:\' frontiers
in Oncology

ORIGINAL RESEARCH
published: 01 October 2021
doi: 10.3389/fonc.2021.718155

OPEN ACCESS

Edited by:
Antonella Santone,
University of Molise, Italy

Reviewed by:

Zhichao Li,

Chonggqing West District Hospital,
China

S. Senthil Kumaran,

All India Institute of Medical Sciences,
India

*Correspondence:
Valentina Giannini
Valentina.giannini@unito.it

Specialty section:

This article was submitted to
Cancer Imaging and
Image-directed Interventions,
a section of the journal
Frontiers in Oncology

Received: 31 May 2021
Accepted: 03 September 2021
Published: 01 October 2021

Citation:

Giannini V, Mazzetti S, Defeudlis A,
Stranieri G, Calandri M, Bollito E,
Bosco M, Porpiglia F, Manfredi M,
De Pascale A, Veltri A, Russo F and
Regge D (2021) A Fully Automatic
Atrtificial Intelligence System

Able to Detect and Characterize
Prostate Cancer Using
Multiparametric MRI: Multicenter
and Multi-Scanner Validation.
Front. Oncol. 11:7181585.

doi: 10.3389/fonc.2021.7181565

Check for
updates

A Fully Automatic Artificial
Intelligence System Able

to Detect and Characterize
Prostate Cancer Using
Multiparametric MRI: Multicenter
and Multi-Scanner Validation

Valentina Giannini 2", Simone Mazzetti %, Arianna Defeudis ", Giuseppe Stranieri®,
Marco Calandri®*, Enrico Bollito®, Martino Bosco®, Francesco Porpiglia’,

Matteo Manfredi”, Agostino De Pascale®, Andrea Veltri®*,

Filippo Russo and Daniele Regge "2

" Department of Radiology, Candliolo Cancer Institute, FPO-IRCCS, Candiolo, Italy, 2 Department of Surgical Sciences,
University of Turin, Turin, ltaly, 3 Radiology Unit, Azienda Ospedaliera Universitaria (AOU) San Luigi Gonzaga, Orbassano, Italy,
4 Department of Oncology, University of Turin, Turin, ltaly, ® Department of Pathology, San Luigi Gonzaga Hospital, University
of Turin, Orbassano, Italy, ¢ Department of Pathology, San Lazzaro Hospital, Alba, Italy, 7 Department of Urology, San Luigi
Gonzaga Hospital, University of Turin, Orbassano, Italy

In the last years, the widespread use of the prostate-specific antigen (PSA) blood
examination to triage patients who will enter the diagnostic/therapeutic path for
prostate cancer (PCa) has almost halved PCa-specific mortality. As a counterpart,
millions of men with clinically insignificant cancer not destined to cause death are
treated, with no beneficial impact on overall survival. Therefore, there is a compelling
need to develop tools that can help in stratifying patients according to their risk, to support
physicians in the selection of the most appropriate treatment option for each individual
patient. The aim of this study was to develop and validate on multivendor data a fully
automated computer-aided diagnosis (CAD) system to detect and characterize PCas
according to their aggressiveness. We propose a CAD system based on artificial
intelligence algorithms that a) registers all images coming from different MRI sequences,
b) provides candidates suspicious to be tumor, and c) provides an aggressiveness score
of each candidate based on the results of a support vector machine classifier fed with
radiomics features. The dataset was composed of 131 patients (149 tumors) from two
different institutions that were divided in a training set, a narrow validation set, and an
external validation set. The algorithm reached an area under the receiver operating
characteristic (ROC) curve in distinguishing between low and high aggressive tumors of
0.96 and 0.81 on the training and validation sets, respectively. Moreover, when the output
of the classifier was divided into three classes of risk, i.e., indolent, indeterminate, and
aggressive, our method did not classify any aggressive tumor as indolent, meaning that,
according to our score, all aggressive tumors would undergo treatment or further
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investigations. Our CAD performance is superior to that of previous studies and
overcomes some of their limitations, such as the need to perform manual segmentation
of the tumor or the fact that analysis is limited to single-center datasets. The results of this
study are promising and could pave the way to a prediction tool for personalized decision
making in patients harboring PCa.

