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Kidney renal clear cell carcinoma (KIRC) has long been identified as a highly immune-
infi ltrated tumor. However, the underlying role of pyroptosis in the tumor
microenvironment (TME) of KIRC remains poorly described. Herein, we systematically
analyzed the prognostic value, role in the TME, response to ICIs, and drug sensitivity of
pyroptosis-related genes (PRGs) in KIRC patients based on The Cancer Genome Atlas
(TCGA) database. Cluster 2, by consensus clustering for 24 PRGs, presented a poor
prognosis, likely because malignancy-related hallmarks were remarkably enriched.
Additionally, we constructed a prognostic prediction model that discriminated well
between high- and low-risk patients and was further confirmed in external E-MTAB-
1980 cohort and HSP cohort. By further analyzing the TME based on the risk model,
higher immune cell infiltration and lower tumor purity were found in the high-risk group,
which presented a poor prognosis. Patients with high risk scores also exhibited higher ICI
expression, indicating that these patients may be more prone to profit from ICIs. The
sensitivity to anticancer drugs that correlated with model-related genes was also
identified. Collectively, the pyroptosis-related prognosis risk model may improve
prognostic information and provide directions for current research investigations on
immunotherapeutic strategies for KIRC patients.

Keywords: pyroptosis, kidney renal clear cell carcinoma, tumor microenvironment, survival analysis,
prognostic model
INTRODUCTION

Renal cell carcinoma (RCC) is one of the most prevalent urologic malignancies worldwide, with an
estimated annual incidence of 14,000 cancer-related deaths in the United States (1). Approximately
30% of patients harbor distant metastases at the time of diagnosis (2). Patients with metastatic RCC
(mRCC) present a poor prognosis and have a 10% 5-year survival rate, in contrast to that of non-
RCC with an estimated rate of over 55% (3). Kidney renal clear cell carcinoma (KIRC) is the most
frequent histological type and is responsible for approximately 70% of all cases of RCC in adults (4).
Surgical resection remains the primary treatment modality in most patients with KIRC; however,
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30%–40% of patients with localized disease develop metastatic
recurrence during follow-up following surgical resection (2). The
role of immune infiltrations in cancer development has become
the focus of much research. Numerous studies have
demonstrated that the different immune cell infiltrates present
in the tumor are closely related to the clinical outcomes in some
human malignancies (5). KIRC has long been identified and
proven to be a highly infiltrated tumor in genomic studies and
clinical settings (6). It has been estimated that up to 1% of
spontaneous KIRC regression is accompanied by signs of
immune mediation (7). Historically, KIRC is one of the first
malignant tumors to respond to immunotherapy and remains
one of the most sensitive (8). The recent development of cancer
immunotherapies such as immune checkpoint inhibitors (ICIs)
has revolutionized traditional cancer therapy because of its
safety and efficacy (9). However, the response of KIRC to
immunotherapy has been unsatisfactory, as expected, and
effective disease control and therapeutic strategies are required
for further improvements (10). The tumor microenvironment
(TME) represents the primary site of continuous interaction
between neoplastic and immune system cells, and its various
components are associated with tumor progression and
therapeutic outcomes (11, 12). Additionally, multiple cytokines
and various immunosuppressive cells are involved in tumor
immune escape in the KIRC microenvironment (13). Thus,
understanding the regulatory mechanism of the TME is critical
to identify efficient prognostic biomarkers and optimize
individualized immunotherapy regimens against cancer.

The inflammasome is a large cytosolic multiprotein complex
that forms a key component of the innate immune system (14).
Pyroptosis, recognized as a highly specific inflammatory
programmed cell death, is triggered by caspase-1 and -11 (also
known as caspase-4 or -5 in humans) in the canonical and
noncanonical pathways, respectively (15). Pyroptosis results in
cell and organelle swelling, membrane lysis, DNA cleavage, and
the release of intracellular proinflammatory contents such as
interleukin-1b (IL-1b), which induces local or systemic
inflammatory effects (16). Recently, pyroptosis was proven to
be closely related to various human diseases, particularly
malignant tumors. Pyroptosis plays a dual role during tumor
progression (17). During pyroptosis, the various inflammatory
mediators derived from the activation of signaling pathways
affect tumorigenesis. For example, as an essential part of
pyroptosis, NLRP1 mediates caspase-1-dependent secretion of
IL-1b and IL-18 cytokines, which promote skin cancer (18).
Miguchi et al. confirmed that TGFBR2 mutation upregulates the
expression of GSDMC, facilitating colorectal tumor cell
proliferation and tumorigenesis (19). Additionally, as a type of
death, pyroptosis suppresses tumor development and
progression. Wang et al. reported that the downregulation of
GSDMD accelerated the S/G2 cell transition to accelerate gastric
cancer cell proliferation by regulating cell cycle-related
proteins (20).

Currently, most studies have focused primarily on the
intrinsic oncogenic pathways of malignant tumors, and the
function and underlying mechanism of pyroptosis in the TME
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remain unelucidated. Erkes et al. demonstrated that an intact
immune system, particularly CD4+ and CD8+ T cells, is required
for the efficacy of BRAF inhibitors and MEK inhibitors (BRAFi +
MEKi) in melanoma (21). BRAFi + MEKi trigger the activation
of caspase-3, causing the cleavage of GSDME, which is a
hallmark of pyroptosis of tumor cells and is essential for T-cell
activation and tumor regression. The secondary pyroptosis
mediated by the caspase 3-dependent cleavage of GSDME
could be an indispensable intermediary of immune-driven
treatment responsiveness, revealing a potential therapeutic
target in enhancing immunotherapy efficacy. Accordingly,
pyroptosis-related genes (PRGs) involved in regulating the
tumor immune response might be recognized as potential
targets in potentiating the clinical activity of immunotherapies.
Nevertheless, a complete understanding of pyroptosis in KIRC,
including the interactions between pyroptosis and the TME,
remains limited.

