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Background: Accurate evaluation of lymph node (LN) status is critical for determining the
treatment options in patients with non-small cell lung cancer (NSCLC). This study aimed to
develop and validate a 18F-FDG PET-based radiomic model for the identification of
metastatic LNs from the hypermetabolic mediastinal–hilar LNs in NSCLC.

Methods: We retrospectively reviewed 259 patients with hypermetabolic LNs who
underwent pretreatment 18F-FDG PET/CT and were pathologically confirmed as
NSCLC from two centers. Two hundred twenty-eight LNs were allocated to a training
cohort (LN = 159) and an internal validation cohort (LN = 69) from one center (7:3 ratio),
and 60 LNs were enrolled to an external validation cohort from the other. Radiomic
features were extracted from LNs of PET images. A PET radiomics signature was
constructed by multivariable logistic regression after using the least absolute shrinkage
and selection operator (LASSO) method with 10-fold cross-validation. The PET radiomics
signature (model 1) and independent predictors from CT image features and clinical data
(model 2) were incorporated into a combined model (model 3). A nomogram was plotted
for the complex model, and the performance of the nomogram was assessed by its
discrimination, calibration, and clinical usefulness.

Results: The area under the curve (AUC) values ofmodel 1 were 0.820, 0.785, and 0.808 in
the training, internal, and external validation cohorts, respectively, showing good diagnostic
efficacy for lymph node metastasis (LNM). Furthermore, model 2 was able to discriminate
metastatic LNs in the training (AUC 0.780), internal (AUC 0.794), and external validation
cohorts (AUC 0.802), respectively. Model 3 showed optimal diagnostic performance among
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the three cohorts, with an AUC of 0.874, 0.845, and 0.841, respectively. The nomogram
based on the model 3 showed good discrimination and calibration.

Conclusions: Our study revealed that PET radiomics signature, especially when
integrated with CT imaging features, showed the ability to identify true and false
positives of mediastinal–hilar LNM detected by PET/CT in patients with NSCLC, which
would help clinicians to make individual treatment decisions.
Keywords: non-small cell lung cancer (NSCLC), hypermetabolic lymph node, metastasis, positron emission
tomography/computed tomography (PET/CT), radiomics
INTRODUCTION

Lung cancer is still the leading cause of cancer-related mortality
worldwide (1). Non-small-cell lung cancer (NSCLC) accounts
for about 85% of lung cancers (2). The occurrence of
contralateral or multiregional mediastinal–hilar lymph node
metastasis (LNM) in NSCLC might exclude the patient from
primary surgery (3, 4), which is significantly associated with
unfavorable clinical prognosis. Therefore, accurate lymph nodal
staging is critical for determining the treatment options in
patients with NSCLC for clinicians.

In recent years, 18F-fluorodeoxyglucose (18F-FDG) positron
emission tomography/computed tomography (PET/CT) has
played an important role in evaluating lymph node (LN) status,
which can provide both anatomic and glucose metabolic
information (5). Numerous studies have shown that intrathoracic
nodal status is considered to be positive for metastatic spread if the
activity of the node was higher than the mediastinal background
(6–8). However, a high level of FDG uptake can also be detected in
benign LNs, illustrating the risk of misjudging inflammatory and
reactive lymph nodes for metastatic lymph nodes (9, 10). The
variable positive predictive rate for assessment of LN involvement
with PET/CT has also been recognized, ranging from 32.3% to 89%
(9–11).Obviously, the false-positive results of patients withNSCLC
could misguide clinicians in making treatment decisions, such as
missing surgery or more aggressive treatments, and ultimately
influence prognosis. Although PET/CT has a good negative
predictive value for the investigation of LNM (9), we have done
some studies and published several papers (12, 13). Therefore,
various practice guidelines recommend invasive staging procedures
with potential side effects for patients with PET positive lymph
nodes (14).

