAT1
(#14994) (1000:1 dilution), phosphorylated STAT1 (Tyr701,
#7649) (1000:1 dilution), STAT3 (#9132) (1000:1 dilution),
phosphorylated STAT3 (Tyr705, #9131) (250:1 dilution),
extracellular signal–regulated kinase (ERK) (#4695) (1000:1
dilution), phosphorylated ERK (Thr202/Tyr204, #9101)
(1000:1 di lut ion) , AKT (#9272) (1000:1 di lut ion) ,
phosphorylated AKT (Ser473, #4060) (250:1 dilution), src
homology-containing protein 2 (SHP2) (#3397) (250:1
dilution), phosphorylated SHP2 (Tyr580, #3703) (100:1
dilution) from Cell Signaling Technology; with that against b-
actin (#A1978) (1000:1 dilution) from Sigma-Aldrich.

Immunofluorescent Staining Assay
Cells were incubated on a glass chamber slide with the indicated
drug, covered, and incubated with ice-cold 1:1 methanol and
acetone mixture for 10 min at −20°C. After washing with PBS,
cells were blocked with diluted donkey serum for 30 min at room
temperature, then incubated with mouse-anti HLA-ABC
antibody (#ab70328, Abcam) and rabbit-anti phosphorylated
STAT1 (Tyr701, #7649, Cell Signaling Technology) overnight
at 4°C. Cells were washed with PBS and incubated with Alexa
Fluor 594-conjugated donkey anti-mouse IgG (#715-585-150,
Jackson ImmunoResearch) and 488-conjugated donkey anti-
rabbit IgG (#11-545-152, Jackson ImmunoResearch)
antibodies, respectively, for 1 hour at room temperature. After
washing, slides were mounted with medium containing DAPI
(Vectashield H-1500, Vector Laboratories). A BZ-X800
fluorescence microscope (Keyence Corporation) was used to
assess the expression and subcellular localization of HLA-ABC
and phosphorylated STAT1.

siRNA Knockdown
Cells were transfected with STAT1 siRNA (#4390824, Thermo
Fisher Scientific) or nontargeting siRNA control (#4390843,
Thermo Fisher Scientific), using lipofectamine-RNAi max (Life
Technologies) and Opti-MEM I (Life Technologies). Reverse
Frontiers in Oncology | www.frontiersin.org 3
transfection was performed according to the manufacturer’s
instruction manual. Cells were treated with the indicated
drugs, 48 hours after siRNA knockdown, for 72 hours before
assaying for surface HLA-I by flow cytometry.

TCGA Dataset Analysis
Data for HCC patients from The Cancer Genome Analysis
(TCGA) were obtained from cBioPortal. Gene expression
correlations were assessed according to the Spearman
coefficient. Genes associated with T cell inflammation were
selected in accordance with a previous report (27).

Statistical Analysis
Data are expressed as a mean ± SD of results obtained in 3
independent experiments. A two-tailed t test was used to
calculate whether observed differences were statistically
significant, defined as p < 0.05 (*p < 0.05, **p < 0.01, ***p <
0.001, ****p < 0.0001).
RESULTS