In the current work, the constructed clustering subtypes and
pyroptosis-related risk model were essential for improving
clinical risk stratification to make management decisions and
predict prognosis for patients with KIRC. Additionally, we
thoroughly analyzed the prognostic value, role in the TME,
response to ICIs, and drug sensitivity of PRGs in KIRC
patients based on the pyroptosis-related prognosis model to
further study the effects of pyroptosis on the TME. We
performed the present study to provide a novel perspective and
a more detailed understanding of the immune infiltrates of
pyroptosis and identify reliable prognostic predictors for
KIRC patients.
MATERIALS AND METHODS

Data Source
RNA sequencing transcriptome data harmonized to the fragments
per kilobase million (FPKM) of 539 KIRC samples and 72 normal
kidney tissues were downloaded from the TCGA database (https://
tcga-data.nci.nih.gov/tcga/). The corresponding clinical
characteristics, including age, gender, grade, AJCC stage, TNM
stage, and survival status, were also extracted from TCGA.
Patients with simultaneously available mRNA expression profiles
and survival times (OS and DFS) > 0 days were enrolled in the
study. In total, 525 patients were randomly split into a training
cohort (60%; n = 317) and a testing cohort (40%; n = 208) via a 10‐
fold cross‐validation method using the R package “caret”. The
training cohort was used to construct the prognostic risk model,
and the testing cohort and entire cohort were used to verify the
predictive reliability and accuracy of the model. Additionally, the E-
MTAB-1980 cohort downloaded from the ArrayExpress database
(https://www.ebi.ac.uk/arrayexpress/) and Shandong Provincial
Hospital (HSP) cohort were used as the external validation
cohorts. The clinical characteristics of these patients are shown
in Table 1.

Next, 24 PRGs were retrieved from the previously published
literature (22–24). The “limma” package was used to analyze
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differentially expressed PRGs between tumor tissues and
adjacent normal pairs from TCGA.

Consensus Clustering Analysis of PRGs
To investigate the biological characteristics of PRGs in KIRC
patients, we classified the patients into different subtypes using
the “ConsensusClusterPlus” package with a resampling rate of
80% and 50 iterations. PCA was performed to detect differences
in gene expression patterns in distinct KIRC subtypes. The
differentially expressed genes in different subtypes were
subjected to biological process term GO functional annotation.
To illustrate the functions associated with different subtypes of
KIRC, GSEA was performed using the Hallmark gene set
“h.all.v7.2.symbols.gmt” from the MSigDB database (http://
www.broadinstitute.org/gsea) as previously described (25).
GSEA significance was determined as a false discovery rate
(FDR) ≤ 0.25 and nominal p ≤ 0.05.

Construction and Evaluation of the
Pyroptosis-Related Prognostic Risk Model
Univariate Cox proportional hazards regression analysis was used
to assess the prognostic implication of every differentially expressed
PRG, and then the features with a p value < 0.05 in the training
cohort were defined as prognosis-related factors. Next, LASSOCox
regression analysis was performed to screen out the optimal gene
combination to construct the risk model. The optimal values of the
penalty parameter l were finally determined by 10-fold cross-
validation to construct an optimal LASSO regression model. The
coefficient calculated by LASSO regression and gene expression
level were applied to obtain the risk score formula as follows: Risk
score = (exprgene1 × Coefgene1) + (exprgene2 × Coefgene2) + … +
(exprgenen × Coefgenen). Every KIRC patient in the training and
validation cohorts (including the testing cohort, entire cohort, E-
MTAB-1980 cohort, and HSP cohort) received an individual risk
score according to this equation. The subjects were subsequently
assigned intohigh- and low-risk groups using themedian cutoff risk
score as a threshold. Subsequently, Kaplan-Meier curves and ROC
curves were applied to assess the prognostic role of the model. To
verify the clinical application value of the constructed model, we
analyzed the association between the model-based risk score and
clinicopathological features based on the TCGA database.
Additionally, survival analysis was performed using different
subgroups of patients.
TABLE 1 | Characteristics of all patients included in this study.

Variable Training cohort
(n = 317)

Testing cohort
(n = 208)

Entire cohort
(n = 525)

Number (%) Number (%) Number (%)

Age
≤60 158(49.84) 106(50.96) 264(50.29)
>60 159(50.16) 102(49.04) 261(49.71)

Gender
Female 109(34.38) 73(35.1) 182(34.67)
Male 208(65.62) 135(64.9) 343(65.33)

Grade
G1 8(2.52) 5(2.40) 13(2.48)
G2 131(41.32) 95(46.67) 226(43.05)
G3 127(40.06) 77(37.02) 204(38.86)
G4 47(14.83) 27(12.98) 74(14.10)
unknow 4(1.26) 4(1.92) 8(1.52)

AJCC stage
I 147(46.37) 114(71.28) 26149.71)
II 42(13.25) 14(6.73) 56(10.67)
III 75(23.66) 48(23.08) 123(23.43)
IV 52(16.40) 30(14.42) 82(15.62)
unknow 1(0.32) 2(0.96) 3(0.57)

T stage
T1 150(47.32) 117(56.25) 267(50.86)
T2 49(15.46) 19(9.13) 68(12.95)
T3 111(35.02) 68(23.69) 179(34.1)
T4 7(2.21) 4(1.92) 11(2.10)

N stage
N0 138(43.53) 99(47.6) 237(45.14)
N1-3 11(3.47) 5(2.4) 16(3.05)
unknow 168(53) 104(50) 272(51.81)

M stage
M0 252(79.5) 165(79.33) 417(79.43)
M1 49(15.46) 29(13.94) 78(14.86)
unknow 16(5.05) 14(3.76) 30(5.71)
Variable E-MTAB-1980 cohort (n = 101) HSP cohort (n = 186)

Number (%) Number (%)

Age
≤60 44(41.90) 132(70.96)
>60 57(58.10) 54(29.04)

Gender
Female 24(23.76) 121(65.05)
Male 77(76.24) 55(34.95)

Grade
G1 13(12.87) 44(23.66)

G2 59(58.41) 102(54.84)
G3 22(21.78) 28(15.05)
G4 5(4.96) 12(6.45)
unknow 0(0.00) 0(0.00)

AJCC stage
I 66(64.35) 102(54.54)
II 10(9.90) 36(19.36)
III 13(12.87) 24(12.90)
IV 12(11.88) 24(12.90)
unknow 0(0.00) 0(0.00)

T stage
T1 68(67.33) 110(59.14)
T2 11(10.89) 42(22.58)
T3 21(20.79) 25(13.44)
T4 1(0.99) 9(4.84)

(Continued)
Continued

Variable E-MTAB-1980 cohort (n = 101) HSP cohort (n = 186)

Number (%) Number (%)

N stage
N0 11(90.10) 176(94.62)
N1-3 10(9.90) 10(5.38)
unknow 0(0.00) 0(0.00)

M stage
M0 94(93.07) 171(91.94)
M1 7(6.93) 15(8.06)
unknow 0(0.00) 0(0.00)

TABLE 1 | Continued
September 2021 | Volum
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Protein Network Construction
GeneMANIA (http://genemania.org/), a multifunctional and
user-friendly web interface, was utilized for predicting
interactions and functions of genes and gene sets (26). In this
study, we used this web tool to develop a 6-PRG-involved
network and to screen other potential binding partners in the
regulatory network.