Toexhaust the full potential informationofnoninvasive radiology
images, amore sophisticated approach is urgentlyneeded.Radiomics
is a recently emerging technique for high-throughput mining of
tumor characteristics from the images, which reflects the underlying
tumorbiology andbehavior (15, 16). In thefield of radiomics analysis
based on PET/CT, there has been recently increasing evidence
demonstrating the advantages of radiomics as a noninvasive
approach in the diagnosis, staging, prognosis, and treatment
outcome of lung cancer (13, 17–19). Simultaneously, several studies
have focused on assessing the lymph node metastasis using the
machine learning algorithm in NSCLC. Yin et al. (20) built a
support vector machine model to predict the mediastinal LNM.
2

Pak et al. (21) developed adecision treemodel todetect themetastatic
mediastinal LNs. However, there are currently few PET-based
radiomics nomograms for evaluating hypermetabolic mediastinal–
hilar LNs of NSCLC. Moreover, traditional methods for
discriminating metastatic LNs are based on CT morphological
features. Thus, the purpose of our study was to develop a predictive
model that combined 18F-FDG PET radiomics features and
conventional CT image features to identify true and false positives
of mediastinal–hilar lymph node metastasis detected by PET/CT in
patientswithNSCLCand tovalidate thepredictive valueof themodel
in an independent external data set.
MATERIALS AND METHODS

Patient and Lymph Node Selection
In this retrospective study, we screened and collected 18F-FDG
PET/CT and clinical data about patients as the primary cohort in
The First Affiliated Hospital of Wenzhou Medical University
from January 2012 to September 2020. The patients for the
external validation cohort were selected from Shaoxing People’s
Hospital from November 2016 to December 2020. The study was
approved by The Institutional Review Boards of the two
participating institutions, and informed consent was waived for
this retrospective study.

The specific inclusion criteria were as follows: 1) with
pathological diagnosis of NSCLC, 2) with systematic hilar and
mediastinal lymph node dissection or the positive results of
endobronchial ultrasound-guided transbronchial needle aspirate
(EBUS-TBNA) biopsy due to the high false-negative rates [Several
studies showed that the positive predictive value and negative
predictive values of EBUS-TBNA ranged 92%–100% and 11–
97%, respectively (22, 23)], and 3) underwent 18F-FDG PET/CT
examination. The exclusion criteria for patients were 1) the interval
between the pathologic findings and PET/CT scan more than 3
weeks, 2) thepatientwithout the increasedFDGuptakeLNs, 3)with
distant metastasis, 4) with history of other cancer, 5) received
neoadjuvant chemoradiotherapy, and 6) images with poor quality
as follows: 1) the leakage of 18F-FDG at the injection site, which
leads to a decrease of FDGuptake of images; 2) imageswith inferior
quality due to noise, respiratory artifacts, or other movement
artifacts; and 3) missing PET images or CT images. The exclusion
criteria for LNs were 1) mediastinal–hilar LN uptake below or
comparable to mediastinal background activity, 2) the boundary
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between the hypermetabolic LNs and the primary lesions not clear
onPET images, 3) with a short-axis diameter of LNs less than 5mm
insufficient to outline a valid volume of interest (VOI), and 4) VOIs
did not have enough voxels (at least 64 voxels).

Specific process of determining the pathology of LNs was as
follows: 1) radiological, surgical, and pathological LN division all
followed the eighth edition of the Union for International Cancer
Control TNM classification. The histological findings served as
the reference standard for comparison with the PET/CT findings
(2). When the LNs dissected in the operation or performed by
EBUS-TBNA were pathologically proven to be metastatic in one
region, then the identified LNs with hypermetabolic activity on
PET images in the same region were regarded as metastatic. 3) If
all the harvested LNs within surgery were pathologically proven
to be non-metastatic in one region, then the identified
hypermetabolic LNs on PET images in the same region were
considered as non-metastatic. 4) If systematic LN dissection did
not include one region, then the hypermetabolic LNs on PET
images in this region were excluded. The detailed flowchart of
enrollment is shown in Supplementary Material Image 1.

According to the above criteria, 228 lymph nodes (219
NSCLC patients) were identified as the primary cohort, which
were assigned to a training cohort (LN = 159) and an internal
validation cohort (LN = 69) by the random split-sample (7:3)
method (Figure 1). Sixty lymph nodes (40 NSCLC patients) were
included in the external validation cohort.

PET/CT Protocol
18F-FDG PET/CT scanning was performed on either Gemini TF 64
(Philips, the Netherlands, 219 patients, 84.6%) from The First
Frontiers in Oncology | www.frontiersin.org 3
Affiliated Hospital of Wenzhou Medical University or General
Electric Discovery Elite (Waukesha, WI, 40 patients, 15.4%) from
Shaoxing People’s Hospital. All patients were instructed to fast for at
least 6 h (blood glucose levels below 110 ml/dl) before being injected
with 18F-FDG (3.7–5.55 MBq/kg). PET/CT images were acquired
from the skull base to the mid-thigh after the injection with an
average interval of 59.6 ( ± 7.8) min. Attenuation correction of the
PET scan was based on the CT images. The detailed acquisition
parameters are given in Supplementary Material Table 1,
according to the Image Biomarker Standardization Initiative
(IBSI) guidelines (24).