Regorafenib Elevates Cell Surface HLA-I
Expression in Liver Cancer Cells in the
Presence of IFNg
The HLA-I molecule is essential for target recognition by CTLs
and is a central component of antitumor immunity. B2M is a
component of HLA-I and is required for surface presentation
and stability of HLA-I on the cell surface. As shown in
Figure 1A, baseline cell surface HLA-I and B2M expression
varied between the 5 liver cancer cell lines, Huh7, SNU398, PLC/
PRF/5, HepG2, and SNU387. Since IFNg is a well-known
regulator of HLA-I, we sought to determine whether
regorafenib could potentiate the effects of IFNg on HLA-I
expression. We treated liver cancer cell lines with regorafenib
in the presence or absence of IFNg, and evaluated the cell surface
levels of HLA-I and B2M protein by flow cytometry. Regorafenib
did not affect the basal levels of HLA-I and B2M molecules but
had profound effects on IFNg-induced HLA-I and B2M
expression in all of the cell lines examined (Figure 1B). This
suggests that regorafenib can enhance the upregulation of HLA-I
molecules by IFNg, regardless of the basal level of HLA-I
expression. We selected SNU398 and Huh7 cells, which had
low basal HLA-I expression, for further evaluation, and treated
them with regorafenib at different concentrations in the presence
of IFNg. Flow cytometric analysis revealed that regorafenib
influenced surface HLA-I and B2M expression in a dose-
dependent manner (Figure 1C). We performed cell viability
WST-8 assay and cell death/cytotoxicity LDH assay using
SNU398 and Huh7 cells. Regorafenib, as well as the other
TKIs, decreased cell viability over 72 hours, while additional
IFNg did not affect cell viability (Supplementary Figure 1A).
The cell death/cytotoxicity assay also showed that regorafenib
induced cell death in a dose dependent manner, but additional
IFNg did not affect cell death (Supplementary Figure 1B). These
results suggest that the effect of dying cells induced by
August 2021 | Volume 11 | Article 707473
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combination treatment on the present findings is not significant,
compared with treatment by regorafenib alone.

Regorafenib Increases HLA-I Gene
Expression as Well as the Related
Transcriptional Regulators NLRC5 and IRF1
Given that dysregulated cell surface HLA-I expression was
reversible, we hypothesized that HLA-I dysregulation might be
characterized by transcriptional downregulation rather than
genetic alterations (28). There are several critical genes
essential for the HLA-I APP, including those encoding
immunoproteasome components (proteasomes beta subunits
Frontiers in Oncology | www.frontiersin.org 4
(PSMB) 8 and PSMB9), peptide transporters into the
endoplasmic reticulum lumen (transporter associated with
antigen processing (TAP)1 and TAP2), HLA-I heavy chains
(HLA-ABC), and HLA-I light chain (B2M). These components
are substantial to form the HLA-I/peptide complex. Intracellular
tumor antigens are processed into peptides by the
immunoproteasome, including PSMB. These peptides are
subsequently translocated into the endoplasmic reticulum by
TAP and bind to the HLA-I complex, which is composed of a
heavy chain and b2M. In cancer, one or several proteins in this
complex pathway can be dysregulated, resulting in dysfunction
of antigen presentation. RT-PCR analysis revealed that
A

B

C

FIGURE 1 | Regorafenib induces expression of cell surface HLA-I molecules in liver cancer cell lines in the presence of IFNg. (A) The indicated cell lines were treated
with vehicle (DMSO, dark gray filled), IFNg (1 ng/mL) alone (black line, unfilled), or IFNg plus 5 mM regorafenib (black dotted line). Cell surface HLA-I and B2M
expression was analyzed by flow cytometry 72 hours later. Cells stained with an isotype control antibody are shown (light gray filled). A representative flow cytometry
histogram is shown. (B) Cells were treated with regorafenib (5 mM) at the timepoints indicated along the x-axis with or without IFNg for 72 hours. Values represent
the average mean fluorescence intensity (MFI) from 3 independent experiments. (C) SNU398 or Huh7 cells were treated with regorafenib at increasing concentrations
in the presence of IFNg for 72 hours. Values are expressed as fold change relative to cells treated with IFNg alone. Reg, regorafenib. (*: p < 0.05, **: p < 0.01,
***: p < 0.001, ****: p < 0.0001).
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Takahashi et al. TKIs Induce Surface HLA-1 Expression
regorafenib resulted in significant but smaller increases in the
expression of these genes than with IFNg treatment, and that the
combination of IFNg and regorafenib had greater effects than
either alone (Figure 2A). Interferon regulatory factor 1 (IRF1)
and nucleotide-binding oligomerization domain-like receptor
caspase recruitment domain containing protein 5 (NLRC5) are
key transcriptional regulators required for the induction of HLA-I
APP genes in response to IFNg stimulation. We found that
regorafenib also induced significant increases in both basal and
IFNg-mediated mRNA expression of IRF1 and NLRC5
(Figure 2B), suggesting that HLA-I induction by regorafenib
might be associated with increased IRF1 and NLRC5.

