
Frontiers in Oncology | www.frontiersin.org

Edited by:
Maria Rosaria De Miglio,
University of Sassari, Italy

Reviewed by:
Vaishali Aggarwal,

University of Pittsburgh, United States
Wei Zhao,

City University of Hong Kong,
Hong Kong, SAR China

*Correspondence:
Nouf M. Alyami

nalyami@ksu.edu.sa

Specialty section:
This article was submitted to

Breast Cancer,
a section of the journal
Frontiers in Oncology

Received: 31 May 2021
Accepted: 30 September 2021

Published: 25 October 2021

Citation:
Alyami NM (2021) MicroRNAs Role in

Breast Cancer: Theranostic
Application in Saudi Arabia.
Front. Oncol. 11:717759.

doi: 10.3389/fonc.2021.717759

REVIEW
published: 25 October 2021

doi: 10.3389/fonc.2021.717759
MicroRNAs Role in Breast
Cancer: Theranostic Application
in Saudi Arabia
Nouf M. Alyami*

Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia

Breast cancer is an aggressive silent disease, representing 11.7% of the diagnosed
cancer worldwide, and it is also a leading cause of death in Saudi Arabia. Consequently,
microRNAs have emerged recently as potential biomarkers to diagnose and monitor such
cases at the molecular level, which tends to be problematic during diagnosis. MicroRNAs
are highly conserved non- coding oligonucleotide RNA. Over the last two decades,
studies have determined the functional significance of these small RNAs and their impact
on cellular development and the interaction between microRNAs and messenger RNAs,
which affect numerous molecular pathways and physiological functions. Moreover, many
disorders, including breast cancer, are associated with the dysregulation of microRNA.
Sparingly, many microRNAs can suppress cancer cell proliferation, apoptosis,
angiogenesis, invasion, metastasis, and vice versa. Remarkably, microRNAs can be
harvested from patients’ biofluids to predict disease progression that considered a non-
invasive method. Nevertheless, MicroRNAs are currently utilized as anti- cancer therapies
combined with other drug therapies or even as a single agents’ treatment. Therefore, this
review will focus on microRNAs’ role in breast cancer as an indicator of disease
progression. In addition, this review summarizes the current knowledge of drug
sensitivity and methods in detecting microRNA and their application to improve patient
care and identifies the current gaps in this field.

Keywords: chemotherapy resistance, breast cancer metastasis, molecular pathways, anticancer therapy,
Saudi Arabia, miRNA, circulating biomarkers
1 INTRODUCTION

Breast cancer (BC) is the dominant type of cancer among female patients, reaching 2,261,419 new
cases in 2020, representing 11.7% of the yearly diagnosed patients with cancer worldwide. BC
incidence has declined dramatically in industrial countries, except for Australia/New Zealand and
Western Europe (1). Despite the advances in BC diagnosis, the leading cause of mortality is the
disease recurrences due to metastases. Management of disease recurrences and metastasis has
modestly improved over the last three last decades (2). Metastasis states the spread of cancer cells
through the lymphatic system or bloodstream to distant organs (3). Because of these challenges, the
need for sufficient molecular biomarkers to predict the disease response is continued. However,
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researchers are examining the utility of MicroRNAs as
biomarkers to detect diseases and tumor aggressiveness (4, 5).

MicroRNAs (miRNAs) were discovered in the 1990s in
nematodes (6, 7). miRNAs are approximately 19–25
nucleotides (nt) in length and are found in almost all
eukaryotes. Since then, many studies have identified miRNAs’
functionality and role in disorders and human illnesses such as
BC (4). miRNAs can regulate genes by silencing their protein-
coding mRNA (messenger RNA) through inducing mRNA
turnover. miRNAs are determined to be involved in cellular
activities such as tumorigenesis, proliferation, cell survival,
apoptosis, and cancer development, affecting cancer
progression (5). These small oligonucleotides can function as
oncogenes by degrading mRNAs that act as tumor suppressors
and vice versa. Previous studies showed that many miRNAs
impacted Breast cancer development and even drug resistance (8,
9). Due to the heterogeneous nature of the BC, it is considered a
challenge, which makes it extremely difficult to classify and treat
(2). Concomitantly, many countries, specifically Saudi Arabia,
are suffering from recurrent disease conditions due to metastases.

Nonetheless, using blood serum and non-invasive methods
that are considered safe and accurate to determine the molecular
characterization and create a personalized treatment strategy for
each patient to prevent recurrence in the future had been utilized.
Therefore, this review focuses on miRNAs’ role in breast cancer,
wherein they serve as biomarkers to detect tumors, including
their progression, treatment resistance, and potential impact on
clinical practices.
2 MANUSCRIPT FORMATTING

2.1 Background
Ambros and Ruvkun laboratory discovered the first miRNA and
its target in 1993. Ambros’s lab has found the lin-4 gene a
fundamental player in Caenorhabditis Elegans (C. elegans)
development. However, the lin-4 gene does not encode any
known cellular protein, but it only generates a short 22 nt
RNA. Furthermore, the Ruvkun lab has determined that this
small RNA sequence is complementary to the 3′UTR
(3’untranslated region) and negatively regulates the lin-14 gene
(6, 7). Seven years later, let-7, a small 21-nt RNA, was discovered
and was further identified in various species (10, 11). Since then,
thousands of miRNAs and their genetic functions in humans and
other animals have been identified (4, 5).