PET Radiomic Feature Extraction
FDG-PET images with the DICOM format were imported into
LIFEx freeware (version 6.30, http://www.lifexsoft.org), and the
software was used to extract radiomics features. The VOI of the
LN was manually delineated and segmented slice by slice using 3D
drawing tools by two experienced nuclear medicine physicians
who were blinded to pathological results. Forty percent of the
maximum standardized uptake value (SUVmax) was adopted as a
threshold to optimize the VOI. VOIs were placed to avoid adjacent
vessels, bronchi, and the chest wall. For image preprocessing, the
resampling voxel size was set at 4 × 4 × 4 mm on PET images in all
the patients. We chose an isotropic voxel size of 4 mm because the
original voxel size was closer to 4 mm in the two centers of our
study. Intensity discretization and rescaling were performed
automatically by the software. For PET images, intensity
discretization was processed by decreasing the continuous scale
to 64 bins, and the intensity rescaling bonds ranged from 0 to 20.
Radiomic features were divided into seven groups: conventional
FIGURE 1 | The flowchart shows the process of LN enrollment and scheme.
September 2021 | Volume 11 | Article 710909
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features (e.g., SUVmax, SUVmean), discretized/histogram
(HISTO), shape, gray-level zone-length matrix (GLZLM), gray-
level run-length matrix (GLRLM), neighborhood gray-level
different matrix (NGLDM), and gray-level co-occurrence matrix
(GLCM). Radiomic features extracted from PET images are shown
in Supplementary Material Table 2. Source data are available in
Supplementary Material Table 3.

CT Image Analysis
Based on the CT component of the PET/CT images, the analysis
of the image features was performed by two experienced nuclear
medicine physicians. In case of disagreements, consensus was
sought by discussion. The following conventional CT features
about LN were analyzed: size, shape, margin, calcification, cystic
change, CTmax, and CTmean. The size of the lymph node was
defined by the maximal short-axis diameter. We defined round
or oval as regular shape according to CT images, and any other
shape was defined as irregular. CTmax and CTmean were
measured at the largest section of LN on transverse CT images.

Radiomic Feature Screening and
Signature Building
To verify interobserver reliability, the intraclass correlation
coefficient (ICC) was performed for each VOI-based radiomic
feature. Features with ICC greater than 0.8 were selected for
subsequent investigation. Additionally, least absolute shrinkage
and selection operator (LASSO) regression was applied to further
screen the optimal subset from the training cohort and develop a
formula by multivariable logistic regression to calculate the
radiomics score (Rad-score). Ten-fold cross-validation was
used to tune the optimal lambda (l) value that was the
minimum mean cross-validated error.

Construction of Three Prediction Models
Model 1: PET Radiomics Signature
In the training cohort, the optimal PET radiomics features
identified by the above LASSO logistic regression procedure
using 10-fold cross-validation were utilized to construct a
radiomics signature (Rad-score), which formed the prediction
model 1.

Model 2: CT Image Features and Clinical Data
The differences between LNM and non-LNM groups in CT
image features and clinical data were firstly assessed using
univariable logistic regression analysis. Features with p < 0.05
in the univariate analysis were included in subsequent
multivariable analysis, and model 2 was built in the training
cohort using the backward step-down process.

Model 3: Combination of Model 1 and Model 2
The complex model (model 3) was the combination of model 1
and model 2 by multivariable logistic regression using backward
stepwise selection in the training cohort.

Validation of the Models and Clinical Utility
The receiver operating characteristic (ROC) curves and the areas
under the curve (AUCs) were used to measure discriminative
Frontiers in Oncology | www.frontiersin.org 4
ability of the three different models in the training, internal
validation and external validation cohorts, respectively. The
complex model was also implemented into a nomogram to
provide the clinicians an intuitive and quantitative tool for the
predictive probability of LNM in NSCLC patients with the
increased FDG uptake LNs. Calibration curves were applied to
assess the consistency between the nomogram-predicted and
actual probability by the Hosmer–Lemeshow goodness-of-fit test
in the three cohorts, respectively. A p-value of the Hosmer–
Lemeshow test > 0.05 indicated a good fit. In addition, decision
curve analysis (DCA) was adopted to determine the clinical
usefulness of the nomogram by evaluating the net benefits at
different threshold probabilities. The TRIPOD reporting
checklist was appended as additional file: Supplementary
Material Table 4.

