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Background: Given the similarities in clinical manifestations of cystic-solid pituitary
adenomas (CS-PAs) and craniopharyngiomas (CPs), this study aims to establish and
validate a nomogram based on preoperative imaging features and blood indices to
differentiate between CS-PAs and CPs.

Methods: A departmental database was searched to identify patients who had
undergone tumor resection between January 2012 and December 2020, and those
diagnosed with CS-PAs or CPs by histopathology were included. Preoperative magnetic
resonance imaging (MRI) features as well as blood indices were retrieved and analyzed.
Radiological features were extracted from the tumor on contrast-enhanced T1 (CE-T1)
weighted and T2 weighted sequences. The two independent samples t-test and principal
component analysis (PCA) were used for feature selection, data dimension reduction, and
radiomics signature building. Next, the radiomics signature was put in five classification
models for exploring the best classifier with superior identification performance.
Multivariate logistic regression analysis was then used to establish a radiomic-clinical
model containing radiomics and hematological features, and the model was presented as
a nomogram. The performance of the radiomics-clinical model was assessed by
calibration curve, clinical effectiveness as well as internal validation.

Results: A total of 272 patients were included in this study: 201 with CS-PAs and 71 with
CPs. These patients were randomized into training set (n=182) and test set (n=90). The
radiomics signature, which consisted of 18 features after dimensionality reduction, showed
superior discrimination performance in 5 different classification models. The area under the
curve (AUC) values of the training set and the test set obtained by the radiomics signature
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are 0.92 and 0.88 in the logistic regressionmodel, 0.90 and 0.85 in the Ridge classifier, 0.88
and 0.82 in the stochastic gradient descent (SGD) classifier, 0.78 and 0.85 in the linear
support vector classification (Linear SVC), 0.93 and 0.86 in the multilayers perceptron (MLP)
classifier, respectively. The predictive factors of the nomogram included radiomic signature,
age, WBC count, and FIB. The nomogram showed good discrimination performance (with
an AUC of 0.93 in the training set and 0.90 in the test set) and good calibration. Moreover,
decision curve analysis (DCA) demonstrated satisfactory clinical effectiveness of the
proposed radiomic-clinical nomogram.

Conclusions: A personalized nomogram containing radiomics signature and blood
indices was proposed in this study. This nomogram is simple yet effective in
differentiating between CS-PAs and CPs and thus can be used in routine clinical practice.
Keywords: pituitary adenoma, craniopharyngioma, radiomics, machine learning, predictive model, nomogram
INTRODUCTION

Pituitary adenomas (PAs) and craniopharyngiomas (CPs) are the
two most common neoplasms in the sellar/parasellar region (1).
PAs are benign tumors arising from the adenohypophysial cells;
with an incidence of 80–90 patients per 100,000 population, they
account for 15-20% of all central nervous system (CNS) tumors
(2, 3). Cystic-solid pituitary adenomas (CS-PAs) refer to those
PAs with such features as cystic change, necrosis, and
hemorrhage. CPs are also benign neoplasms that are thought
to be derived from the remnants of Rathke’s pouch or primitive
craniopharyngeal duct (4, 5). CPs are relatively rare compared
with PAs, with an incidence reported to be approximately 0.13-
7.1 patients per 100,000 population; they account for 2-5% of all
CNS tumors in adults and 5.6-13% in children (6–8). Although
with different origins and pathogenesis, CS-PAs and CPs share
many commonalities in their clinical manifestations, including
intracranial hypertension, endocrine dysfunction, and visual
disturbance. Besides, treatment considerations and prognosis
are also different for the two entities. Therefore, accurate
preoperative differentiation between them carries great
clinical importance.