Evaluation of the Immune Status, Immune
Cell Infiltration Fractions, and ICIs
Between the Low- and High-Risk Groups
To investigate the immune status of the different groups, we first
quantified the enrichment levels of the 29 immune markers in
each sample by ssGSEA. The estimated score, stromal score,
immune score, and corresponding tumor purity for each patient
were subsequently calculated using the ESTIMATE algorithm
(27). The expression of HLA-genes was also analyzed. Next, we
estimated the relative abundance of LM22 for each contained
sample based on gene expression data through CIBERSORT (6).
Patients with a P value < 0.05 were included, and significance was
assessed based on 1,000 permutations. The proportion of
immune cells was depicted in the violin map to compare the
distributions of LM22 between the subtypes grouped by
clustering analysis. To understand the association between the
model and tumor immune microenvironment, the expression
levels of 17 ICIs were analyzed between the low- and high-risk
groups (28).

Somatic Mutation Analysis
Somatic mutation information of KIRC was downloaded from
the TCGA database. The data which included somatic variants
were extract from Mutation Annotation Format (MAF) form,
and then analyzed by using “maftools” package (29). The
waterfall was used to present the mutation landscapes in
patients with high- and low-risk groups in the KIRC patients.
In this study, the TMB score of each sample was calculated as the
number of mutations/length of exons (30Mb). All KIRC samples
with somatic mutations were divided into the high- and the low-
TMB groups according the median data. Kaplan-Meier analysis
was performed to compare the survival difference between low-
and high-TMB groups. Moreover, we further assessed the
associations of TMB levels with risk score via Wilcoxon test.

TIMER Database and GDSC Database
TIMER (https://cistrome.shinyapps.io/timer/) is a reliable
database to analyze the abundance of tumor-infiltrating
immune cells (30). The “SCNA” module of the TIMER
database was employed to explore the SCNA of risk model-
related genes and effect on the infiltration levels of six
immune cells.

GDSC (https://www.cancerrxgene.org/) is a public online
database for information on drug sensitivity in cancer cells and
molecular markers of drug response, providing a unique resource
to facilitate the discovery of novel targets for cancer therapies
(31). We used GDSC to explore the sensitivity to anticancer
drugs associated with the selected risk signature genes.
Frontiers in Oncology | www.frontiersin.org 4
Patients and Specimens
From January 2012 andMay 2019, 186 KIRC tissue samples were
collected from patients at SPH. No patients received
chemotherapy or radiotherapy before surgery. The pathological
diagnosis was confirmed by two independent pathologists after
surgery. All patients were informed of the importance of follow-
up and were regularly followed every three months after surgery.
All samples were subjected to quantitative real-time polymerase
chain reaction (qRT-PCR) analysis. The study was approved by
the Ethics Committee of SPH, and all patients signed the
informed consents for using their pathological tissues and
related information.

RNA Extraction and qRT-PCR
Total RNA from 186 fresh-frozen KIRC tissue samples was
extracted using the RNAiso plus kit (TAKARA) according to
the manufacturer’s instructions, and the expression of the
model-related genes was further examined by qRT-PCR. The
complementary DNA (cDNA) was synthesized with PrimeScript
RT Reagent kit (TAKARA) according to the manufacturer’s
instructions. The qRT-PCR was performed on LightCycler 480
II System (Roche) using an SYBR Green Master Kit (Roche).
Human b-actin was introduced as an internal reference gene to
normalize mRNA levels. Expression levels of each mRNA were
calculated using the −△Ct method. All trials were conducted in
triplicate. The primers are presented in Supplementary Table 1.

Statistical Analysis
The Mann-Whitney U test was used to compare gene expression
between tumor tissues and adjacent nontumorous tissues. The
Wilcoxon test was used to compare two groups, and the Kruskal-
Wallis test was used to compare more than two groups. Chi-
squared tests were performed to compare the categorical
variables. Qualitative variables were compared using Pearson’s
test, where appropriate. Kaplan-Meier analysis was used to
evaluate OS, and the log-rank test was used to compare the OS
between groups. Univariate and multivariate Cox regression
analyses were implemented to identify independent predictors
of OS. All statistical analyses were conducted using R version
4.01 and SPSS 24.0 (IBM, NY, USA). If not specified above, P <
0.05 was considered statistically significant.
RESULTS

The Expression Level of PRGs
Is Upregulated in KIRC
To explore the biological functions of PRGs and their significance in
KIRC, we initially measured the expression patterns of 24 PRGs in
72 pairs of KIRC samples and adjacent non‐tumor samples based
on The Cancer Genome Atlas (TCGA) database. Differential
analysis revealed that the expression levels of PRGs between
KIRC and normal samples were distinct (Figures 1A, B).
Twenty-one genes were identified as differentially expressed
PRGs, including 20 downregulated genes (NLRP6, GSDMD,
GSDMB, GSDMC, NLRP7, GSDMA, NLRP1, MEFV, NLRP12,
September 2021 | Volume 11 | Article 716854
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NLRP3, NLRC4, NAIP, CASP5, AIM2, CASP8, IFI16, CASP1,
CASP4, CASP3, and PYCARD) and 1 downregulated gene
(NLRP2) in KIRC compared with normal adjacent tissues (P <
0.001). Additionally, no significant difference was found in the
expression of NEK7, GSDME, and ELANE between KIRC and
normal tissues (P > 0.05). Collectively, these findings suggest that
pyroptosis plays an important biological role during tumorigenesis
and disease progression.

To further explore the nature of the interactions among PRGs,
we examined the correlation among 24 PRGs. Most of the
interactions exhibited a significantly positive correlation between
two quantities (Figure 1C). Additionally, NLRP7 was most
correlated with NLRP12 among all the interactions of 24 PRGs.

Two Subgroups Are Different in
Clinicopathological Features and Survival
in KIRC by Consensus Clustering of PRGs
We found that the K-means clustering algorithm with 2 clusters
achieved the clearest population clusters and was considered the
Frontiers in Oncology | www.frontiersin.org 5
optimal value. According to the expression levels of the PRGs
from the TCGA database, the KIRC samples were clustered into 2
subtypes (cluster 1, n = 383 and cluster 2, n = 142) (Figures 2A–C).
We then employed principal component analysis (PCA) to study
the gene expression pattern between the two subtypes and observed
that the distribution pattern of gene expression profiles within the
two groups differed (Figure 2D). Next, the relationships between
the clustering and clinicopathological features were evaluated
(Figure 2E). Cluster 2 was preferentially associated with a higher
M stage (P < 0.01), T stage (P < 0.01), AJCC stage (P < 0.001), and
grade (P < 0.001), while no significant difference was observed for
other parameters, such as age and gender. Additionally, we noticed
that cluster 2 showed a shorter overall survival (OS; P = 7.979e-10)
and disease-free survival (DFS; P = 2.29e-07) than cluster 1
(Figures 2F, G).