Interestingly, large projects such as FANTOM and ENCODE
for genomic annotation and functionality have reported that 80%
of mammalian DNA is actively transcribed. The vast majority are
noncoding RNA genes (ncRNA) (12, 13). In the past, the main
differences between coding and non-coding were based on
encoding protein. However, this barrier starts to overlap as
particular coding RNA, such as TP53 mRNA, can function as
RNA only, significantly impacting much biologic development
(14, 15). Furthermore, long non-coding RNA (lncRNA) can
regulate gene expression at both genomic and post-
transcription levels. At the genomic level by manipulating
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chromatin status and complementary binding to other forms
of RNA such as miRNA and mRNA as a post-transcription level
(16–19). Also, other studies identified that lncRNA could encode
small peptides, but their functions are still unknown (20, 21).
Other types of RNA that also function similarly to miRNAs with
the exact mechanism (using cytoplasmic processing proteins) are
the small interferences RNA (siRNA) (22). They can silence gene
expression as miRNA via targeting the mRNA but not expressed
endogenously as miRNA encoded in the genome. Plus, they can
only target one specific mRNA, as for miRNA that can have vast
mRNA targets (9, 23). The source of these siRNAs can be viruses
as they can manipulate the host gene expression using this tool
(23). Nearly 3% of the human genome encodes miRNA genes.
These small RNAs play a critical role in various biological
processes such as cell apoptosis and development in plants and
animals. They function at the translational or mRNA
degradation stages (24). Additionally, more than 60% of the
Homo sapiensmRNA-coding proteins with putative binding sites
for miRNA were predicted (25). More than 2,654 mature
miRNAs and 1,917 precursor miRNAs are listed for Homo
sapiens, as reported on the miRBase database (26).

2.2 MicroRNA Biogenesis and Biology
RNA polymerase II (Pol II) generates a transcript identified as
pri-miRNA (primary miRNA) during the transcription of the
genomic miRNAs in the cell nucleus. Spliced introns of protein-
coding genes give rise to approximately 30% of miRNAs.
However, most miRNAs encoded gene loci or clusters in the
genome. First, the pri-miRNAs comprise more than 1000 bases
and stem- loop/hairpin structures with a cap and poly-
adenylated UTRs. Second, these UTR modifications are cleaved
into pre-miRNAs (precursor miRNAs) with 60 to 110 nt by
Drosha and DGCR8/Pasha proteins. Pre-miRNAs reportedly
binds to XPO5 (Exportin-5) to translocate to the cytosol. The
pre-miRNAs are then cleaved by Dicer, generating 15 to 22 nt
short double-stranded miRNA duplexes. Finally, DICER and
Argonaute (AGO) proteins disassemble the miRNA duplex
because of their endoribonuclease activity.

Interestingly, viruses can hijack this process and eventually
manipulate the host’s gene expression by mimicking the host’s
short double-stranded miRNA (23). Subsequently, a single
strand, called mature miRNA, is assembled into the miRNA-
associated RNA- induced silencing complex (miRISC), including
DICER and AGO. The miRISC complex can target the UTRs or
the coding sequences (CDSs) based on the RNA strand sequence,
as illustrated in Figure 1. In addition, the miRISC complex
suppresses the protein synthesis genes or degrades the mRNAs.
The complete alignment with the target mRNA leads to its
degradation, whereas the incomplete alignment leads to
translation suppression, as shown in Figure 1 (27).

Furthermore, the mature miRNAs can also exit the cell by
different packaging systems. For example, the identification of
exosomes containing miR-23b, miR-320, miR-21, let-7a, and
miR- 1246 are elevated in plasma patients with breast cancer and
used as markers for cancer (28, 29). In addition, other proses like
lipoproteins, microvesicles, and apoptotic bodies as displayed in
Figure 1 (30–32).
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2.3 Methods on Isolating MicroRNAs
Over the last decade, thousands of studies covering miRNA-related
discoveries and published. Recent studies have investigated
miRNA’s role in autoimmune, cardiovascular, and neurological
diseases and cancer. Additionally, these studies have identified
novel approaches for collecting miRNA from serum to detect
metastases and disease prognosis in cancer patients (4). The main
goal is to use these miRNAs as biomarkers to develop a fast, non-
invasive clinical test for disease diagnosis and prognosis. Many well-
known companies currently provide isolation kits using the body
biofluids to collect these small circulating non-coding RNA and
methods for quantifying them. One study compared six commercial
kits and used fresh, frozen, and low volumes of serum to detect
sensitivity (33). Another study used serum and cerebrospinal fluids
to compare the commercial kit and TRlzol extraction methods for
miRNAs recovery and found that TRlzol isolation techniques have
low recovery (34). However, many other studies added suggestions
and modifications to the TRlzol extraction methods and improved
the recovery of the circulating miRNAs over commercial kits (35–
37). Quantification of the isolated biomarkers can be performed
using NanoDrop spectrophotometers. Then using quantification
polymerase chain reaction (qPCR) after generating the
complementary DNA (cDNA) and for novel miRNA usually
using microarray and deep sequencing (34).