Up till now, preoperative identification of CS-PAs and CPs is
primarily based on the combined information from different
imaging modalities. Computed tomography (CT) is useful in
demonstrating calcification, a feature that can often be observed
in CPs, but this feature can also be present in some cases with
CS-PAs (9, 10), thus diminishing its differentiating effectiveness.
Magnetic resonance imaging (MRI), with the advantages of good
tissue contrast, no bone artifacts, and multi-faceted imaging, is
currently the most established imaging modality for the
diagnosis of sellar/parasellar tumors (11). Several studies have
investigated possible MRI features that can help differentiate
between these two tumor types, such as tumor location, tumor
shape, T1 image signal intensity, and cystic changes. Their results
preliminarily showed the effectiveness of certain imaging
features. However, a major limitation of these features lies in
their subjective and qualitative nature. The actual performance of
these parameters is highly subjected to the experience and expert
2

knowledge of the neurosurgeons/neuroradiologists, which limits
their clinical application. In contrast, objective and quantitative
methods are preferable in these scenarios.

Radiomics is an emerging method for such tasks (12).
Radiomics can extract a large number of image features in a
high-throughput manner from medical images, which can
quantitatively and objectively reflect tumor texture and
heterogeneity (13–15). These features are usually impossible to
be directly detected by the naked eye. In previous studies,
radiomics has been applied to the differential diagnosis as well
as prognosis prediction in various brain tumors, such as
meningiomas (16–18), gliomas (19–21), and metastases (22),
and lymphomas (23). However, its utility in sellar/parasellar
tumors is still unclear. Besides, some preoperative blood
indices, especially inflammatory markers, also deserve
investigation. These indices appear to be of diagnostic and
prognostic value in several neoplastic diseases including
intracranial tumors (24, 25). These two categories of parameters
share the advantage of being able to be retrieved directly from
routine preoperative examination and thus suitable for future
clinical application.

In the present study, we aimed to determine whether routine
preoperative data could be used to differentiate between CS-PAs
and CPs. We developed a multivariate prediction model based on
a combination of preoperative bi-parametric MRI and blood
indices, and internally validated its diagnostic performance. In
addition, we presented the model as a nomogram for ease of
clinical use.
PATIENTS AND METHODS

Study Population
This study was conducted in accordance with the Declaration of
Helsinki and approved by the institutional review board of
Wuhan Union Hospital, the patients’ informed consent was
waived due to the retrospective nature of the study. We
collected cases from January 2012 to December 2020 that were
pathologically confirmed as CS-PAs or CPs in the database.
July 2021 | Volume 11 | Article 709321

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhao et al. Differentiation of CS-PA and CP
All patients were assessed by the inclusion and exclusion criteria.
The inclusion criteria were as follows: (1) pathologically
diagnosed with CS-PAs or CPs; (2) preoperative MRI included
CE-T1 weighted and T2 weighted sequences (3) the number of
lesion-bearing image slices was not less than three; (4) blood
examinations included blood routine test and liver function test,
which should be performed within two weeks before surgery; (5)
there were no apparent signs of infection. The exclusion criteria
were as follows: (1) with incomplete MRI data [for example,
some patients may undergo MRI scans in other hospitals, or MRI
data were incomplete/inaccessible on the Picture Archiving and
Communication System (PACS)]; (2) with a history of brain
trauma, brain tumors, surgery, hematological diseases, or
Frontiers in Oncology | www.frontiersin.org 3
ongoing infectious diseases; (3) have received chemotherapy,
radiotherapy, or hormone therapy for any reasons before
surgery. Finally, 272 patients were included in this study, of
which 201 were with CS-PAs and 71 were with CPs. This
selection process is presented in Figure 1.

Data Acquisition and Processing
The preoperative MRI images were collected from the PACS of
the Radiology Department in our hospital. These images were
performed using a 1.5T (Siemens Avanto, Erlangen, Germany)
or 3.0T (Siemens Trio, Erlangen, Germany) magnetic resonance
clinical scanner with standard head and neck coils, and the scans
were performed in coronal, sagittal, and transverse positions.
FIGURE 1 | The flowchart of patient selection.
July 2021 | Volume 11 | Article 709321
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The sequence parameters on the CE-T1 weighted images were as
follows: The repetition time (TR)/echo time (TE)= 660/10 ms,
data matrix = 256 × 256, slice thickness = 3 mm, flip angle = 90°.
The sequence parameters on the T2 weighted images were as
follows: TR/TE= 3000/65 ms, data matrix = 256 × 384, slice
thickness = 5 mm, flip angle = 90°. The contrast-enhanced
scanning was conducted within 200 s after injection of
gadopentetate dimeglumine (0.1 mmol/kg). In our study, CE-
T1 and T2-weighted images were used for analysis.