Statistical Analysis
IBM SPSS (version 25.0) and R software (version 3.6.3) were used
for data analysis. Numerical data were expressed as mean ±
standard deviation, and categorical data were described as
numbers. Numerical data: for comparisons between two groups,
unpaired t test was performed when the variances were
homogeneous, and a non-parametric test (Mann–Whitney) was
performed for non-homogeneous variances. For comparisons
among three groups, ANOVA was used when the variances were
homogeneous. Categorical data: the chi-square test for the analysis
of two-by-two contingency tables was performed, and Fisher’s
exact test for the analysis of multiple rows and columns was
performed. All radiomics features were normalized using the
function “scale” of the R-package “base.” Univariable and
multivariable logistic regression analyses were performed. The
LASSO regression was carried out by the “glmnet” package. The
nomogram and calibration curves were performed with the “rms”
package. The “pROC” package was used to analyze ROC curves.
Comparison of ROCs was performed by the Delong test. Origin
(version 2018) was used to plot the ROC curves. DCA was
generated using the “rmda” package. All statistical tests were
two-sided, and p value < 0.05 was considered statistical significance.
RESULTS

Clinical and Pathological Characteristics
The clinicopathologic characteristics in the training (LN= 159),
internal (LN= 69), and external validation cohorts (LN = 60) are
summarized in Table 1. There were no statistical differences in
gender (p =0.789), age (p = 0.09), pathological type (p = 0.333),
LN station (p = 0.153), or pathological acquisition of LNs
(surgery/TBNA) (p= 0.572) among the three cohorts.
Model 1: PET Radiomics Signature
Due to all extracted features with the inter-reader ICC values >0.8
(mean ± standard deviation, 0.865 ± 0.047), all the 70 original
radiomic features were selected for subsequent investigation.
Then, the contours drawn by a higher senior physician were
finally used to calculate the radiomic features for the modelling.
September 2021 | Volume 11 | Article 710909
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Subsequently, 70 radiomic candidate features were reduced to 9
with nonzero coefficients by the LASSO regression (Figure 2).
Then, by multivariable logistic regression analysis, five features
were not statistically significant (p > 0.05). Thus, only four features
were used to build the model in the training cohort. The four
selected radiomic features were DISCRETIZED_HISTO_Excess
Kurtosis, GLRLM_GLNU (Gray-Level Non-Uniformity for run),
GLRLM_RLNU (Run Length Non-Uniformity), and NGLDM_
Coarseness. Eventually, the four optimal radiomics features were
incorporated into radiomics signature. PET_Rad_score = 1.004 +
1.151 × DISCRETIZED_HISTO_Excess Kurtosis − 1.716 ×
GLRLM_ GLNU + 5.651 × GLRL M_RLNU +1.760 ×
NGLDM_ Coarseness (Table 3). The AUC of the model 1 was
0.820 in the training cohort. The sensitivity, specificity, and
accuracy were 61.80%, 90.00%, and 74.22%, respectively (Table 4).
Frontiers in Oncology | www.frontiersin.org 5
Model 2: CT Image Features
and Clinical Data
A comparison of CT image features and clinical data between
LNM and non-LNM groups in the training (LNM = 89; non-
LNM = 70), internal (LNM = 39; non-LNM = 30), and external
validation cohorts (LNM = 33; non-LNM = 27) is listed in
Table 2. Univariate analysis demonstrated that there were no
statistical differences in age, pathological type, LN station, shape,
margin, calcification, and cystic change between the two groups
in all three cohorts. Meanwhile, the univariate analysis showed
that LN size and CTmean were deemed significantly different
between the two groups in all three cohorts. In the training
cohort, there also showed a significant statistical difference in
CTmax and gender through univariate analyses. Subsequently,
gender, LN size, CTmax, and CTmean were finally selected
TABLE 1 | Demographics and lymph node distribution of training and two validation cohorts.