The genes that were significantly altered between the two groups
were subjected to gene ontology (GO) analysis. The results were
closely related to immune-related biological processes, including
leukocyte migration, neutrophil activation, and neutrophil-
A

B C

FIGURE 1 | Expression of PRGs in KIRC tissues compared with normal kidney tissues and their interactions. (A) Heatmap of the expression of the 24 PRGs in the
tumors and normal tissues of the TCGA dataset. (B) The expression of PRGs was significantly increased in 72 KIRC compared with that in normal kidney pairs.
(C) Interaction analysis among the 24 PRGs. *P < 0.05, **P < 0.01, ***P < 0.001. ns, no significance.
September 2021 | Volume 11 | Article 716854
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mediated immunity (Figure 2H). Subsequently, gene set
enrichment analysis (GSEA) was conducted, indicating that
immune- and cancer-related hallmarks, including the
inflammatory response, IL6-JAK-STAT3 signaling, and epithelial-
Frontiers in Oncology | www.frontiersin.org 6
mesenchymal transitions signaling, had significant correlations with
cluster 2 (Figure 2I). The above results demonstrated that the two
subgroups determined based on the expression of the PRGs were
strongly linked to the malignancy of KIRC.
A B

H I

C D

E F

G

FIGURE 2 | Diverse clinical characteristics and survival of KIRC between cluster 1 and cluster 2 subtypes in the TCGA cohort. (A) The TCGA KIRC cohort was
divided into two distinct clusters when k = 2. (B) Consensus clustering cumulative distribution function (CDF) for k = 2 to 9. (C) Relative change in the area under the
CDF curve for k = 2 to 9. (D) PCA of the TCGA dataset based on the expression profiles of the 24 PRGs. (E) Heatmap and distribution of clinicopathological
variables between the two clusters. (F, G) Kaplan-Meier curves of OS (F) and DFS (G) for patients with KIRC between the two clusters. (H) Biological processes of
the genes with different expression between the two clusters. (I) GSEA showed that the inflammatory response, IL6-JAK-STAT3 signaling, and PI3K-AKT-mTOR
signaling were significantly enriched in cluster 2. ***P < 0.001.
September 2021 | Volume 11 | Article 716854
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Construction of the Prognostic Risk Model
Based on the TCGA Training Cohort
Because we identified distinct expression patterns in KIRC
patients, we next considered that constructing a pyroptosis-
related risk signature might be useful for predicting prognosis.
We first conducted a univariate Cox regression analysis and
identified 8 PRGs (CASP4, CASP5, NLRP1, NLRP6, AIM2,
IFI16, PYCARD, GSDMB) that were correlated with OS in the
training cohort (P < 0.05) (Figure 3A). All eight PRGs, except
NLRP6, were considered risk genes with HRs > 1. Based on the
above results, to further clarify the prognostic potential, we
Frontiers in Oncology | www.frontiersin.org 7
subsequently conducted LASSO analysis on the expression
values of 8 prognostic PRGs (Figures 3B, C). Ultimately,
6 genes, CASP4, NLRP6, AIM2, IFI16, PYCARD, and
GSDMB, were identified to construct the prediction model.
The prognostic risk model was established based on the
following formula: risk score = (0.0137 × expression value of
CASP4) – (0.0624 × expression value of NLRP6) + (0.0227 ×
expression value of AIM2) + (0.0149 × expression value of IFI16) +
(0.0059 × expression value of PYCARD) + (0.2049 × expression
value of GSDMB). The risk score for each patient in the TCGA
training cohort was calculated, and the patients were stratified into
A B C

D E F

F H

FIGURE 3 | Construction of the prognostic risk model based on the TCGA training cohort. (A) Forest map of 8 PRGs significantly correlated with OS and identified
by Cox univariate analysis. (B) Screening of optimal parameters (lambda) in the LASSO regression model based on the TCGA training cohort. (C) LASSO coefficient
profiles of the 8 PRGs determined by the optimal lambda. (D) Kaplan-Meier curve for the OS of KIRC patients in the high- and low-risk groups in the TCGA training
cohort. (E) ROC analysis of the prognostic model regarding the OS and survival status in the TCGA training cohort. (F) Scatterplots in the top and bottom panels
illustrate the distribution of the risk score and survival status in the TCGA training patients, respectively. (G, H) Univariate (G) and multivariate (H) Cox regression
analyses of the risk score and clinicopathological parameters in the TCGA training cohort.
September 2021 | Volume 11 | Article 716854
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a high-risk group and a low-risk group according to the median
risk score. Kaplan-Meier analysis showed that the prognosis of the
KIRC patients in the high-risk group was poorer than that in the
low-risk group (P < 0.0001; Figure 3D). The prognostic model
showed a satisfactory prediction efficiency, with an area under the
ROC curve (AUC) value of 0.728 (Figure 3E). Additionally, the
risk score distributions and patient survival status are shown
in Figure 3F.

Univariable and multivariable Cox regression analyses were
utilized to identify whether the model-based risk score could be
an independent predictor of OS. The results showed that age,
grade, AJCC stage, T stage, M stage, and risk score were closely
related to OS (P < 0.001) in univariate analysis (Figure 3G).
Likewise, age (P < 0.001), grade (P = 0.003), AJCC stage (P =
0.018), and risk score (P = 0.002) maintained their prognostic
values in multivariate Cox analysis (Figure 3H). Therefore, these
data demonstrated that the risk score was an independent
prognostic indicator for patients with KIRC.

Internal and External Validation of the
Prognostic Risk Model in KIRC Patients
To explore whether the prognostic model was generalizable and
harbored similar prognostic value in different populations, we
applied it to the internal (TCGA testing and entire) and
independent external (E-MTAB-1980 and HSP) validation
cohorts. Regarding the predictions in the TCGA testing cohort,
Frontiers in Oncology | www.frontiersin.org 8
Kaplan-Meier analysis showed that patients with high risk scores
had worse OS (P < 0.001) (Figure 4A). The AUC value for
predicting OS in the TCGA testing cohort was 0.717 (Figure 4E).
For the TCGA entire cohort, the model could still separate
analytic samples into various subgroups of clinical importance.
The Kaplan-Meier survival curve indicated that patients in the
high-risk group exhibited a significantly lower OS than those in
the low-risk group (P < 0.001) (Figure 4B). The AUC value of
the entire TCGA cohort was 0.772, which was comparable to the
model results described above (Figure 4F). Next, External
validation using the E-MTAB-1980 and HSP cohorts was
performed to validate the robustness and validity of the
constructed model. Consistent with TCGA analysis, Kaplan-
Meier analysis suggested that the patients in the high-risk
group had a significantly shorter OS within both the E-MTAB-
1980 cohort and HSP cohort (Figures 4C, D). The AUC values
of the E-MTAB-1980 cohort and HSP cohort were found to be
0.711 and 0.705, respectively (Figures 4G, H). The risk score
distributions and patient survival status in four cohorts were
shown in Supplementary Figure 1. Overall, the risk score
showed favorable discrimination ability in all four cohorts.