Region of interest (ROI), drawn manually by one researcher
(Z Zhao, with 3 years of experience in PA research), was
performed layer by layer on CE-T1 and T2 weighted images
for all patients by using ITK-SNAP software (University of
Pennsylvania, www.itksnap.org). Then, the complete 3D
images of the tumor were extracted after segmentation. Lots of
irrelevant information will be introduced when painting a very
small tumor area. Therefore, the sections with too small tumor
areas (<10 pixels) are eliminated in the process of tumor
segmentation. Since the tumor region is usually not as strongly
enhanced as the surrounding tissues after gadolinium-based
contrast administration, CE-T1 weighted images can
distinguish PAs and CPs from surrounding tissues, thereby
facilitating segmentation of ROI on the images (26). In
addition, CE-T1 weighted images were also referred when the
tumor boundaries on T2 weighted images were uncertain.

In order to assess the stability of the identification features, 50
patients were randomly selected from the entire samples.
Another experienced neurosurgeon (DD Xiao, with 6 years of
experience in sellar tumor research) also described ROI on CE-
T1 and T2 weighted images. Then the same feature extraction
process was performed on the ROI drawn by the two researchers,
and the inter-observer correlation coefficient (ICC) was
calculated to evaluate the consistency of all quantitative
features extracted from CE-T1 and T2 weighted images.
Moreover, disagreements regarding tumor boundaries were
recorded and resolved by a senior neurosurgeon (PF Yan, with
10 years of clinical experience in neurosurgery).

Extraction of Radiomic Features
The feature extraction was conducted by using the open-source
python package named pyradiomics (version 3.0.0, htps://github
com/AIM-Harvard/pyradiomics) (27). The images were pre-
processed before feature extraction, including normalization,
discretization and resampling to a 3x3x3mm isotropic voxel
size. These steps are considered to improve the reliability and
robustness of radiomic analysis and are recommended by the
software package developer as part of the workflow (28, 29).
There are three types of features calculated in total. First-order
statistic features (N=18) describe the histogram of voxel intensity
values contained within the ROI through the widely used
metrics, such as mean, standard deviation, and variance.
Geometric features (N=14) describe the 3D shape and size of
the ROI and were calculated only on the 3Dmask of the ROI (i.e.,
independent from the gray level intensity distribution in the
ROI). Textural features describing patterns or spatial distribution
of voxel intensities were calculated from gray level co-occurrence
Frontiers in Oncology | www.frontiersin.org 4
matrix (GLCM, N=21), gray level size zone matrix (GLSZM,
N=16), gray level run length matrix (GLRLM, N=16),
neighboring gray tone difference matrix (NGTDM, N=5), gray
level dependence matrix (GLDM, N= 14) texture matrices. In
addition to the original image, 10 derived images were generated
using LoG or Wavelet filters. Hence, a total of 1015 features were
extracted for each patient: 14 shape features, 198 first-order
features, and 803 textural features. In addition, the volume of the
entire tumor was calculated by using PyRadiomics, too. The
algorithm can be found in Supplementary Section 1.

Blood Indices
The blood indices within two weeks before surgery was obtained
and included from the electronic medical record system. If
multiple results are available, the latest results before surgery
will be used. From these results, the absolute counts of white
blood cells (WBC), red blood cells (RBC), hemoglobin, platelets,
neutrophils, lymphocytes, monocytes, albumin and fibrinogen
(FIB) were collected. Furthermore, the following blood indices
were calculated through the above indices: NLR (the neutrophil-
to-lymphocyte ratio), dNLR [derived NLR, neutrophil/
(leukocyte- neutrophil)], PLR (the platelet-to-lymphocyte
ratio), MLR (the monocyte-to-lymphocyte ratio), LMR(the
lymphocyte-to- monocyte ratio), NPR (the neutrophil-to-
plate let rat io) , NPI [prognost ic nutr i t ional index,
albumin+(5*lymphocyte)], SII (platelet*NLR). This calculation
method has been reported in many studies (25, 30, 31).