2.4 Bioinformatics Analysis
Microarray, qPCR, Next generation-sequencing advancing
technologies are becoming more feasible, making them less
Frontiers in Oncology | www.frontiersin.org 3
expensive than before to quantify miRNA; however, it is only
the beginning of any project. Thus, the main challenges are
identifying miRNA candidates and their functionality, coding-
protein gene targets, and molecular network pathway.
Bioinformatics analysis predicts the possible targets for miRNA
based on the giving sequences using a specific algorithm. Many
databases are available online and always competing on their
updates and algorithms. For instance, TargetScan uses the
miRNA seeds, which are unique sequences for miRNA, to
calculate all the possible binding sites and strength to inhibits
the mRNA. Other databases predict targets, such as TarBase,
PicTar, and miRBase. Identifying the biological activity and
pathways is also available, like; GO (Gene ontology), KEGG,
and STRING (38).

2.5 Cancer and MicroRNA
The first study to demonstrate a connotation between miRNAs
and tumors was published in 2002. The authors reported that
miR-16-1 and miR-15 gene deletions were common in chronic
lymphocytic leukemia (CLL) (39). Their expression is inversely
correlated with the anti-apoptotic protein and B-cell lymphoma
protein (Bcl-2) expression. Both miR-16-1 and miR-15
expressions act as tumor suppressors by suppressing Bcl-2
expression, leading to the induction of apoptosis of leukemic
stem cells (40, 41). Interestingly, Bcl-2 was recognized as a
suitable biomarker for the prognosis of all molecular subtypes
of BCs (42), indicating the potential role of miRNAs in BCs
diagnosis. Hence, somatic inhibition of miR-16-1 and miR-15
FIGURE 1 | MiRNA biogenesis. miRNA genes or spliced introns are transcribed by polymerase II (Pol- II) as primary miRNA (pri-miRNA). The pri-miRNA is
subsequently cleaved by Drosha along with DGCR8 proteins to generate the pre-miRNAs. The pre-miRNAs are then exported to the cytoplasm by Exportin-5
(XPO5) and cleaved again by DICER1 to form a short double- stranded miRNA. Together with Argonaute (AGO), this double-stranded miRNA is unwound into a
mature miRNA (single strand) and loaded as a guide for the miRNA-induced silencing complex (miRISC) to target the UTRs or CDSs of the mRNA. Based on the
mature RNA sequences, miRISC could repress mRNA expression. The mature miRNA can export from the cell and reaches the bloodstream as lipoproteins, exomes,
microvesicles, and apoptotic bodies. Which can be used as a marker for cancer-based on their expression levels, UP or DW (down)—created with BioRender.com.
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stimulates leukemogenesis and inhibits cell death (40, 41).
Abnormal and dysregulation of miRNA functions have been
described in several other cancers, such as lung, breast,
colorectal, and leukemia. miRNAs are classified into tumor
suppressors or oncogenes (also named oncomir). For example,
the miR-30 family, miR-16- 1, miR-15, and miR-34 considered
tumor suppressors, whereas miR-10, miR- 155, and miR- 200
family act oncogenes (43). The deregulation of oncomirs or
tumor suppressor miRNAs can induce tumorigenesis by
manipulating molecular pathways to promote cancer
hallmarks, such as proliferation, inhibition of apoptosis,
invasion, resistance, and angiogenesis, leading to tumor
survival and metastasis (44). Although miRNAs can act as
oncomirs or tumor suppressors, studies have also suggested
that the global loss of miRNAs can augment tumor
progression. Therefore, miRNA dysregulation can promote
cellular transformation and carcinogenesis with Dicer, Drosha,
and DGCR8 mutation (45).

2.6 MicroRNAs as Diagnostic Marks in
Breast Cancer
BC has possible risk factors and lifestyle, family history (genetic
alteration in the BRCA1 and BRCA2), age, weight, exposure to
radiation, and hormones. In addition, there are two common
breast carcinoma types; these are ductal and lobular.
Consequently, the treatment strategies are adjusted based on
the disease type. Currently, BC is genetically subclassified based
on estrogen hormone receptors’ levels, human epidermal growth
factor receptor (HER2), which can determine the treatment
choice (46).