Activation of IFNg/STAT1 Signaling Is
Responsible for Regorafenib-Induced
HLA-I Expression
Given that cell surface HLA-I and B2M protein were regulated
mainly at the transcriptional level, the upstream signaling
Frontiers in Oncology | www.frontiersin.org 5
pathways regulating HLA-I expression were investigated. Since
IFNg/STAT1 pathway activation has been suggested to have the
most potent effect on the expression levels of HLA-I APP genes
(28), we next measured the expression of pSTAT1 (Tyr701) and
total STAT1 after treatment with regorafenib alone or in addition
to IFNg treatment. As shown in Figure 3A, we found that basal
levels of pSTAT1 were quite low, despite abundant expression of
total STAT1 protein. IFNg treatment strongly increased
expression of both pSTAT1 and total STAT1. Interestingly, after
48-hour treatment with regorafenib, the ability of IFNg to induce
pSTAT1 was significantly augmented. We also observed that
IFNg-induced STAT1 activation was augmented by regorafenib
in a dose-dependent manner (Figure 3B). A similar observation
was confirmed with immunofluorescence staining. As shown in
Figure 3C, pSTAT1 and HLA-I were greatly upregulated in the
cytoplasm and nucleus, and on the cell surface, respectively, after
treatment with IFNg, and further enhanced by the combination of
regorafenib and IFNg. To confirm that HLA-I upregulation
A

B

FIGURE 2 | Regorafenib increases gene expression of HLA-I as well as the related transcriptional regulators NLRC5 and IRF1. (A, B) SNU398 or Huh7 cells were
treated with regorafenib (5 mM) for the indicated times in the absence or presence of IFNg (1 ng/mL) for 48 hours. mRNA levels were measured using real-time PCR.
Data are expressed as fold change relative to vehicle-treated cells. Reg, regorafenib. (*: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001).
August 2021 | Volume 11 | Article 707473
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induced by regorafenib depends on STAT1 activation, we
evaluated cell surface HLA-I expression following STAT1
inhibition by siRNA. Knockdown of STAT1 was performed on
SNU398 cells, in addition to treatment with IFNg alone or IFNg
plus regorafenib. As shown in Figure 3D, STAT1 knockdown
inhibited upregulation of surface HLA-I expression after
regorafenib treatment, suggesting a role for STAT1 in the
Frontiers in Oncology | www.frontiersin.org 6
response to regorafenib. We also evaluated the expression of
SHP2, which dephosphorylates pSTAT1 and plays an important
role in HLA-associated immune escape in other types of cancers
(26), and found that regorafenib had no inhibitory effects on SHP2
gene and protein expression (Supplementary Figures 2A, B).
STAT3 activation, which has been reported to have opposite
effects of STAT1 in terms of antitumor immune response and
A

B

DC

FIGURE 3 | Activation of IFNg/STAT1 signaling is responsible for regorafenib-induced HLA-I expression. (A) SNU398 or Huh7 cells were stimulated by regorafenib
(5 mM) at the indicated times with or without IFNg (1 ng/mL) for 72 hours, and then STAT1, ERK, and AKT protein levels were analyzed by Western blotting. b-actin is
used as a loading control. (B) Cells were treated with regorafenib at the indicated concentrations over 72 hours with IFNg. (C) Cells were treated with vehicle, IFNg
alone, or IFNg plus regorafenib for 72 hours. Representative pictures of multiple immunofluorescence staining show the expression of pSTAT1 (green) and HLA-I
(red). Scale bar, 50 mm. (D) SNU398 cells were transfected with STAT1 siRNA or negative control siRNA over 48 hours, and STAT1 protein levels were analyzed by
Western blotting. Then, cells were treated with either IFNg alone or IFNg plus regorafenib for 72 hours, and assayed by flow cytometry for surface HLA-I expression.
Values are expressed as fold change relative to cells treated with IFNg alone. A representative flow cytometry histogram is shown. Reg, regorafenib. (*: p < 0.05).
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contribute to a balanced immune response (28) was also tested by
immunoblot analysis, but regorafenib did not affect STAT3
activation (Supplementary Figure 2A).