Feature Selection Method
Firstly, the features of the CE-T1, T2 and CE-T1&T2 were
normalized with z-scores in order to obtain a standard normal
distribution of image intensities. Z-scores normalization is also
called standard deviation standardization. The mean value of the
processed data is 0 and the standard deviation is 1, the
conversion formula is as follows:

X∗ =
X − X
s

Where X* is the transformed eigenvalue of the variable X, X is
the mean value of the original data, s is the standard deviation of
the original data.

High-dimensional data may contain highly redundant and
irrelevant information, which may lead to overfitting and greatly
reduce the performance of the machine learning algorithm (32).
Therefore, feature dimensionality reduction is necessary. In this
study, the two steps were performed to achieve the best
dimensionality reduction effect and effectively avoid overfitting.
The meaningful features were selected based on the univariate
statistical test (t-test) between the CS-PAs group and the CPs
group in all patients. Then, the principal component analysis
(PCA) with varimax-rotation was applied for dimensionality
reduction, and in an effort to retain more variance and reduce
redundancy of the variables. Furthermore, the logistic regression
was conducted in all samples to compare the diagnostic
performance with the feature sets of CE-T1, T2 and CE-
T1&T2, respectively.
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Construction of Classification Models
Based on the above model comparison, the feature set with
diagnostic performance was selected for classification model
construction. Since the patient numbers of CS-PAs and CPs
are quite different, the patients were divided into a training set
and test set with 2:1 according to stratification cross-validation.
The random up-sampling technique is used to up-sample the
training set so that the positive and negative sample sizes of the
training set are the same (The positive and negative samples refer
to CS-PAs and CPs in this study, respectively.). The t-test was
employed to filter the meaningless features, next the PCA
was applied for data dimensionality reduction and the variance
was set to 0.9. In order to avoid overfitting in the training set, the
recursive feature elimination method offive-fold cross-validation
was conducted to select the optimal feature set size.

Besides, for the purpose of exploring better machine-learning
classification models, we applied five machine learning
algorithms: logistic regression, Ridge classifier, stochastic
gradient descent (SGD) classifier, linear support vector
classification (Linear SVC) and multilayers perceptron (MLP)
classifier. The area under the curve (AUC), accuracy, sensitivity
(i.e. true positive rate) and specificity (i.e. true negative rate) were
used to evaluate the predictive performance and stability of the
classifiers. Then the trained model was assessed in an
independent test set. The classifier with AUC>0.9 in the
training set and the highest AUC value in the test set are
considered to be the final radiomics model. Feature
classification methods are all implemented using SCRICIT-
LEARN machine-learning library.
Frontiers in Oncology | www.frontiersin.org 5
Development of an Individualized
Nomogram
The Least absolute shrinkage and selection operator (LASSO)
was performed for filtering the variables on the following clinical
candidate predictors: age, gender, tumor volume, blood indices
and their derivation results. A recursive feature elimination
method of five-fold cross-validation was applied to select the
best l (a parameter in LASSO to be determined).

Giving that providing a more personalized prediction model,
combined the remaining clinical parameters and the radiomics
signature, a nomogram based on multiple logistic regression was
established in the training set and validated in the test set. The
overall workflow of radiomics processing and nomogram
construction is shown in Figure 2.

The calibration curves were plotted for the training and test
sets, and the Hosmer-Lemeshow test was conducted to assess the
agreement between the predicted risks and observed outcomes.
Furthermore, the decision curve analysis (DCA) was conducted
to determine the clinical usefulness of the nomogram by
quantifying the net benefits at different threshold probabilities.