Characteristics Training cohort LN = 159 Internal validation cohort LN = 69 External validation cohort LN = 60 p value

Gender (from M/F patients) 113/46 47/22 40/20 0.789
Age (years) 64.4 ± 9.0 65.2 ± 8.7 67.2 ± 6.9 0.090
Lung cancer _pathology (ADA/
SQCC/other types of NSCLC)

93/49/17 46/17/6 29/22/9 0.333

LN station 0.153
1R/1L/2R/2L/3A/4R/4L 2/1/4/0/1/25/5 1/1/0/1/0/9/2 2/0/0/0/2/9/3
5/6/7/8/9L/10R/10L 10/5/32/1/1/33/17 1/1/14/0/1/15/9 2/1/8/0/1/9/4
11R/11L/12R/12L/13R 11/11/0/0/0 11/2/0/1/0 8/6/2/1/2
Means of obtaining pathology (surgery/TBNA) 127/32 51/18 48/12 0.572
September 2021 | Volume 11 | Article
LN, lymph node; M, man; F, female; ADA, adenocarcinoma; SQCC, squamous-cell carcinoma, NSCLC, non-small cell lung cancer.
TABLE 2 | Comparison of CT image features and clinical data between LNM and non-LNM groups in the three cohorts.

Characteristics Training cohort
(LNM = 89; non-LNM = 70)

Internal validation cohort
(LNM = 39; non-LNM = 30)

External validation cohort
(LNM = 33; non-LNM = 27)

LNM non-LNM P LNM non-LNM P LNM non-LNM P

Gender (from M/F patients) 57/32 56/14 0.029 27/12 20/10 0.821 26/7 14/13 0.031
Age (years) 63.4 ± 9.6 65.7 ± 8.0 0.105 63.7 ± 9.7 67.1 ± 6.8 0.111 66.5 ± 6.4 68.2 ± 7.5 0.350
Lung cancer_pathology 0.407 0.182 0.720
(ADA/SQCC/Other types of NSCLC) 51/26/12 42/23/5 25/8/6 21/9/0 17/11/5 12/11/4
LN station 0.085 0.117 0.455
1R/1L/2R/2L/3A/4R/4L 2/1/4/0/1/14/2 0/0/0/0/0/11/3 1/1/0/1/0/7/2 0/0/0/0/0/2/0 2/0/0/0/2/5/1 0/0/0/0/0/4/2
5/6/7/8/9L/10R/10L 7/3/20/1/1/13/7 3/2/12/0/0/20/10 0/1/8/0/1/4/4 1/0/6/0/0/11/5 2/0/5/0/1/2/3 0/1/3/0/0/7/1
11R/11L/12R/12L/13R 5/8/0/0/0 6/3/0/0/0 7/1/0/1/0 4/1/0/0/0 3/4/1/1/1 5/2/1/0/1
Size (mm) 13.1± 3.6 10.7 ± 2.7 < 0.001 13.2 ± 3.5 10.7 ± 1.8 0.003 11.6 ± 3.0 9.8 ± 2.1 0.019
Shape 0.445 0.093 0.136
Regular 78(87.6) 64 (91.4) 32 (82.1) 29 (96.7) 32 (97.0) 23 (85.2)
Irregular 11(12.4) 6 (8.6) 7 (17.9) 1 (3.3) 1 (3) 4 (14.8)
Margin 0.095 0.093 0.648
Clear 73(82.0) 64 (91.4) 32 (82.1) 29 (96.7) 28 (84.8) 24 (88.9)
Unclear 16(18.0) 6 (8.6) 7 (17.9) 1 (3.3) 5 (15.2) 3 (11.1)
Calcification 0.197 0.151 0.302
None 83 (93.3) 61 (87.1) 35 (89.7) 23 (76.7) 29 (87.9) 21 (77.8)
Presence 6 (6.7) 9 (12.9) 4 (10.3) 7 (23.3) 4 (12.1) 6 (22.2)
Cystic change 0.999 0.999 1.000
None 87 (97.8) 70 (100.0) 36 (92.3) 30 (100.0) 32 (97.0) 27 (100.0)
Presence 2 (2.2) 0 (0.0) 3 (7.7) 0 (0.0) 1 (3.0) 0 (0.0)
CTmax 50.5 ± 41.6 69.0 ± 48.4 0.021 56.2 ± 53.4 88.4 ± 97.1 0.117 71.6 ± 41.1 97.2 ± 56.1 0.065
CTmean 32.1 ± 21.8 42.9 ± 15.1 0.001 32.2 ± 18.8 54.4 ± 43.4 0.019 40.8 ± 7.3 53.3 ± 16.2 0.001
7