Role of the MEK-ERK Pathway in
Induction of HLA-I Expression
by Regorafenib
In other types of cancers, the MAPK pathway has been shown to
be a negative regulator of HLA-I expression (21, 22, 24–26).
Analysis of 372 HCC tissues from TCGA showed a significant
inverse correlation between MAPK1 and HLA-I APP genes
expression including HLA-A, HLA-B, HLA-C, and B2M
(Supplementary Figure 3), highlighting a potential regulatory
function of the MAPK pathway on HLA-I expression in HCC.
Since our immunoblot analysis revealed that regorafenib strongly
inhibited pERK (Figure 3A) , we hypothesized that
downregulation of the MAPK pathway might be associated
with regorafenib-induced HLA-I upregulat ion. The
phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target
of rapamycin and the Raf/MEK/ERK signaling are the major
mediators of several receptor tyrosine kinase pathways involved
in HCC progression. We therefore examined the effects of
trametinib, which selectively inhibits the ERK kinase (MEK),
on HLA-I expression in HCC cells, compared with the pan-PI3K
inhibitor buparlisib. We first confirmed that trametinib and
buparlisib inhibited the activation of ERK and AKT,
respectively (Figure 4A). Immunoblot analysis showed that
trametinib markedly augmented STAT1 activation in respond
to IFNg, while buparlisib did not have such effects (Figure 4B).
We next measured gene expression of HLA-A, NLRC5, and IRF1
after treatment with trametinib and bupalisib in the presence of
IFNg. As shown in Figure 4C, expression of these genes was
significantly elevated by trametinib, but not by buparlisib. The
induction of cell surface HLA-I and B2M expression by IFNg was
enhanced with trametinib in a dose-dependent manner, but not
with buparlisib (Figure 4D). These results suggest that the
inhibition of MAPK signaling augments the IFNg response
pathway and subsequent transcriptional induction of HLA-I
molecules in HCC cells. Taken together, downregulation of
MAPK signaling might be one of the mechanisms by which
regorafenib promotes HLA-I induction.

Tyrosine Kinase Inhibitors Induce
HLA-I Expression via the Activated
IFNg/STAT1 Pathway
To determine whether elevated HLA-I expression mediated via
enhancement of the IFNg response pathway by regorafenib is a
general phenomenon induced by other TKIs, Huh7 cells were
treated with sorafenib, lenvatinib, or cabozantinib, as well as
regorafenib, in the presence of IFNg. First, similar suppression of
pERK was observed with all of these treatments, while
regorafenib showed the strongest inhibition of pERK
(Figure 5A). We then found that STAT1 activation and
subsequent expression of IFNg response genes were also
augmented by all of the TKIs (Figures 5B, C). Furthermore,
cell surface expression of HLA-I and B2M was found to be
Frontiers in Oncology | www.frontiersin.org 7
significantly enhanced by these TKIs (Figure 5D). These results
suggest that HLA-I expression in HCC cells may be commonly
induced by many different types of TKIs, which inhibit the
MAPK pathway.
DISCUSSION

Several studies have indicated that the approved TKIs for HCC,
such as sorafenib, lenvatinib, regorafenib, and cabozantinib, can
alter the immune landscape in the tumor microenvironment,
indicating the potential for synergy with cancer immunotherapies.
In this study, we describe a novel mechanism of TKIs to alter tumor
cell phenotype through modification of cell surface molecule
expression in HCC cell lines. Our findings reveal that TKIs
upregulate cell surface HLA-I and B2M expression via
augmentation of the IFNg/STAT1 pathway, and that inhibition of
the MAPK pathway by TKIs might be involved in the STAT1
activation. To the best of our knowledge, this is the first study to
address the effect of TKIs on HLA-I expression in HCC cells.
Potentially, it may be one of the mechanisms by which TKIs
enhance the response to ICIs against HCC.