Statistical Analysis
The statistical analysis and figure plots were performed using R
software (version 4.0.1; http://www.R-project.org) and Python
software (version 3.7, http://www.python.org). The continuous
variables are reported as mean ± standard deviation (SD) or
median and inter quartile range (IQR), whereas categorical
variables are presented as the absolute and relative frequencies.
Statistical testing utilized non-parametric tests with Mann-
FIGURE 2 | The overall workflow of radiomics processing and nomogram construction.
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Whitney U test and Kruskal-Wallis test for continuous variables,
and the chi-square test or Fisher exact test for categorical
variables. All statistical tests were two-tailed and conducted
with a statistical significance level set at p<0.05.
RESULTS

Patient Characteristics
Among of 272 patients included in this study (age, 50.11 ± 11.85
years), 201 (73.9%) were diagnosed as CS-PAs and 71 (26.1%) as
CPs based on gold standard-postoperative pathological results.
The patients characteristics in the groups of CS-PAs and CPs are
listed in Table 1. Demographic results show that the patients of
the CS-PAs group and the CPs group have significant statistical
significance in age (p<0.001) and tumor volume (p=0.028), but
there was no significant difference in gender (p=0.417). Among
the blood indices, WBC count (p<0.001), neutrophil (p<0.001),
monocyte (p=0.023) and FIB (p<0.001) are statistically different
between the CS-PAs group and CPs group, and the other
indicators are not statistically significant (all p>0.05).
Moreover, satisfactory inter-observer reproducibility was
achieved for both CE-T1 and T2 imaging features, with the
calculated ICC range of 0.753–0.932 for CE-T1 features and
0.732–0.895 for T2 features. Therefore, it can be basically
considered that the ROIs drawn by two neurosurgeons are
highly consistent.

Feature Selection Method
Firstly, we applied the t-test between the CS-PAs group and the
CPs group in all patients as a prefilter for meaning features.
Therefore, 730, 455, and 1185 features are retained in the CE-T1,
T2, CE-T1&T2, respectively, after the t-test. Next, the remaining
features of three feature sets were reduced by PCA and then three
new matrices are formed by data information with variance
greater than 0.9. It is found that the new matrix of CE-T1&T2
performed better diagnostic performance than CE-T1 or T2 by
Frontiers in Oncology | www.frontiersin.org 6
using the logistic regression model to evaluate the entire sample
(Supplementary Figure S1). From this result, we can speculate
that multi-modal MRI features are superior to single-modal MRI
features in terms of differential diagnosis of tumors, which agrees
with those reported by Li et al. (33).

Construction of Classification Models
The patients were divided into the training set and test set with
2:1 according to stratification cross-validation, including 182
patients in the training set and 90 patients in the test set.

The feature set of CE-T1&T2 is used to construct the
classification model due to predominant diagnostic performance.
The t-test and PCA were applied for feature filtering and reduction,
and features with variance greater than 0.9 were retained. Finally, an
optimal feature set with 18 features is obtained through the recursive
feature elimination method of five-fold cross-validation
(Supplementary Figure S2). Based on the above representative
features, they are put into 5 classifier models for training, and an
independent test set is used for model verification. In the training set,
the AUC value and accuracy of logistic regression are 0.92 and 0.85,
Ridge classifier is 0.90 and 0.85, SGD classifier are 0.88 and 0.79,
Linear SVC are 0.78 and 0.80, and MLP classifier are 0.93 and 0.87,
respectively. The results in the test set are also excellent, the AUC
value and accuracy of logistic regression are 0.88 and 0.83, Ridge
classifier are 0.85 and 0.79, SGD classifier are 0.82 and 0.81, Linear
SVC is 0.85 and 0.76, and MLP classifier is 0.86 and 0.80,
respectively. These data and the 95% confidence interval (CI) of
AUC are listed inTable 2. The receiver operating characteristic curve
(ROC) of the training and test sets for five classification models are
showed in Figure 3. The logistic regression model has represented
the most reliable diagnostic performance in discrimination between
CS-PAs and CPs whether in the training set or the test set.