Because BC is remarkably heterogeneous and classified into
several subtypes, treatment response and prognosis prediction
are challenging. Therefore, new biomarkers are needed (2).
Frontiers in Oncology | www.frontiersin.org 4
Dysregulation of miRNA was associated with many disorders,
including BC. Ongoing studies examine miRNA profiling as a
strategy to predict disease progression, improve patient survival,
and develop new BC classification strategies (47). Using miRNA
expression as a fingerprint would enhance our understanding of
disease heterogeneity and novel therapeutics’ molecular
development. For instance, the expression levels for miRNA
cluster miR- 125b/miR-99a/let-7c were used as markers to
identify luminal A and B subtypes; further, it was correlated
with luminal A patients’ survival rates (48). Additionally, HER2-
encoded miR-4728 expression was precise to detect tumors that
are enriched with HER2 receptors. Another cluster, miR-96/182/
183, was reported by Zhang et al. and was found to enhance
epithelial-to-mesenchymal transition (EMT), which can cause
BC cells to be more invasive (49).

Since the 2000s, many more miRNAs have been discovered
and linked with BC’s development and initiation (50), as
described in Table 1. Some of the most recognized miRNA
families are let-7, miR-200, and miR-10.

The family of let-7 miRNAs in humans includes ten members
known to function as tumor suppressors, and they have miR-
202, miR-98, and let-7a, b, c, d, e, f, g, and i (72). Let-7 targets
multiple molecular pathways contributing to BC heterogeneity
and metastases by activating the cancer stem cell (CSC)
phenotype (73). On the one hand, a clinical study found the
expression of let-7 was considerably lower in patient’s serum
with BC that developed metastases (74). On the other hand,
using Saudi plasma, let-7b-5p, hsa-let-7c-5p, and hsa-let-7i-5p
miRNAs were elevated in luminal BC patients and triple-
negative BC samples except hsa-let-7c-5p compared to the
control (75).

The self-renewing, undifferentiation, and chemotherapy
resistance abilities are key CSC features found in BC tumor-
TABLE 1 | Summary of miRNAs associated with drug sensitivity and prognosis in breast cancer.

miRNA Prognosis Pathways/Genes Drug sensitivity/resistance

miR-187-5p and miR-106a-
3p

H,PR (51, 52) HIPK3 and EGFR pathway Resistant to taxanes, paclitaxel, and docetaxel (53, 54)

miR-182-5p H,PR (55) Cx43 Resistant to veliparibv (53, 54)
miR-629-5p H,PR in NSCLC

(56)
FOXO3, CXXC4, SFTPC Resistant to tipifarnib (53, 54)

miR-637 H,PR (57) Akt1/bb-catenin (cyclin D1) pathway Resistant to tivantinib (53, 54)
miR-556-5p H,GR (58) YAP1 Sensitive to paclitaxel (53, 54)
let-7d-5p and hsa-miR-18a-
5p

H,PR (59, 60) Wnt pathway and BSG Sensitive to tivantinib (53, 54)

let-7a-5p H,PR (61) MYC,HMGA2, H-RAS, HMGA2,
DUSP7

Sensitive to bortezomib and paclitaxel (61)

miR-135a-3p H,PR (62) HOXA10 Sensitive to JNJ-707 (53, 54)
miR-185-3p H,GR (63) E2F1 Sensitive to panobinostat (53, 54)
miR-449 H,GR (64) TPD52 Sensitive to Doxorubicin (65)
miR-140 H,GR (66) Wnt1 pathway Sensitive to fluorouracil, cisplatin, doxorubicin, paclitaxel, and camptothecin

(66, 67)
miR-130b H, PR PI3K/Akt pathway Resistant to adriamycin, vincristine, and paclitaxel (68)
miR-29a H, PR (69) TET1 and PTEN/AKT/GSK3b

pathway
Resistant to adriamycin (70)

miRNA-132 and miRNA- 212 H, PR PTEN/AKT/NF-KB pathway Resistant to doxorubicin (71)
High expression (H), Poor Respond (PR), Good Respond (GR), Homeodomain Interacting Protein Kinase 3 (HIPK3), Epidermal Growth Factor Receptor (EGFR), Connexin 43 (Cx43), Non-
small-cell lung cancer (NSCLC), Forkhead Box O3 (FOXO3), CXXC Finger Protein 4 (CXXC4), Surfactant Protein C (SFTPC), Yes1 Associated Transcriptional Regulator (YAP1), Basigin
(BSG), Homeobox A10 (HOXA10), Tumor Protein D52 (TPD52), Ten Eleven Translocation 1 (TET1).
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initiating cell lines (T-IC). Furthermore, let-7 targets the 3’UTR
of HMGA2, a high-mobility group protein, and H-RAS mRNA.
T-IC cell lines have shown significant expression of both targets
due to the loss of let-7 activity. These targets’ expression was
reduced upon transfection of T-IC cell lines with let-7
lentiviruses (73, 76). Other well-known oncogenes are also
targeted by the let-7 family, such as MYC (Myelocytomatosis),
KRAS, NRAS, CDK6 (Cell division protein kinase 6), and CdC25
(Cell division Cycle) (77–79).