HLA- I expression has a key role in the tumor cell recognition
by CTLs. Our flow cytometric analysis showed that the levels of
cell surface HLA-I and B2M were greatly induced by regorafenib
in the presence of IFNg. Although we could not confirm whether
recognition by CTLs is enhanced by the upregulation of HLA-I
and B2M, it has been well established that deficient expression of
HLA-I components, including B2M, is a key factor contributing
to tumor progression and immunotherapy resistance. Conversely,
augmenting the IFNg response pathway and the expression of
HLA-I molecule enhances CTL-mediated anti-tumor immunity
in many human cancers (11–13, 29). On the other hand,
upregulation of HLA-I molecules on tumor cells is involved in
escape from NK cell recognition and, thus, promotes disease
progression in tumors that are immunologically controlled
mainly by NK cells (30). In HCC, it has been reported that
higher HLA-I expression leads to high sensitivity for cytotoxic T
lymphocytes and better prognosis in not only HCC cells (18, 19),
but also patients with HCC (14, 15). From the analysis of 372
HCC dataset, the expression levels of genes involved in HLA-APP
are strongly correlated with those of T cell inflammation
(Supplementary Figure 4). In addition, a systematic review and
meta-analysis of gastrointestinal cancers including HCC also
showed that high HLA- I expression was related to a better
prognosis (31). We think increased HLA-I expression can play
an important role in the combination with TKIs and
immunotherapy at least partly. Further studies are needed to
prove clinical significance of HLA-I upregulation by TKIs.

In the absence of additional IFNg stimulation, induction of
cell surface HLA-I protein expression was not observed with
regorafenib, while regorafenib alone increased HLA-I APP gene
expression in HCC cells. This may in part reflect much lower
basal expression of NLRC5, IRF1, and HLA-I APP genes,
compared with post-IFNg stimulation, as observed in Figure 2.
Similarly, decreased IRF1 gene expression has also been reported
August 2021 | Volume 11 | Article 707473
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in Huh7 cells compared with primary hepatocytes (32), and the
expression of IRF1 mRNA in HCC tissues is lower than that in
adjacent noncancerous tissue (33). Our results suggest that
treatment with regorafenib alone affects HLA-I APP genes but
is insufficient to upregulate cell surface HLA-I molecules; thus,
additional IFNg stimulation is required to induce cell surface
HLA-I expression by regorafenib. IFNg is a cytokine that is
generally present in the tumor microenvironment, which
contains CTLs (34). Even if tumors initially lack CTLs, TKIs
including regorafenib have the ability to induce CTL infiltration
and function by reducing immunosuppressive cells or by
normalizing the HCC vasculature (6, 7), resulting in the
secretion of IFNg. Our findings suggest that the upregulation
Frontiers in Oncology | www.frontiersin.org 8
of HLA-I expression by regorafenib might raise a positive-
feedback cycle leading to better recognition by CTLs and
increased generation of IFNg.