p value is obtained by using the univariate analysis between each variable and node status.
LNM, lymph node metastasis; non-LNM, no lymph node metastasis.
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through multivariable logistic regression with a stepwise backward
selection in the training cohort. The results showed that gender
and CTmax were not statistically significant (p > 0.05). Thus, only
LN size and CTmean were significantly independent predictive
factors. The formula of Model 2 = −1.989 + 0.288 × Size− 0.31
CTmean (Table 3). The AUC of model 2 was 0.780 in the training
cohort. The sensitivity, specificity, and accuracy were 79.78%,
68.57%, and 74.84%, respectively (Table 4).

Model 3: Combination of Model 1
and Model 2
A complex model (model 3) incorporating independent
predictors from model 1 and model 2 was developed by
multivariable logistic regression analysis (Table 3). Calculation
formula = 0.6949 + 1.1227 × PET_Rad_score + 0.1114× Size −
0.0531× CTmean. The difference of LN size in Model 2 was
statistically significant (p < 0.001; Table 3). However, there was
no significant statistical difference in the complex model (p =
0.1659; Table 3). The reason for this phenomenon is that there
was a low–moderate correlation between LN size and Rad-score
(Pearson correlation coefficient = 0.556, p < 0.001). The
discriminatory ability of model 3 displayed the highest with an
AUC of 0.874 among the three models in the training cohort
(sensitivity 64.05%, specificity 94.29%, and accuracy 77.36%)
(Figure 3A and Table 4). Moreover, model 3 was statistically
significantly better than both model 1 (p = 0.009) and model 2
(p = 0.011) in the training cohort by the Delong test.

Validation of the Models and Clinical Utility
Based on the formula of the above three models from the training
cohort, the AUC values demonstrated that predictive efficacy was
calculated in the internal and external validation cohort. The
AUC values were 0.785 (model 1), 0.794 (model 2), and 0.845
(model 3) in the internal validation cohort (Figure 3B). The
AUC values were 0.808 (model 1), 0.802 (model 2), and 0.841
(model 3) in the external validation cohort (Figure 3C). The
sensitivity, specificity, and accuracy are shown in Table 4.
Obviously, the complex model showed optimal diagnostic
performance among the three cohorts.
A

B

FIGURE 2 | Radiomics feature selection. (A) Tuning parameter (l) selection
with 10-fold cross validation in the LASSO model via minimum criteria.
Optimal feature selection according to AUC value. (B) LASSO coefficient
profiles of the 70 radiomic features. Dotted vertical lines defined the optimal
values of l. The optimal l value of 0.00472 with log (l) of -5.36 resulting in
nine nonzero coefficients were selected.
TABLE 3 | Results of multivariable logistic regression analysis in the three models.

Models Included features Odds ratio (95% CI) p value Coefficient Intercept

Model 1 Radiomics signature 1.004
DISCRETIZED_HISTO_ExcessKurtosis 3.160 (1.477–7.228) 0.004 1.151
GLRLM_GLNU 0.180 (0.073–0.395) <0.001 -1.716
GLRLM_RLNU 284.479 (26.676–4552.497) <0.001 5.651
NGLDM_Coarseness 5.813 (2.453–15.202) <0.001 1.760

Model 2 Conventional CT images and clinical data -1.989
Size(mm) 1.333 (1.160–1.533) <0.001 0.288
CTmean 0.969 (0.949–0.990) 0.003 -0.31

Model 3: Model 1 + Model 2 0.6949
PET_Rad_score 3.073 (2.018–4.679) <0.001 1.1227
Size (mm) 1.118 (0.955–1.309) 0.1659 0.1114
CTmean 0.948 (0.926–0.971) <0.001 -0.0531
September 2
021 | Volume 11 | Artic
PET_Rad_score, PET radiomics signature; HISTO, histogram; GLRLM, gray-level run-length matrix; GLNU, gray-level non-uniformity for run; RLNU, run length non-uniformity, NGLDM,
neighborhood gray-level different matrix; CI, confidence interval.
The bold values refer to the intercepts for calculation formula.
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According to the good diagnostic efficiency of the complex
model, a nomogram was generated from the training cohort
(Figure 4). The calibration curves demonstrated good
consistency between the nomogram-predicted probability of
LNM and the actual LNM rate in the three cohorts (Figure 5).
There was no statistical significance by the Hosmer–Lemeshow
test (p = 0.437, 0.269, and 0.531, respectively), which showed
good fits for the predicted and actual probabilities of LNM in the
three cohorts (Figure 5). Finally, the DCA of the nomogram for
the training cohort is presented in Figure 6. The decision curve
demonstrated that if the threshold probability is more than 10%,
using the nomogram to predict LNM adds more benefit than
either a “treat all” strategy or a “treat none” strategy.
DISCUSSION