Clinical Evaluation of the Prognostic Risk
Model Based on the TCGA Entire Cohort
To validate the clinical value of the prognostic model, we evaluated
the relationship between the risk score and clinical features.
A B

C D

E F

G H

FIGURE 4 | Internal and external validation of the prognostic risk model in KIRC patients. (A–D) Kaplan–Meier survival analysis of OS between patients with low-risk
scores and high-risk scores in the TCGA testing cohort (A), TCGA entire cohort (B), E-MTAB-1980 cohort (C), and HSP cohort (D). (E–H) ROC analysis of the
prognostic model in the TCGA testing cohort (E), TCGA entire cohort (F), E-MTAB-1980 cohort (G), and HSP cohort (H).
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A heatmap was used to visualize differences in the expression levels
of the six genes between the low- and high-risk groups. The analysis
demonstrated that risk genes (CASP4, AIM2, IFI16, PYCARD,
GSDMB) were upregulated in the high-risk group, while the
expression of protective genes (NLRP6) was downregulated
(Figure 5A). Additionally, a significant difference was found
among the diverse groups in terms of the M stage (P < 0.001), T
stage (P < 0.001), AJCC stage (P < 0.001), and grade (P < 0.001). We
also noticed that the risk score increased with the progression or
severity of the tumor (Figure 5B).

Subsequently, stratified survival analyses were performed to
examine the good applicability of our prognostic model. As
expected, the patients with Grade 1 disease showed the best
Frontiers in Oncology | www.frontiersin.org 9
prognosis, followed by those with Grade 2, Grade 3, and Grade 4
disease. Furthermore, similar trends were presented in the AJCC
stage, T stage, and M stage (Figure 5C). We next conducted
stratified survival analyses according to the different clinical
features. Excitingly, we observed that the patients with high-risk
scores were associated with a shorter OS across all the subgroups
(Supplementary Figure 2). Thus, the dysregulation of pyroptosis is
critically involved in the development and progression of KIRC.

Analysis of Network and Gene Set
Enrichment Analysis (GSEA)
A gene interaction network was visualized using GeneMANIA to
gain further insight into the possible relationships between the
A

B

C

FIGURE 5 | Clinical evaluation of the prognosis risk model based on the TCGA entire cohort. (A) Heatmap of the expression of 6 PRGs and distribution of clinical
features between the low- and high-risk groups. (B, C) Expression of the model-based risk score (B) and Kaplan-Meier survival analysis (C) in KIRC patients stratified by
different clinicopathological characteristics (grade, AJCC stage, T stage, and M stage). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. ns, no significance.
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six PFRs and their potential binding partners. The regulatory
network carried twenty-six genes, including six target PFRs and
additional twenty genes that were recognized automatically
through GeneMANIA (Figure 6A). We then analyzed the
correlation of the six genes in KIRC and found that the
interaction between CASP4 and IFI16 (r = 0.61) was most
significant and displayed a positive correlation (Figure 6B).

GSEA was performed to investigate the relevant biological
processes and signaling pathways using the pyroptosis model
Frontiers in Oncology | www.frontiersin.org 10
based risk score for classification. The results suggested that
cancer- and immune-related ‘Hallmark’ gene sets, such as
epithelial-mesenchymal transition, inflammatory response,
PI3K/AKT/mTOR signaling pathway, and Wnt/b-catenin
signaling pathway that were highly enriched in the high−risk
phenotype (Figure 6C). Moreover, several classical pathways
from KEGG, Reactome, BioCarta, PID gene sets, including the
cell cycle, caspase pathway, Myc pathway were also related to the
high−risk group (Figures 6D–G).
A B

C D

F G

E

FIGURE 6 | Analysis of the regulatory network and gene sets associated with high-risk groups. (A) The regulatory network involving six model-related genes and
twenty potential binding proteins was constructed through GeneMANIA. (B) Correlation analysis of the six genes. (C–G) GSEA showed the significantly enriched
Hallmark (C), KEGG (D), Reactome (E), BioCarta (F), and PID (G) gene sets in high-risk score based on the TCGA database.
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Prognostic Risk Scores Related to
Different Immune Statuses, Immune
Cell Infiltration and ICIs
According to the results shown above, to further assess the
relationship between immune status between the groups, the
relative quantities of 29 immune markers were systematically
evaluated using single-sample GSEA (ssGSEA). A heatmap was
constructed to depict a more comprehensive immune infiltration
landscape for the TCGA KIRC cohort (Figure 7A). We used the
ESTIMATE algorithm to successfully generate the tumor purity
score, estimate score, immune score, and stromal score. Notably,
Frontiers in Oncology | www.frontiersin.org 11
patients with a low-risk score presented a higher level of tumor
purity (P < 0.001) and a lower estimate score (p < 0.001),
immune score (P < 0.001), and stromal score (P < 0.001) than
those with a high-risk score (P < 0.001) (Figures 7B–E),
consistent with previous study findings that a lower estimate
score represents higher tumor purity. Considering that human
leukocyte antigen (HLA)-related genes play an essential role in
regulating the immune response, we then compared the
expression of HLA-related genes between different groups and
found that most of the HLA-related genes were upregulated in
the high-risk group (Figure 7F).
A

B C

D E

F

FIGURE 7 | The low‐ and high‐risk groups display different immune statuses. (A) Heatmap of the distribution of 29 immune-related genes between the low‐and
high‐risk groups using ssGSEA. (B–F) Expression level of the tumor purity (B), ESTIMATE score (C), immune score (D), stromal score (E), and HLA-related genes
between the low‐ and high‐risk groups. *P < 0.05, **P < 0.01, ***P < 0.001. ns, no significance.
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A B

C D

E F

FIGURE 8 | Associations between the risk score and infiltration levels of six immune cell types. (A) B cells, (B) CD4+ T cells, (C) CD8+ T cells, (D) neutrophils,
(E) macrophages, and (F) dendritic cells.
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Additionally, we analyzed the relationship between the risk
score and infiltration levels of six immune cell types (B cells,
CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and
dendrites). Interestingly, a significantly positive correlation was
found between the risk score and content of the six immune cell
types (Figure 8). The pyroptosis-related risk model effectively
reflected the status of the immune microenvironment for
KIRC patients.