Development of an Individualized
Nomogram
The radiomics signature, the absolute counts of WBC and FIB, and
age were identified as independent factors for differentiating CS-PAs
TABLE 1 | Baseline characteristics of patients with CS-PAs and CPs.

CS-PAs CPs P value

N 201 71
Age (mean ± SD) 48.3 ± 13.5 37.3 ± 19.9 <0.001
Gender (%) 0.417
Male 40 102
Female 31 99

Tumor volume (median [IQR]) 9323.26 [4949.48, 15792.47] 10828.50 [7044.23, 21169.28] 0.028
Laboratory test (median [IQR])
RBC 4.15 [3.83, 4.46] 4.08 [3.75, 4.53] 0.996
Hemoglobin 126 [115, 134] 123 [114, 132] 0.474
Platelet 210 [172, 252] 223 [166, 276] 0.290
WBC 6.51 [5.16, 8.97] 9.39 [5.57, 15.10] <0.001
Neutrophil 3.69 [2.66, 6.72] 6.51 [2.75, 13.42] <0.001
Lymphocyte 1.73 [1.07, 2.25] 1.52 [0.70, 2.05] 0.250
Monocyte 0.40 [0.29, 0.52] 0.43 [0.32, 0.65] 0.023
Albumin 41.0 [37.4, 44.3] 41.1 [36.6, 44.4] 0.550
FIB 3.17 [2.78, 3.89] 3.02 [2.58, 3.37] <0.001
July 2021 | Volume 11 | Article
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and CPs. Themodel that incorporated these independent predictors
was developed and presented as a nomogram (Figure 4).

Performance Assessment of the
Nomogram
The radiomic-clinical nomogram, involved the radiomics
signature, age, WBC count, and FIB, yielded an AUC of 0.93
(95% CI, 0.89–0.96) in the training set and 0.90 (95% CI, 0.85-
0.95) in the test set. The radiomic-clinical nomogram was
significantly superior to the radiomics model whether in the
training set or the test set (p=0.031 and p=0.038 respectively;
DeLong test).

The calibration curve of the radiomic-clinical nomogram
demonstrated good calibration in the training set and the test
set (Figures 5A, B). The Hosmer–Lemeshow test showed a
nonsignificant statistic difference in the training and test set
(p=0.367 and p=0.113, respectively), suggesting no departure
from the perfect fit.

The DCA for the clinical model, radiomics model, and
radiomic-clinical nomogram are presented in Figure 6. The
DCA showed that if the threshold probability is higher than
20%, then using a radiomic-clinical nomogram to diagnose CS-
PAs and CPs differentially has a greater advantage than using a
radiomics model and simple clinical model in terms of
clinical application.
Frontiers in Oncology | www.frontiersin.org 7
DISCUSSION

On account of the similarity of clinical symptoms, imaging
features and lesion location between CS-PAs and CPs, it is
challenging to accurately differentiate between the two tumors
before surgery. Existing studies have suggested that PAs and CPs
are different in imaging characteristics, and the cystic change is
the main criterion for distinguishing them. However, both CS-
PAs and CPs will have different degrees of cystic changes, thus
this criterion is of little significance in the differential diagnosis of
CS-PAs and CPs. Furthermore, the treatment strategies for these
two tumors are different in clinical practice. The surgical
treatment is recommended for CPs once found due to the
aggressive behavior, while CS-PAs can be treated by the wait-
and-see approach if there are no clinical symptoms. What’s
more, the surgical methods of the two tumors are not the same
even if they are treated surgically. Most patients of the surgical
method for CS-PAs is transnasal sphenoidal microsurgery, while
CPs is basically craniotomy. Therefore, it is necessary to
accurately differentiate and diagnose the two types of tumors
before surgery.

Certainly, some neurosurgeons and radiologists have made
sustained efforts to solve the above problems. Zhang et al. (34)
constructed a model for identifying between CS-PAs and CPs
based on 5 different imaging manifestations and 3 types of
TABLE 2 | Diagnostic performance of classifiers in the training and test groups.