With respect to PET/CT, the mediastinal–hilar lymph node
which had increased glucose uptake is suspected of having
malignant infiltration in patients with NSCLC (7). However,
false positivity was frequently detected due to the reactive
hyperplasia or granulomatous inflammation (9). In this study,
we developed and validated a radiomics nomogram that
incorporates PET radiomics signature and two CT image
features for the identification of metastatic LNs from the
increased FDG uptake LNs in patients with NSCLC.

In recent years, growing evidence suggests that radiomics
analysis can better reflect the spatial distribution of voxels and
enable profiling of intratumoral heterogeneity in a noninvasive way
(15, 25). Radiomics data include first-, second-, and higher-order
statistics. Scaling correction was applied to the radiomics values in
our study. However, this may not take into account site-by-site
differences in scanners, i.e., the radiomics batch effect. Approaches
such as the ComBat function are available to address
such difficulties with radiomics in follow-up studies. The present
study applied radiomics analysis of PET and found that
metastatic LNs showed significant differences on DISCRETIZED
_HISTO_ExcessKurtosis, GLRLM_GLNU, GLRLM_RLNU,
and NGLDM_Coarseness. Among the four texture features,
DISCRETIZED _HISTO_ExcessKurtosis is the only feature
related to the histogram that represents the distribution of gray
level within the VOI. This feature is a relatively simple first-order
parameter that describes the heterogeneity of lesions (26). Hu et al.
(17) found that histogram features (HISTO_Skewness and
HISTO_Kurtosis) extracted from PET had a significant value in
differentiating solitary lung adenocarcinoma from tuberculosis.
GLRLM_GLNU, GLRLM_RLNU, and NGLDM_ Coarseness are
the higher-order radiomic features. Several studies have
demonstrated that the GLRLM and NGLDM texture analysis can
assess the heterogeneity of the lesion (27, 28). Wu et al. (29)
reported that the GLRLM textural feature could be useful in
differentiating the invasiveness of lung adenocarcinoma. The
study by Hoshino et al. (28) presented that NGLDM_Coarseness
was correlated with the real miR-1246 expression in the serum of
esophageal cancer patients. In the present research,
GLRLM_GLNU, GLRLM_RLNU, and NGLDM_Coarseness were
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obviously different between true and false positives of LNM groups,
which indicated that metastatic LNs showed high tissue
heterogeneity than non-metastatic LNs in patients with NSCLC.
Finally, the AUC values of the PET radiomic model were 0.820,
0.785, and 0.808 in the training, internal, and external validation
cohorts, respectively, showing good diagnostic efficacy for LNM.

According to previous studies, combining PET glucose
metabolic information and CT morphological features is more
accurate than PET or CT alone in predicting LN status (30, 31).
Thus, the conventional CT imaging features should be
considered to further enhance the diagnostic accuracy. Our
study demonstrated that there were statistically significant
differences in LN size and CTmean between the LNM group
and non-LNM group, while there were no statistical differences
in shape, margin, calcification, cystic change, and CTmax.
However, Zhao et al. showed that shape, margin, calcification,
and cystic change had a significant effect on the risk of LNM in
patients with thyroid cancer (32). We thought that the
discrepancy might be related to different primary lesions, and
Frontiers in Oncology | www.frontiersin.org 8
more importantly the observer’s subjectivity and poor stability of
morphological assessment. For the LN size, numerous studies
have proved that it is an important parameter in predicting nodal
involvement with malignancy, albeit as a relatively unreliable
parameter in the assessment of LNs with small lesions (33, 34).
Our results also provide evidence that the LN size was a
significantly independent predictive factor in the prediction of
LNM. For the density of LNs, several studies have shown that the
density of benign LNs tends to have higher attenuation, as a
result of the chronic granulomatous inflammation (30, 35),
which were consistent with our results. For clinical data, our
study showed that all of them did not contribute to the model.
The possible reason is that a relatively small number of clinical
features were included.