The second family is miR-200, consisting of miR-200a, b, c,
miR-429, and miR-141. These miRNAs regulate the cell self-
renewal via B lymphoma Mo-MLV insertion region 1 homolog
(BMi1), a known oncogene. This protein, BMi1at high levels,
inductees the cell transformation of mammary cells to BC stem
cells (80). Furthermore, a report by Jurmeister demonstrated that
miR-200c modulates cellular movements. The expression level of
miR-200c has been determined to correlate negatively with
formin homology 2 domain containing 1 (FHOD1) and
protein phosphatase, Mg2+/Mn2+-dependent, 1F (PPM1F)
levels which are known to promote EMT in BC cell lines by
modulating actin formation (81). The ability to move is a sign of
aggressiveness, explaining the loss of miR-200c serum in patients
diagnosed with triple-negative BC (82).

The third family is miR-10, which was dysregulated in several
human cancers, including BC (83). In BC patients, miR-10a was
significantly overexpressed in primary tumor samples and cell
lines (84). Additionally, the high expression of miR-10b is
associated with highly metastatic BC cell lines and in patients
with lymph node metastatic (85). In contrast, a study by Ma et al.
reported no significant correlation between miR-10b levels and
BC patients with distant metastasis (86, 87).

Moreover, many individual miRNAs were also found to
interact directly or indirectly with key molecular pathways
such as oncomirs or tumor suppressors, modulating BC
tumorigenesis. One of the most exceedingly expressed miRNAs
in BC has been identified as the oncomir miR-21, which plays a
critical role in cancer apoptosis, initiation, migration, and
invasion; furthermore, it correlates with tumor development
and poor outcomes (88, 89). Such as the significant diagnostic
power for miR-21 for BC prediction using Egyptian serum (90).
Remarkably, miR-21 targets and suppresses signal transducers
and activators of transcription 3 (STAT3) mRNA. Interestingly,
STAT3 elevation is an essential biomarker for early detection of
220 BC (8, 91).

MiR-155 is another oncomir that controls many pathways
associated with proliferation and reduced survival rates by
targeting BRCA1, which was identified to play a part in DNA
repair and initiation of BC and cell cycle progression (92).
Furthermore, miR-155 expression correlates with BC
metastasis (93). MiR-155 was also reported to affect apoptosis
pathways through caspase 3 by repressing the tumor suppressor
gene suppressor of cytokine signaling (SOCS1). Additionally, the
activation of miR-155 in BC results in the constitutive
stimulation of STAT3 through the JAK network. This pathway
induces interleukins and interferons’ production, leading to an
inflammatory response in BC development (94). This correlated
Frontiers in Oncology | www.frontiersin.org 5
with the circulating miRNA in mice plasma with breast cancer
that decreased significantly when introducing an anti-drug agent
miR-155 that reduced inflammation and tumor growth (95). In
2020, a study collected the circulating miR-155 from BC patients
and controls that predicted the disease even the grade type (96).

Another miRNA that is often silenced in BC is miR-335,
which suppresses all cancer phenotypes except proliferation.
miR-335 inhibits metastasis by inhibiting the extracellular
matrix protein tenascin-C and transcription factor SOX-4 (97).
In addition, miR-335 can reduce cell viability and enhance cell
death by modulating the BRCA1 activator network as a
metastasis suppresser. However, BRCA1 mutation is the
primary pathogenesis for BC and is already nonfunctional even
when upregulating miR-335 (98).

Meanwhile, miR-34a is one of the most studied miRNAs that
acts as a tumor suppressor and a miR-34b and miR-34c family
(99–102). Through targeting silent information regulator 1
(SIRT1), miR-34a induces cell cycle arrest, apoptosis,
inhibition of EMT, and proliferation of CSCs (99). Besides,
miR-34a targets multiple genes, including Fra-1, LMTK3, Bcl-
2, and Notch, implicated in BC tumorigenesis. Although
accumulating evidence indicates that miR-34a acts as a tumor
suppressor, the suppression of miR-34a was found to promote
docetaxel resistance in MCF-7 cells, a known docetaxel-resistant
cell (100). However, miR-34a is frequently repressed in BC,
which supports BC proliferation and survival (101).
Furthermore, this family can also target the mRNA of SIRT1
(silent mating type information regulation 2 homolog) and
MYC (102).

MiR-205 is also repressed in metastatic BC Deregulation of
miR-205 enhances BC cell invasion and proliferation (103). The
expression of miR-205 was found to inhibit cell growth,
clonogenic survival, and enhancement of response to tyrosine
kinase suppressors and anchorage- independent cell growth with
HER3 (104).