Subsequently, we estimated the fraction of 22 tumor-infiltrating
immune cells (LM22) in the low- and high-risk groups using
CIBERSORT. The bar plot illustrates the specific fractions of LM22
in each KIRC sample (Supplementary Figure 3A). Additionally,
we depicted the distributions of LM22 between the two groups in
the heatmap (Supplementary Figure 3B). We observed a
dependency among the various immunocyte subpopulation
fractions (Supplementary Figure 3C). Finally, we compared the
differential infiltration of 22 immune cells between the groups. The
low-risk group had higher infiltration levels of resting CD4
memory T cells, gamma delta T cells, monocytes, M2
macrophages, resting dendritic cells, activated dendritic cells,
resting mast cells, and eosinophils, whereas infiltration was more
correlated with plasma cells, CD8 T cells, activated CD4 memory
Frontiers in Oncology | www.frontiersin.org 13
T cells, follicular helper T cells, and regulatory T cells (Tregs)
(Supplementary Figure 3D).

Recent breakthroughs in tumor immunology have generated
substantial interest in the potential of ICIs to treat other solid
tumors. To further understand the relationship between the
model and ICIs, 17 ICIs (B7-H3, B7-H4, CTLA4, CD27, ICOS,
TIGIT, PD-1, LAG3, CD58, CD86, PD-L1, PD-L2, TIM-3,
CD270, CD70, CD40, and IDO1) were analyzed as reported
previously. We discovered that high risk scores were positively
correlated with high expression of ICIs, in addition to B7-H4,
PD-L1, and CD40 (Supplementary Figure 4).

Tumor Somatic Mutational Landscape and
Effect of Genetic Mutants of Model-
Related PRGs on Immune Cell Infiltration
Giving that gene mutations are an important cause of
tumorigenesis, we explored the differences in the distribution of
somatic mutations between high- and low-risk groups. The top 30
most frequently mutated genes of these two groups were displayed
in Figures 9A, B, respectively. The Kaplan-Meier curves for OS
indicated that the patients with high-TMB group had significantly
worse OS than those with low-TMB group (Figure 9C). In addition,
A B

C D E

FIGURE 9 | Tumor somatic mutational analyses between high- and low-risk scores. (A, B) Waterfall plot shows the mutation distribution of the top 30 most
frequently mutated genes in the high-risk group (A) and low-risk group (B). (C) Survival analysis of OS in KIRC patients between high- and low-TMB groups.
(D) Difference in TMB between the high- and low-risk groups. (E) Difference in risk scores between the high- and low- TMB groups. ns, no significance.
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the high-risk group presented more extensive TMB than the low-
risk group (Figure 9D). Interestingly, however, there was no
statistical difference in the expression level of risk score between
the low- and high-TMB groups (Figure 9E).

We further investigated the underlying relationships between
the somatic cell copy number alternations (CNAs) of these
model-related genes and different immune cell infiltrations
using the Tumor Immune Estimation Resource (TIMER)
database. The mutants of these six genes were strongly
associated with the immune infiltration microenvironment in
KIRC. Compared with the immune infiltration levels in samples
with wild-type genes, diverse forms of mutations carried by these
six genes displayed lower levels of immune infiltrates. Among the
CNAs of the six identified model-related genes, arm-level
deletion and arm-level gain exhibited a statistically significant
effect on the immune cell infiltration levels in KIRC (Figure 10).
In addition, to further understand the relationship between six
model-related genes and immune infiltration in KIRC
microenvironment, we explored the correlation ship in
TIMER. The results illuminated that the expression of these
genes were positively correlated with the infiltrating levels of
immune cells (Figure 11).
Frontiers in Oncology | www.frontiersin.org 14
Drug Sensitivity Analysis of
Model-Related PRGs
We next used the Genomics of Drugs Sensitivity in Cancer
(GDSC) database to identify an association between sensitivity to
anticancer drugs and the expression levels of the six genes. The
results indicated that the six genes were frequently associated
with the resistance or sensitivity of kidney cancer cells to
multiple targeted drugs (Figure 12). Among these six genes,
NLRP6, IFI16, and GSDM8 were relatively important because
their expression levels were closely associated with sunitinib.
Moreover, the expression of NLRP6 and GSDM8 was negatively
correlated with sunitinib resistance. However, the expression of
IFI16 was positively correlated with sunitinib resistance.
DISCUSSION

Pyroptosis is a highly inflammatory form of programmed cell death
that is characterized by inflammasome activation and the secretion
of IL-1b and IL-18 (32, 33). Dysregulation of pyroptosis may cause
dysfunction in the stimulation of adaptive immune defenses and
contribute to the initiation and progression of multiple tumors
A B

C D

E F

FIGURE 10 | Relationship between the mutants of six model-related PRGs and immune cell infiltration. (A) CASP4, (B) NLRP6, (C) AIM2, (D) IFI16, (E) PYCARD,
and (F) GSDMB. *P < 0.05, **P < 0.01, ***P < 0.001.
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(17, 34).However, controversies exist concerning the role of PRGsas
tumor suppressors or tumor promoters. For example, Wang et al.
(20) reported thatGSDMDwas downregulated in gastric cancer and
exerted a tumor suppressor role by inhibiting the PI3K/AKT
signaling pathway. Conversely, Gao et al. (35) found that GSDMD
protein was significantly upregulated and promoted cell
proliferation and a poor prognosis by potentiating the EGFR/AKT
signaling pathway in lung cancer. The distinct effect of PRGs in
Frontiers in Oncology | www.frontiersin.org 15
different tumor cells reflects the overwhelmingly complexmolecular
regulation mechanism of pyroptosis. Because most of the studies
primarily concentrated on the intrinsic oncogenic pathways of
malignant tumors, it is indispensable to elucidate the potential
regulatory mechanisms of pyroptosis that may significantly affect
the characteristics of the cancer treatment response, particularly
precision immunotherapy. Furthermore, the detailed effects of
pyroptosis on the TME of KIRC remain to be fully investigated.
A
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F