In the present study, we revealed that the activation of STAT1
is responsible for regorafenib-mediated HLA-I expression.
STAT1 is generally considered to be a tumor suppressor and is
known to regulate cell survival, proliferation, and immune
responses (35). Current research has indicated that the
expression of STAT1 is downregulated in a variety of tumor
cells, and low STAT1 expression often indicates a poor prognosis
for several types of cancers including HCC (36). Recently,
Shigeta et al. reported that STAT1 activation is induced by
regorafenib in HCCs both in vitro and in vivo (7), in
A

B

D

C

FIGURE 4 | Downregulation of the MEK/ERK pathway is involved in regorafenib-induced STAT1 phosphorylation and HLA-I expression. SNU398 or Huh7 cells were
cultured with trametinib or buparlisib at the indicated concentrations in the presence of IFNg (1 ng/mL) for 24 hours (A) or for 72 hours (B) and then, ERK, AKT, and
STAT1 protein levels were analyzed by Western blotting. b-actin is used as a loading control. (C) Cells were treated with buparlisib (0.1 mM) or trametinib (0.1 mM) for
48 hours with IFNg. HLA-A, NLRC5 and IRF1 mRNA expression was analyzed using real-time PCR. Data are expressed as fold change relative to vehicle-treated
cells. (D) Cells were treated with trametinib or buparlisib at the indicated concentrations with IFNg for 72 hours. HLA-I and B2M surface protein expression were
analyzed by flow cytometry and presented as MFI. A representative flow cytometry histogram is shown. (**: p < 0.01, ***: p < 0.001).
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agreement with our results. These findings suggest that
regorafenib directly targets VEGFRs, Tie2, PDGFR and BRAF
but may also have an indirect activating effect on STAT1, an
immune-relevant target.

The PI3K/AKT signaling and the MEK/ERK signaling are the
two major mediators of several receptor tyrosine kinase targeted
by regorafenib. Among them, the MEK/ERK pathway has been
shown to negatively affect HLA-I protein expression in other
types of cancers (21–24). Using the selective MEK inhibitor
trametinib and PI3K inhibitor buparlisib, we revealed that
inhibition of the MEK/ERK pathway, but not of the PI3K/AKT
pathway, enhanced STAT1 activation and subsequent expression
of cell surface HLA-I and B2M molecules in HCC cell lines.
Frontiers in Oncology | www.frontiersin.org 9
Consistent with our in vitro findings, trametinib has been
reported to activate STAT1 and subsequent HLA-I induction
in many other types of cancers (24, 37, 38). Notably, ERK has
been identified as a transcriptional repressor of IFNg response
genes including STAT1 (39). It has also been shown that ERK is a
negative regulator of IFNg/STAT1 signaling by promoting
STAT1 ubiquitination (40). These results suggest that the
inhibition of ERK can upregulate STAT1 protein expression,
although the mechanism of STAT1 phosphorylation remains
unknown. Given that regorafenib directly inhibits Raf/MEK/
ERK signaling, it has been suggested that downregulation of
this signaling is one of the mechanisms by which regorafenib
promotes STAT1 activation. The other TKIs such as sorafenib,
A

B

D

C

FIGURE 5 | Tyrosine kinase inhibitors induce HLA-I expression by augmenting the IFNg/STAT1 signaling pathway. (A, B) Huh7 cells were treated with each drug at
5 mM in the presence of IFNg (1 ng/mL) for 24 hours (A) or for 72 hours (B). Immunoblotting analysis was performed to detect the protein levels of ERK, AKT, and
STAT1. b-actin was used as a loading control. (C) Huh7 cells were treated with indicated inhibitors at 5 mM with or without IFNg over 48 hours. NLRC5 and IRF1
mRNA expression was analyzed using real-time PCR. Data are expressed as fold change relative to vehicle-treated cells. (D) Huh7 cells were treated with each drug
at the indicated concentrations with IFNg. Cell surface HLA-I and B2M levels were measured 72 hours later by flow cytometry. The y-axis represents average MFI for
3 independent experiments, expressed as fold change relative to cells treated with IFNg alone. A representative flow cytometry histogram is shown. Sor, sorafenib;
Len, lenvatinib; Reg, regorafenib; Cab, cabozantinib. (*: p < 0.05, **: p < 0.01, ***: p < 0.001).
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lenvatinib, and cabozantinib also showed inhibitory effects on
ERK activation. Among these drugs, regorafenib had the most
potent effects on HLA-I expression at both the mRNA and cell
surface protein levels, possibly dependent on it having the
strongest inhibitory activity against ERK. Considering our
findings, trametinib, which is already approved for BRAF-
mutated melanoma, can greatly potentiate the induction of
HLA-I protein expression and, thus, might be a candidate for
further clinical study in HCC with the addition of an ICI.