Training set Test set

AUC Score 95%CI Accuracy AUC Score 95%CI Accuracy

Logistic regression 0.92 0.89-0.95 0.85 0.88 0.81-0.94 0.83
Ridge classifier 0.90 0.86-0.94 0.85 0.85 0.78-0.93 0.79
SGD classifier 0.88 0.85-0.92 0.79 0.82 0.77-0.89 0.81
Linear SVC 0.78 0.72-0.83 0.80 0.85 0.76-0.93 0.76
MLP classifier 0.93 0.89-0.96 0.87 0.86 0.78-0.91 0.80
July 2
021 | Volume 11 | Arti
SGD Classifier, stochastic gradient descent classifier; Linear SVC, linear support vector classification; MLP Classifier, multilayers perceptron classifier; AUC, area under the curve; CI,
Confidence interval.
A B

FIGURE 3 | The predictive performance of distinguishing between CS-PAs and CPs in different classifiers. (A) The receiver operating characteristic curve (ROC) and
the area under the curve (AUC) of the five different classifiers are showed in the training set, respectively. (B) The ROC and AUC of the five different classifiers are
showed in the test set, respectively. SGD Classifier, stochastic gradient descent classifier; Linear SVC, linear support vector classification; MLP Classifier, multilayers
perceptron classifier.
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radiomic texture features. In the same year, their team used 5
machine learning algorithms to establish different differential
diagnosis models for the two tumors based on 17 different
features. The best AUC value of the training group was 0.804
and the test group was 0.845, which achieved good diagnostic
results (13). Therefore, the non-invasive radiomic features based
on the freely available images can be used as a more convenient
biomarker for identifying these two tumors. Unfortunately, these
two retrospective studies did not construct a nomogram that can
be applied clinically. We have developed and verified a diagnostic
nomogram based on radiomic features and blood indices, which
contains four items: radiomics signature, age, WBC count and
FIB. It helps to personalize diagnosis of CS-PAs and CPs before
surgery by combining radiomic features and clinical risk factors
into an easy-to-use nomogram.

Data processing, closely related to the performance of the model,
is an indispensable process in machine learning (32).
Frontiers in Oncology | www.frontiersin.org 8
Standardization of images and data can not only uniformly
transform data of different magnitudes into the same magnitude
to make the data comparable, but also can improve the convergence
speed and reduce the amount of calculation. Z-score, as the most
commonly used data standardization method, was applied in this
study. It is especially suitable when the maximum and minimum
values in the data are unknown. Furthermore, the high-dimensional
features of small data may lead to overfitting, and unbalanced
categories of tumors may lead to misleading results (32, 35). In our
study, the t-test was used to screen out features that are not
statistically different from CS-PAs and CPs (these features have
no discriminative significance), and then PCA was conducted to
select sensitive component features, which could make our model
more reliable and robust. The principle of PCA is to delete the
redundant features (closely related variables) for all the features
originally proposed, and create few new features that are pairwise
uncorrelated as possible. Interestingly, these new variables keep the
FIGURE 4 | Developed radiomic-clinical nomogram. The nomogram, incorporated radiomics signature, age, WBC count and FIB, was developed in the training set.
The risk represents the predictive probability of CS-PAs.
A B

FIGURE 5 | Calibration curve of the radiomic-clinical nomogram in the training and test sets. (A) Calibration curve of the radiomic-clinical nomogram in the training
set. (B) Calibration curve of the radiomic-clinical nomogram in the test set. The calibration curve showed the calibration of the models in terms of the consistency
between the predictive performance of CS-PAs and the actual results observed for calibration. The Y-axis represents the actual performance, and the X-axis
represents the performance predicted by the nomogram. The oblique dashed line represents the perfect prediction by an ideal model. The red and green solid lines
represent the performance of the nomogram in the training set and the test set, respectively. In addition, a fit closer to the diagonal dashed line indicates a better
prediction. (The Hosmer–Lemeshow test showed p=0.367 and p=0.113 in the training and test set, respectively).
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original information as much as possible in reflecting the
information of the tumors (36, 37).