2.7 MicroRNAs as Prognostic Marks in
Breast Cancer
Predictive factors give information on whether a patient with
cancer will respond to treatment; these are also further used to
predict the risk of developing diseases. Unfortunately, despite the
marked advances in cancer treatment, chemotherapy resistance
remains a significant challenge. Thus, a better comprehension of
drug resistance mechanisms is necessary to enhance treatment
outcomes. Many factors are associated with drug resistance, such
as multidrug resistance protein 1 (MDR1), DNA repair
pathways, cell death, and epigenetic modification (105).
miRNA can interfere with drug targets that regulate cell
survival, apoptotic signaling, and DNA repair pathways.
Moreover, miRNAs could modulate cellular responses to anti-
cancer treatments (106). Nowadays, prognostic or predictive
factors have tremendous potential as biomarkers to guide
cancer treatment options. Prognosis predicts the development
and disease outcomes and their impact on life quality (107). The
most common dysregulated circulating miRNAs are also found
in body fluids such as blood. For example, hsa-mir-3662,
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hsa-mir-19a, hsa-mir-210, and hsa- mir-7 are located in seven
types of cancers. These miRNAs have been determined to
significantly impact cancer progression because they regulate
critical pathways such as mitogen-activated protein kinases,
apoptosis, phosphatidylinositol 3-kinase (PI3K), and Akt/
protein kinase B (108).

Interestingly, global dysregulation of miRNAs in many types
of cancer can serve as a key prognostic factor. For instance, Dicer
and Drosha expression loss are critical in miRNA biogenesis and
correlated with poor survival in cancer patients (45).

Collectively, this growing evidence indicates that miRNA
profiling and miRNA involvement in drug resistance could
help choose the right treatment strategies that most likely will
lead to positive outcomes for cancer patients (106). Such as
identifying eight miRNAs that can be used as a prognosis after
surgery and treatment for triple-negative BC to predict
recurrently. They are, miR-20a-5p, miR-455-3p, miR-486-5p,
miR-146b-5p, miR-107, miR-324-5p, miR-139-5p and miR-10b-
5p (109).

Furthermore, Li et al. identified miR-210 as a therapeutic
utility as a biomarker for BC recurrences (110). In 2020, miR-
622, a novel miRNA, coupled with poor survival in patients with
BC (111). Interestingly, miR-622 was isolated from the patients’
plasma in these studies, representing a fast and non-invasive
diagnostic method. Similarly, miR-4317 was correlated with
lymph node metastasis when it is down-regulated. Sheng et al.
used meta-analysis and found candidate targets for miR-4317,
and MYD88 mRNA was negatively correlated with a miR-4317
inhibitor that demolished the BC cell lines’ ability to migrate,
invite, and proliferate shown a significant biomarker value for
prognosis (112). Finally, a study demonstrated the potential use
of miRNA as an indicator for drug sensitivity and investigated
114 miRNAs and chemotherapy sensitivity in 36 BC lines, as
displayed in Table 1 (53). Also, we integrated the prognosis
factor for each of these miRNA using BC patient samples.
2.8 MicroRNAs Reported in BC Patients
From Saudi Arabia
BC is still considered a significant disease that affects women,
even in developed countries, including Saudi Arabia. More than
1.9 million women are estimated to have BC in 2020, which
increased by 18.4% from 2012 (113). According to the Global
Cancer Observatory 2018, BC ranked as the most common
cancer in Saudi Arabia in both genders; however, it is more
common among females. Additionally, BC was identified as the
second leading cause of death after leukemia (113). The
incidence rate of BC reported between 2010 and 2017 among
females ranged from 3 to 8 confirmed cases out of 1000 admitted
patients to the Armed Forces Hospital Southern Region,
recording the highest rate in 2017 (114). The major cause of
death in Saudi BC patients is distal metastases, representing
44.92%, followed by regional metastasis 42.92%; it was
determined that 12.15% of deaths had localized diseases (115).
These results further highpoint the need for improved screening
methods. Qattan et al. used a non-invasive method to isolate
Frontiers in Oncology | www.frontiersin.org 6
circulating miRNAs from Saudi female BC patients’ plasma.
They identified five significantly elevated miRNAs compared to
the control groups. These miRNAs included hsa-let-7i-5p, hsa-
miR-25-3p, hsa-miR-16-5p, hsa-let-7b-5p, and hsa-miR-199a-
3p. Furthermore, hsa-let-7b-5p, hsa-let-7c-5p, and hsa-let-7i-5p
miRNAs were determined to be specifically elevated in luminal
BC patients and triple-negative BC samples except for hsa-let-7c-
5p. Interestingly, miR-195 was elevated in triple-negative BC
(75). Using global miRNA profiling of 23 female BC patients
from Saudi Arabia, Hamam et al. were able to identify several
circulating miRNAs, including hsa-miR- 308 1290, hsa-miR-
188-5p, hsa-miR-1225-5p, hsa-miR-4270, hsa-miR-1202, hsa-
miR-1207-5p, hsa- miR-4281, hsa-miR-642b-3p, and hsa-miR-
3141. Remarkably, they could concentrate and isolate more
miRNAs from the patients’ blood samples using a speed
vacuum method. The isolated miRNAs were used as a
biomarker signature for early-stage detection of BC (116).
However, Hamam et al. reported that hsa-miR-155 and hsa-
miR-21 were not significantly elevated in the patients’ plasma
samples, although reported in other cohort studies. Moreover,
Alshatwi et al. found that the miRNAs hsa-miR-146a, hsa-miR-
499, and hsa-miR-196a2 were significantly upregulated the blood
of 92 patients with BC from Saudi Arabia. Additionally, they
identified unique genotypic miR-423 (TT) variances in 100 Saudi
BC patients compared with matching healthy individuals (117).
These genetic variances were associated with metastases and
advanced- stage BC (118). Another recent study by Alajez et al.,
which aimed to discover miRNA biomarkers in samples from
Saudi patients to predict metastases (119), reported the
downregulation of seven of the miR-200 family of miRNA,
including hsa-miR-200a, b, and c in patients with metastasis
compared with the primary tumor samples. Other miRNAs
identified included hsa-let-7c-5p, hsa- miR-214-3p, hsa-miR-
210-3p, and hsa-miR-205-5p, which were also downregulated.
The miRNA, hsa-miR-205-5p, was found to modulate Myc,
forkhead box O1 (FOXO1), and the amphiregulin (AREG)
pathways. Additionally, the expression of hsa-miR-214- 3p and
hsa-miR- 205-5p was correlated with a low survival rate.
Furthermore, the global miRNA expression profile confirmed
the upregulation of hsa-miR-146a, confirming the findings of
Alshatwi et al. reported in Saudi plasma samples, along with
other miRNAs such as hsa-miR-150-5p, hsa-miR-155-5p, and
hsa-miR-142-5p.
2.9 Clinical Application Using Circulating
miRNAs in Breast Cancer Patients
To view the latest clinical pilots (August 2021) approved by the
Food and Drug Adminis t ra t ion (FDA) , and used
ClinicalTrials.gov and searched for keywords: circulating,
miRNAs, and breast cancer. The results have shown eleventh
clinical trials with various statuses. However, only five shown are
completed; however, these studies did not publish their results.
The majority of the studies were completed in France and Italy
and one in Poland. Study no. NCT01612871 and NCT03255486
focused on identifying circulating miRNAs correlated with
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hormonal treatment and neoadjuvant chemotherapy responses
in patients’ blood with and without metastases. The other two
studies NCT02065908 and NCT02618538 focused on screening
women’s blood for early detection of breast cancer. Finally,
NCT02065908 to detect cardiotoxicity in BC serum patients
because of anthracycline chemotherapy administration.
2.10 Strategies in Targeting MicroRNA
and Challenges
One of the main rational for targeting miRNA is their ability to
crosslink with enormous genes. miRNA’s complex networks can
manipulate the cell apoptosis, EMT, chemotherapy resistance,
and cell cycle, making it a unique therapeutic target. However,
few strategies to interfere with these miRNAs were proposed,
such as antisense oligonucleotides, locked nucleic acid, miRNA
sponges, recovering tumor suppressor miRNA expression.