According to previous reports, the upregulation of HLA-I
molecules by MAPK pathway inhibition is observed in cells
harboring activating mutations in specific MAPK pathway genes.
Among the 5 liver cancer cell lines used in this study, 3 cell lines
have oncogenic alterations known to activate the RAS/MAPK
pathway (Huh7 and SNU387 with FGF19 amplifications; HepG2
with NRAS mutation) (41). However, regardless of these gene
alterations, we observed the effects of regorafenib on HLA-I
expression in all of the 5 cell lines. This might be due to the
constitutive activation of MAPK signaling in HCC being
dependent on aberrant upstream signals, inactivation of Raf
kinase inhibitor protein, and induction by hepatitis viral
proteins (42). This result raises the possibility of regorafenib to
benefit a wide variety of HCC cells in terms of the upregulation
of HLA-I molecules.

In summary, we have demonstrated that TKIs, those are
approved for the treatment of HCC, can augment the IFNg/
STAT1 signaling pathway, and thereby increase the upregulation
of cell surface HLA-I molecules in HCC cells. We also found that
downregulation of MAPK signaling might be one of the
mechanisms by which TKIs promote HLA-I induction. Our
findings provide novel evidence that TKIs alter the tumor cell
phenotype, which may mediate tumor immune response.
Further study is warranted to evaluate the effects of TKIs on
HLA-I expression and immune response in HCC animal models
and patients. We believe that our findings support the clinical
investigation of combination therapy with TKIs and
immunotherapies for the treatment of HCC.
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Supplementary Figure 1 | Regorafenib induces cell cytotoxicity, regardless of
the presence of IFNg. (A) SNU398 or Huh7 cells were treated with each drug at
increasing concentrations in the presence or absence of IFNg (1 ng/mL) for 72 hours
and assayed for cell viability by Cell Count Reagenet SF. Data are expressed as fold
change relative to vehicle-treated cells. (B)Cells were treated with regorafenib at the
indicated concentrations with or without IFNg and assayed for cell cytotoxicity by
LDH Cytotoxicity Assay Kit.

Supplementary Figure 2 | Regorafenib has no inhibitory activity on SHP2 and
STAT3. (A) SNU398 or Huh7 cells were stimulated by regorafenib (5 mM) at the
indicated times with or without IFNg (1 ng/mL) for 72 hours, and then SHP2 and
STAT3 protein levels were analyzed by Western blotting. Tubulin was used as a
loading control. (B) Cells were treated with regorafenib at 5 mM with or without IFNg
over 48 hours. SHP2 mRNA expression was analyzed by real-time PCR. Data are
expressed as fold change relative to vehicle-treated cells.

Supplementary Figure 3 | Gene expression of MAPK1 is negatively correlated
with that of HLA-I in TCGA HCC datasets. Correlation between MAPK1 and HLA-A
(A), HLA-B (B), HLA-C (C), B2M (D) transcripts from 372 HCC samples in TCGA
are shown. Data for HCC patients from TCGA were obtained from cBioPortal. Gene
expression correlations were assessed according to the Spearman coefficient.

Supplementary Figure 4 | Expressions of genes associated with HLA-APP are
correlated with those of T cell inflammation in TCGA HCC datasets. Correlation
between HLA-APP and T cell inflammation transcripts from 372 HCC samples in
TCGA are shown. Data for HCC patients from TCGA were obtained from
cBioPortal. Gene expression correlations were assessed according to the
Spearman coefficient.
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