FIGURE 11 | Correlation of six model-related PRGs expressions with immune infiltration levels in KIRC. (A) CASP4, (B) NLRP6, (C) AIM2, (D) IFI16, (E) PYCARD,
and (F) GSDMB.
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In this study, we sought to explore the expression patterns of
pyroptosis in KIRC and its prognostic value and effect on the
TME. The expression of NLRP2 was significantly decreased in
KIRC tissues compared with that in normal tissues, whereas
NEK7, GSDME, and ELANE were not significantly different. The
expression levels of other PRGs were higher in KIRC tissues than
in noncancerous tissues. Next, we then determined two subtypes
of KIRC—namely, cluster 1 and cluster 2—by consensus
clustering based on the expression profiles of PRGs from the
TCGA database. The diverse subtypes affected the prognosis and
showed significant differences in clinicopathological features and
tumor immune infiltrations. The patients in cluster 2 were found
to be closely related to a more advanced tumor stage and grade.
Frontiers in Oncology | www.frontiersin.org 16
As predicted, cluster 1 presented better OS and DFS than cluster
2. GO enrichment analysis and GSEA were conducted to further
explore the functions associated with different subgroups. Several
biological processes correlated with immunity were identified,
including leukocyte migration, neutrophil activation, and
neutrophil-mediated immunity. A previous study suggested that
leukocyte migration might contribute to the pathogenesis of many
human diseases, including tumors (36). Additionally, increasing
evidence has revealed that the immune system is involved in
carcinogenesis and tumor progression by promoting cancer cell
proliferation, migration, immune escape and chemotherapy
resistance (37). GSEA revealed that the characteristic features of
malignant tumors, including IL6-JAK-STAT3 signaling and PI3K/
A B

C D

E F

FIGURE 12 | Correlation between the expression status of 6 six model-related PRGs and drug sensitivity of KIRC cell lines. (A) CASP4, (B) NLRP6, (C) AIM2,
(D) IFI16, (E) PYCARD, and (F) GSDMB.
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AKT/mTOR signaling, were obviously related to cluster 2. Wang
et al. found that the downregulation of GSDMD markedly
promoted the proliferation of gastric cancer through inactivating
the STAT3 and PI3K/AKT pathways (20). Similarly, Chen et al.
found that downregulated AIM2 expression may be involved in the
PI3K/AKT signaling pathway in colorectal cancer (38). Here, we
suggest that pyroptosis is related to many biological processes and
signaling pathways, revealing their significant roles in the initiation
and development of KIRC.

We then constructed a prognostic prediction model in the
training cohort. The risk scoring system based on six genes
predicted the prognosis of KIRC patients, and the patients were
effectively stratified into high- and low-risk groups. Patients in the
high-risk group had a significantly shorter OS than those in the
low-risk group. The performance of the prognostic pyroptosis-
relevant model was confirmed in two internal cohorts. The
independent external E-MTAB-1980 and HSP cohorts also
yielded consistent results. Additionally, the risk score increased
with the progression or severity of the tumor. Univariate and
multivariate Cox analyses indicated that the six-gene prognosis
model is an independent factor. Among these six model-related
PRGs, the expression of NLRP6 was significantly decreased in
high-risk KIRC patients. Surprisingly, NLRP6 was upregulated in
normal tissue samples compared with that in KIRC tissue, likely
because of the different effects of NLRP6 at different stages in
KIRC tumorigenesis and development. Chen et al. suggested that
NLRP6 plays a fundamental role in maintaining intestinal
homeostasis, thus preventing intestinal tissue from aberrant
inflammation and tumors (39). AIM2 has been identified as a
tumor-suppressive gene in human colorectal cancer (38), but
Zhang et al. (40) showed that AIM2 promotes non-small cell
lung cancer progression through an inflammasome-dependent
pathway. One previous study found that caspase-4 is highly
expressed in the lamina propria of colorectal cancer compared
with that in normal tissues, indicating that caspase-4 may
represent a biomarker of colon carcinoma (41). IFI16 and
PYCAED serve as oncogenes in cervical cancer and gastric
cancer, respectively (42, 43). Accumulated evidence indicates
that GSDMB is overexpressed in several cancer types and may
be involved in cancer progression and metastasis (44). These
studies revealed that the dysregulation of pyroptosis might play
divergent roles in different types of cancer.

The tumor microenvironment plays a critical regulatory role in
carcinogenesis and tumor progression (45). According to our
scoring system, the difference in the TME between the low-risk
and high-risk groups was notable. The immune score and
expression levels of HLA-related genes in the high-risk group
were significantly higher than those in the low-risk group, while
the tumor purity exhibited the opposite trend, likely explaining why
the low-risk group patients had a higher survival. Our observation
agreed with that reported by Zeng et al. (46), suggesting that the
OS of patients with low immune scores is better than that of
patients with high immune scores. By contrast, low tumor purity
was responsible for glioma’s aggressive phenotype and poor
prognosis (47). KIRC is considered an immunogenic tumor;
however, to a large extent, it mediates immune dysfunction
Frontiers in Oncology | www.frontiersin.org 17
by inducing immunosuppressive cells to infiltrate the tumor
microenvironment (48). Currently, the investigation of PRGs in
the TME in KIRC is insufficient. In the present study, the model-
based risk score was positively associated with the infiltration of six
immune cell types. This finding is consistent with a previous study
finding that high-risk glioma patients with higher immune cell
infiltration levels show a poorer prognosis (49). These findings
indicated that pyroptosis was, in part, involved in the regulation of
the TME. Additionally, our research suggested that the CNAs of
PRGs might affect the immune cell infiltration levels in KIRC,
providing new insights for future TME studies. Taken together, the
results show that the prognostic model may serve as an indicator
for outcome and immune cell infiltration, holding promising
prospects in modern clinical practice.

Presently, numerous clinical trials are underway that evaluate the
effect of ICIs in KIRC patients. By exploring the correlation between
the risk score and expression of critical ICIs, we further noticed that
most ICIs (14/17) presented higher expression in the high-risk
group. Based on these observations, we strongly suggest the critical
role of the immunosuppressive microenvironment in these patients
with a poor prognosis. Hence, patients with high risk scores might
benefit most from ICIs compared with patients with low risk scores.
We also found that these six model-related genes were associated
with targeted therapies. NLRP6, IFI16, and GSDMBwere associated
with sensitivity to sunitinib. Moreover, some were associated with
other targeted therapies, thereby determining a superior agent or
treatment strategy for individual patients and expanding insights
into future therapeutics for treating KIRC.

Our research had limitations. First, the prospective, larger
multicenter trials are required to provide high-level evidence for
clinical application. Moreover, the underlying mechanisms of the
selected genes in our model should be explored to better study
the molecular mechanisms involved in tumorigenesis and the
development of KIRC.