2.10.1 Antisense Oligonucleotides
MicroRNA based treatment is divided into a first and second
generation. The first is synthesized as double-strand small RNA
that is antisense (RNA mimicry) to target miRNA. In the second
generation, a single strand directly targets the mature miRNA
strand, antagomirs. Blocking oncomirs using antisense that is
modified and specific to the mature miRNA has shown
promising results, demonstrated in Figure 2. This approach to
block miRNAs was enhanced by adding chemical groups to
increases RNA affinity to the target by adding the 2’-O-
methoxyethyl group to the antisense oligonucleotides that also
stabilized and protect them from nuclease activity. Hutvágner
and his team used this principle to successfully silence an
endogenous miRNA let-7 in vivo and vitro (120).

Similarly, Esau et al., 2006 conjugated the 2’-O-methyl group, and
oligonucleotides phosphorothioate reduced the endogenous miR-
122 in vivo (121). In 2007,Krutzfeldt andhis collageused antagomirs,
2’-O-methyl group, oligonucleotides phosphorothioate, and
Frontiers in Oncology | www.frontiersin.org 7
cholesterol. They injected antagomirs into the tail vein targeting
miR-122, which is extremely rich in mice liver. Interestingly, these
antagomirs downregulating the endogenous miRNA-122 in 24
hours (122).

2.10.2 Locked Nucleic Acid
Competing with the antagomirs, the Elmen team also targeted
the endogenous miRNA-122 but used a ribose ring locked with
methyl group by connecting the 2′-O atom and the 4′-C atom.
That gave the molecular more affinity, stability at a significantly
lower dose than the conjugated cholesterol by the Krutzfeldt
investigation team, illustrated in Figure 2 (123).

2.10.3 MicroRNA Sponges
“miRNA sponges” was first presented in 2007 by Margaret and
colleges. The term “miRNA sponges” is used to describe a vector
with a robust mammalian promoter that transcript competitive
tandem binding sites to a specific miRNA or a complimentary seed
sequence for a family of miRNA. A seed sequence or region is the 2-
8nt bases at the 5’ of the miRNA complementing a specific subset of
targets (mRNA) (124). This seed region is critical and based on it
miRNA family is classified. It was successfully introduced in a
transgenic animal (Drosophila microRNA sponge), demonstrating
the miRNA functionality in vivo (125).