The combined model (model 3) was statistically significantly
better than both model 1 and model 2 by the Delong test.
Obviously, model 3 showed optimal diagnostic performance
for predicting the risk of LNM from the increased FDG uptake
LNs in NSCLC among the three cohorts, with an AUC of 0.874,
A B C

FIGURE 3 | Diagnostic performance of the three established models was evaluated using ROC curves in the training cohort (A), internal (B), and external validation cohort (C).
FIGURE 4 | A radiomics nomogram was developed incorporating PET Rad_score with conventional CT images (size and CTmean) in the training cohort.
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0.845, and 0.841, respectively. LN size in Model 3 had no
statistically significant difference, while a statistically significant
difference in RAD-score was observed. The results indicated that
RAD-score contributed more to the model than size, and the
nomogram based on model 3 also proved this. Furthermore, the
nomogram demonstrated satisfactory discrimination and
calibration in this internal and external validation study, which
could be easily available to generate an individual probability of
LNM before treatment. Therefore, the nomogram, which can
provide a wealth of complementary information of the images,
may further extend our knowledge and improve the diagnosis.
Although it still could not replace pathological examination at
present, the nomogram could help guide sampling of lymph
nodes to increase the positive biopsy rates.

Our study still had some limitations. First, this is a retrospective
study, thereby having all of the inherent biases of a retrospective
study. Second, there was a relatively small sample size and potential
selection bias. The main reason is that a definite pathologic result of
each hypermetabolic lymph node was necessary, so the lymph node
Frontiers in Oncology | www.frontiersin.org 9
without the result of pathology was excluded. In addition, we have
tried our best to match the precise locations of LNs between PET/
CT images and surgical resection or EBUS-TBNA and achieve a
one-to-one correspondence. Furthermore, most patients who
underwent surgery are early stage with metastasis of only a few or
even isolated lymph nodes in our study. Around 9% of patients were
excluded due to poor image quality, and we do not know how the
results will be thrown by the exclusion of qualitatively judged “bad
images”. (This will be improved in the future in clinical routine as
follows: 1) intravenous catheters were inserted in cubital veins
before injection, and a cotton swab is used to avoid bleeding and
leakage from the injection site after injection. 2) The patients should
be asked tominimize bodymovements to avoidmovement artifacts,
and a relatively low dose of sedative drug would be injected if
necessary. In addition, the patients should be asked to reduce the
flow of respiratory to minimize breathing motion artifacts. 3) We
should strengthen the management of image data transfer and
storage.) Third, although we have tried our best to match the precise
locations of LNs between PET/CT images and surgical resection, it
is difficult to completely avoid the matching bias. A further
prospective study is therefore needed to solve this problem.
Fourth, for VOI, we did not investigate the sensitivity to observer
delineation in addition to laborious and time-consuming manual
delineation. Fifth, only the texture features of PET images in this
study were extracted because hypermetabolic LNs were selected as
subjects. Sixth, our study included a relatively small number of
clinical parameters in the predictive model. Seventh, selection of
hypermetabolic LNs means this diagnostic performance might
disappear in a cohort with a moderately active uptake in LNs.
Therefore, prospective multicenter studies with large-scale should
be carried out to optimize the robustness and reproducibility of the
radiomic model.
CONCLUSIONS

In conclusion, our study revealed that the identified PET
radiomics signature has the potential to be used as a biomarker
for the identification of LNM from the hypermetabolic LNs of
A B C

FIGURE 5 | The calibration curves with Hosmer–Lemeshow test of the nomogram (model 3). (A) Training cohort. (B) Internal validation cohort. (C) External
validation cohort. The x-axis represents the predicted LNM risk, and the y-axis represents the actual probability of LNM. The closer the diagonal dotted blue line fit is
to the ideal line (the pink solid line), the better the predictive ability of the nomogram is.
FIGURE 6 | Decision curve analysis for the nomogram in the training cohort.
The y-axis represented the net benefit. The blue line represents the
assumption that all have LNM. The black line assumes no LNM. The decision
curves indicated that the nomogram was clinically useful.
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NSCLC. Furthermore, our results provided evidence that a
radiomics nomogram that included both the PET radiomics
signature and CT images features had a more significant value
in identifying true and false positives of mediastinal–hilar LNM
detected by PET/CT in patients with NSCLC, which can be used
to help clinicians make individual treatment decisions.
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