In summary, we systematically analyzed the prognostic value,
roles in the TME, response to ICIs, and drug sensitivity of PGRs in
KIRC. Two KIRC subtypes (clusters 1/2) with diverse outcomes
were identified by consensus clustering based on the expression
profile of PRGs. The pyroptosis-related prognostic risk model
developed from six PRGs can stratify KIRC patients into low- and
high-risk subgroups with diverse prognoses and immune cell
infiltration. The signature also suggests that the patients with
high-risk scores might benefit most from ICIs. Pyroptosis may be
involved in targeted therapies for patients with KIRC. Our findings
may provide new insight into the role of pyroptosis in the TME in
KIRC patients. In conclusion, our prognostic model showed
potential clinical usefulness that may improve survival and even
develop new therapeutic strategies for KIRC patients.
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Intestinal Inflammation and Tumorigenesis. J Immunol (Baltimore Md: 1950)
(2011) 186(12):7187–94. doi: 10.4049/jimmunol.1100412

40. Zhang M, Jin C, Yang Y, Wang K, Zhou Y, Zhou Y, et al. AIM2 Promotes
Non-Small-Cell Lung Cancer Cell Growth Through Inflammasome-
Frontiers in Oncology | www.frontiersin.org 19
Dependent Pathway. J Cell Physiol (2019) 234(11):20161–73. doi: 10.1002/
jcp.28617

41. Flood B, Oficjalska K, Laukens D, Fay J, O’Grady A, Caiazza F, et al. Altered
Expression of Caspases-4 and -5 During Inflammatory Bowel Disease and
Colorectal Cancer: Diagnostic and Therapeutic Potential. Clin Exp Immunol
(2015) 181(1):39–50. doi: 10.1111/cei.12617

42. Cai H, Yan L, Liu N, Xu M, Cai H. IFI16 Promotes Cervical Cancer
Progression by Upregulating PD-L1 in Immunomicroenvironment Through
STING-TBK1-NF-kB Pathway. Biomed Pharmacother = Biomed
Pharmacother (2020) 123:109790. doi: 10.1016/j.biopha.2019.109790

43. Deswaerte V, Nguyen P, West A, Browning AF, Yu L, Ruwanpura SM, et al.
Inflammasome Adaptor ASC Suppresses Apoptosis of Gastric Cancer Cells by
an IL18-Mediated Inflammation-Independent Mechanism. Cancer Res (2018)
78(5):1293–307. doi: 10.1158/0008-5472.can-17-1887

44. Li L, Li Y, Bai Y. Role of GSDMB in Pyroptosis and Cancer. Cancer Manag Res
(2020) 12:3033–43. doi: 10.2147/cmar.s246948

45. Itoh H, Kadomatsu T, Tanoue H, Yugami M, Miyata K, Endo M, et al. TET2-
Dependent IL-6 Induction Mediated by the Tumor Microenvironment
Promotes Tumor Metastasis in Osteosarcoma. Oncogene (2018) 37
(22):2903–20. doi: 10.1038/s41388-018-0160-0

46. Zeng D, Zhou R, Yu Y, Luo Y, Zhang J, Sun H, et al. Gene Expression Profiles
for a Prognostic Immunoscore in Gastric Cancer. Br J Surg (2018) 105
(10):1338–48. doi: 10.1002/bjs.10871

47. Zhang C, Cheng W, Ren X, Wang Z, Liu X, Li G, et al. Tumor Purity as an
Underlying Key Factor in Glioma. Clin Cancer Res: An Off J Am Assoc Cancer
Res (2017) 23(20):6279–91. doi: 10.1158/1078-0432.ccr-16-2598

48. Dıáz-Montero CM, Rini BI, Finke JH. The Immunology of Renal Cell
Carcinoma. Nat Rev Nephrol (2020) 16(12):721–35. doi: 10.1038/s41581-
020-0316-3

49. Yin W, Jiang X, Tan J, Xin Z, Zhou Q, Zhan C, et al. Development and
Validation of a Tumor Mutation Burden-Related Immune Prognostic Model
for Lower-Grade Glioma. Front Oncol (2020) 10:1409. doi: 10.3389/
fonc.2020.01409

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Sun, Jing, Guo, Zhang, Kong, Wang, Jiang and Wang. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply with
these terms.
September 2021 | Volume 11 | Article 716854

https://doi.org/10.1093/nar/gkq537
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1016/j.ygeno.2020.05.022
https://doi.org/10.1101/gr.239244.118
https://doi.org/10.1158/0008-5472.can-17-0307
https://doi.org/10.1093/nar/gks1111
https://doi.org/10.1371/journal.pbio.3000047
https://doi.org/10.3389/fphar.2020.00185
https://doi.org/10.1016/j.biopha.2019.109595
https://doi.org/10.3892/or.2018.6634
https://doi.org/10.3389/fimmu.2018.02159
https://doi.org/10.21037/jtd.2018.08.51
https://doi.org/10.2147/ott.s125039
https://doi.org/10.4049/jimmunol.1100412
https://doi.org/10.1002/jcp.28617
https://doi.org/10.1002/jcp.28617
https://doi.org/10.1111/cei.12617
https://doi.org/10.1016/j.biopha.2019.109790
https://doi.org/10.1158/0008-5472.can-17-1887
https://doi.org/10.2147/cmar.s246948
https://doi.org/10.1038/s41388-018-0160-0
https://doi.org/10.1002/bjs.10871
https://doi.org/10.1158/1078-0432.ccr-16-2598
https://doi.org/10.1038/s41581-020-0316-3
https://doi.org/10.1038/s41581-020-0316-3
https://doi.org/10.3389/fonc.2020.01409
https://doi.org/10.3389/fonc.2020.01409
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

	Comprehensive Analysis of the Immune Infiltrates of Pyroptosis in Kidney Renal Clear Cell Carcinoma
	Introduction
	Materials and Methods
	Data Source
	Consensus Clustering Analysis of PRGs
	Construction and Evaluation of the Pyroptosis-Related Prognostic Risk Model
	Protein Network Construction
	Evaluation of the Immune Status, Immune Cell Infiltration Fractions, and ICIs Between the Low- and High-Risk Groups
	Somatic Mutation Analysis
	TIMER Database and GDSC Database
	Patients and Specimens
	RNA Extraction and qRT-PCR
	Statistical Analysis

	Results
	The Expression Level of PRGs Is Upregulated in KIRC
	Two Subgroups Are Different in Clinicopathological Features and Survival in KIRC by Consensus Clustering of PRGs
	Construction of the Prognostic Risk Model Based on the TCGA Training Cohort
	Internal and External Validation of the Prognostic Risk Model in KIRC Patients
	Clinical Evaluation of the Prognostic Risk Model Based on the TCGA Entire Cohort
	Analysis of Network and Gene Set Enrichment Analysis (GSEA)
	Prognostic Risk Scores Related to Different Immune Statuses, Immune Cell Infiltration and ICIs
	Tumor Somatic Mutational Landscape and Effect of Genetic Mutants of Model-Related PRGs on Immune Cell Infiltration
	Drug Sensitivity Analysis of Model-Related PRGs

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