In this study, we tried to compare the classification models
based on CE-T1 weighted images, T2 weighted images, and CE-
T1&T2 weighted images in the identification of CS-PAs and CPs.
The results demonstrated that CE-T1&T2 weighted images are
better than the single CE-T1 weighted and T2 weighted images.
This finding is consistent with many previous reports that the
value of multi-modals imaging information is higher than that of
single-modal imaging information in both diagnosis and
prognosis models. The study was performed by Zhang et al. to
predict the brain invasion of meningiomas. They considered that,
compared with the T1-CE sequence model or T2 sequence model,
the combination of the T1-CE and T2 sequences model increased
the discrimination ability by 4.77% and 6.34%, respectively (38).
In addition, in terms of the comparison of the single-sequence
model, in the study of Zeynalova et al. (39), the result showed that
T2-weighted images is better in predicting the consistency of
pituitary macroadenoma. Peng et al. (35) also obtained consistent
results, which showed that the T2-weighted images are better
than the CE-T1 weighted images and T1 weighted images for the
classification of pituitary tumor subtypes. In the preliminary
model exploration of our study, T2-weighted images contains
more discrimination information than CE-T1 weighted images.
On the contrary, Niu et al. (40) did not think so, in the model of
predicting the invasion of cavernous sinus by pituitary tumors,
they concluded that the AUC value of the T1-CE radiomics
model (0.796) was higher than that of the T2 radiomics model
(0.720). Therefore, the feature of CE-T1 model was chosen as the
final radiomics signature according to the Bayesian information
criterion. The reason for this discrepancy may not be clear, as for
the potential mechanism needs to be further studied.
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Note that three independent clinical predictors are used for the
differential diagnosis of CS-PAs and CPs, including age,WBC count
and FIB. Age as an independent predictor is well understood by us.
CS-PAs usually occur in young adults, while CPs occur mostly in
children and adults. The age of the patients with CPs has a bimodal
distribution, with the peak onset being 5-14 years old and 50-74
years old, respectively (41). White blood cells are widely existed in
various tumors, especially malignant tumors, which are closely
related to the important biological characteristics of tumors such
as proliferation, migration, immune escape and prognosis (42–44).
To the knowledge of us, malignant tumors are prone to recurrence
or regrowth even after complete resection. The biological
characteristics of CPs are precisely similar to this situation. Chen
et al. (25) showed that in the detection results of peripheral blood
inflammatory markers, theWBC and lymphocyte counts of the CPs
group were higher than those of pituitary tumors, and the difference
was statistically significant (p<0.05), which means that the progress
of CPs may be related to inflammation. Furthermore, the existing
reports have proved that the value of FIB in the differential diagnosis
and prognosis of tumors. The theory, firstly proposed in 1865, was
that the tumor is conducive to the activation of coagulation
function, and then hypercoagulable state or chronic disseminated
intravascular coagulation for tumor patients (45). Therefore, the
radiomics model plus three readily available clinical variables make
the prediction performance of the nomogram more superior.

Certainly, some limitations of this studywarrantmention. Firstly, it
is a retrospective study, thus some uncertain confounding factorsmay
exist. Secondly, the patients with available preoperative MRI, blood
indices and postoperative pathological results were only included for
analysis, and there were relatively few samples of patients with CPs in
the studypopulation.Thirdly, all patientswere froma single-center, no
external validationwas performed.Althoughwe randomly divided the
patients into the independent training set and test set. If amulti-center
data setwithdifferentparameters isused, theperformanceof themodel
may be different. Fourthly, there are more and more multi-omics
researches, thus radiomics can be combined with other omics such as
genomics, so as to more accurately identify tumors and guide
postoperative comprehensive treatment.

In conclusion, the study found that the logistic regression based
on dual-parameters has better diagnostic performance than the
other four classifiers. In addition, a new nomogram based on
radiomics signature and clinical indicators was proposed, which
provided a non-invasive and convenient method to individually
distinguish between CS-PAs and CPs in clinical practice.
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