2.10.4 Recovering Tumor Suppresser
MicroRNA Expression
One of the hallmarks of cancer is the inactivation of tumor
suppressors. As we showed, many miRNAs can function as
tumor suppressors by targeting another oncogene mRNA. Using
the same principle as the antisense oligonucleotide, rather than
targeting to repress the miRNA replaces the lost one, miRNA
mimic. Introducing miR-15a and miR-16 induces cell arrest and
apoptosis in prostate tumor xenografts (126). Similarly, miR-29b
oligonucleotide on the acute myeloid leukemia xenografts model
activates cell death (127). Another method to deliver the
A

B

FIGURE 2 | miRNA therapeutics and delivery methods. (A) showing the chemically modified oligonucleotide to sustain RNA stability. Such as, adding 2’-O-methyl
group, linking the 2′-O atom and the 4′-C, or adding sulfur to phosphate group (phosphorothioate). (B) Methods that are used to increases RNA delivery (miRNA or
RNAi). Using adenovirus, liposomes vehicles and synthetic polyethylenimine. Created with BioRender.com.
October 2021 | Volume 11 | Article 717759

https://BioRender.com
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Alyami MiRNAs as a Biomarker for Breast Cancer
oligonucleotide is using viral vectors. Adenovirus vectors do not
intergrade their genome host, making it a great model for providing
oligonucleotide. Reducing toxicity and with highly transduction
efficiency and accuracy (128). In 2009, Kota and colleges
successfully overexpressed miR-26a significantly omitted in
hepatocellular carcinoma cell lines using an adenovirus-
associated vector. MiR-26a target transcript activates cell cycle,
cyclin D2 and E2 making it a great target to investigate in vivo.
Transduction miR-26a in mouse animal models for hepatocellular
carcinoma protected the mice from liver cancer (128).
2.10.5 MicroRNA as a Therapeutic Target
and Challenges
Using miRNAs as anti-cancer therapy or targeting their genes
could serve as novel treatment strategies to overcome several cancer
phenotypes, such as drug resistance and metastases. miRNAs could
be targeted by using antisense oligonucleotides specific to certain
oncomirs to block their oncogenic activity. Additionally, miRNAs
that act as tumor suppressors could be developed as novel
therapeutic modalities. To view the latest clinical trials, we used
ClinicalTrials.gov and the drug name. A handful of approved
miRNA by the FDA had reached the clinical trials, described in
Table 2. However, over 50 RNA interferences (RNAi) drug
treatments are ongoing or completed the clinical test with similar
methods in delivery and mechanism as miRNA, explained in
Figure 2 (129). For example, the first RNAi mediated drug that
reached the market by Alnylam Pharmaceuticals was for hereditary
transthyretin-mediated amyloidosis disease in 2018 and RNAi drug
for acute hepatic porphyria in 2019 (130).

Nevertheless, newer or enhanced delivery methods have been
developed that increase the efficiency of miRNA therapy reached
Frontiers in Oncology | www.frontiersin.org 8
clinical trials, such as neutral lipid emulation, liposomes, and
synthetic polyethylenimine demonstrated in Figures 2 and 3 (131,
132). Moreover, a system using bacterium-derived 400 nm particles
conjugated with EGFR antibodies to deliver miR-16 mimics
ongoing clinical trials, known as TargomiRs. Similar, small RNA
can be linked to N-acetyl-D-galactosamine (GalNAc), another
system that uses the cell endocytosis mechanism in phases 1 and
2 and continuing, displayed in Table 2. However, the miRNA
therapy field is still facing many challenges and young in the
therapeutic area similar to RNAi therapeutics, including delivery,
stability, off-target effects, and safety (133). Furthermore, miRNAs
detected in Saudi Arabia BC patients are still limited, and further
studies are needed to provide clinicians with guidelines before
applying miRNA-based treatments.
2.11 Conclusion
To date, there have been significant scientific research findings
demonstrating the functionality of miRNAs as markers for the
prediction, prognosis, and diagnosis of cancer. In addition,
accumulating evidence suggests that the suppression of oncomirs
or stimulation of tumor-suppressive miRNAs could be used to
develop novel treatment strategies, such as RNAi and miRNA-
based therapeutics (133). These technologies will significantly lower
diagnostic costs, robust the clinical treatment methods, and add
molecular targeting to enhancepatient prognoses.However, thisfield
is still evolving and still facingmany challenges that need to be solved.
For example,more profiling formiRNAand identifying their targets,
reducing the off-target toxicity, creating a better chemical
modification increases cellular uptake to the oligonucleotide, viral
delivery efficiency, and safety. However, many preclinical tests are
shown promising results as researchers are currently focusing on
FIGURE 3 | RNAi mechanisms. After transfecting the double strand RNA, it is cleaved by DICER to form a smaller double-stranded miRNA. Then loaded as a guide
for the miRNA-induced silencing complex (miRISC) to target the mRNA. Created with BioRender.com.
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these issues, andpharmaceutical companies show interest in this area
presentation opportunities to grow.
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