Keywords: prostate cancer, artificial intelligence, automatic segmentation, aggressiveness score, external validation,

magnetic resonance imaging

1 INTRODUCTION

Prostate cancer (PCa) is the most common malignancy in men in
both Europe and the United States (1, 2). Improved treatment
and earlier diagnosis have almost halved PCa-specific mortality
since the 1990s (3). However, after the introduction of prostate-
specific antigen (PSA), millions of men with clinically
insignificant cancer not destined to cause death have received
treatment, with no beneficial impact on overall survival (3, 4). It
is well understood that whole gland treatments could be avoided
in men with indolent PCa, provided that they are properly
selected (5, 6). Indeed, the ProtecT trial showed that in men
with clinically localized PCa, active monitoring, radiotherapy,
and prostatectomy have no statistically significant differences in
cancer-specific mortality after 10 years of follow-up (7).
However, trials designed in the PSA testing era used systematic
biopsy to diagnose PCa, which is known to underestimate both
PCa aggressiveness and extension (8). The Gleason grade (GG)
criteria, published in 2013, underline the importance of properly
classifying PCa by correlating pathology to prognosis (9). The
most significant classification change is the separation of patients
classified with Gleason score (GS) 7 in two different categories:
GG 2, with a GS of 3 + 4, including patients with a more favorable
prognosis than GG 3 patients, with a GS of 4 + 3 (10).
Notwithstanding, treatment decisions are still based on PSA,
biopsy, and staging (11).

Since 2020, the European Association of Urology guidelines
strongly recommend MRI prior to prostate biopsy to localize
cancer and to diagnose extra-prostatic extension (11). MRI is
superior to clinical staging, as it increases detection of PCa and
allows a more precise risk classification (12-14). Moreover, men
with suspicious findings at imaging can benefit from fusion
biopsy, merging MRI information with real-time ultrasound
(US), providing higher sampling precision and improved
diagnostic yield (15, 16). Unfortunately, MRI of the prostate
largely relies on qualitative assessment (17) and suffers from
large inter-reader variability, being strongly related to readers’
expertise (18). Furthermore, qualitative assessment does not
allow determination of tumor aggressiveness.

In recent years, efforts have been made to determine if
quantitative radiomics signatures could allow better assessment
of PCa aggressiveness, using both conventional statistics metrics
(19-21) and higher-order texture features (13, 22-26) derived
from T2-weighted (T2w) images and apparent diffusion
coefficient (ADC) maps. Moreover, machine learning (ML)
methods have been implemented to sift through the large

amounts of high-dimensional data provided by radiomics, to
optimize accuracy, reproducibility, and throughput (27-29).
Unfortunately, most previous studies are not easily transferable
to clinical practice either because they lack validation on external
datasets or, most importantly, due to the absence of an automatic
pipeline to segment and characterize tumor regions without
human intervention (30).

The aim of this study was to develop and validate on
multivendor data a fully automated computer-aided diagnosis
(CAD) system based on artificial intelligence, to localize,
segment, and classify PCa lesions according to their
aggressiveness. The proposed tool aims at providing better
stratification of men with suspicion of PCa, to support
physicians in the selection of the most appropriate treatment
option for each individual patient.

2 MATERIALS AND METHODS
2.1 Patients

This multicenter retrospective study was approved by the local
Ethics Committees. It was in accordance with the Declaration of
Helsinki, and all participants signed informed consent forms.
Inclusion criteria were the following: a) multiparametric (mp)-
MRI examination performed between April 2010 and November
2019, including axial T2w, diffusion-weighted (DW), and
dynamic contrast-enhanced (DCE)-MRI sequences; b) biopsy-
proven PCa; c) radical prostatectomy (RP) within 3 months of
mp-MRIL and d) a clinically significant peripheral zone lesion
(tumor volume >0.5 ml, GS > 6) (31) at the whole-mount
histopathologic analysis. Exclusion criteria were a) low mp-
MRI quality, b) patients in whom biopsy was performed less
than 8 weeks after mp-MRI, and ¢) pathologically confirmed
PCas that were not detected by the CAD system (18, 32). MRI
scans collected at the Candiolo Cancer Institute (center A) were
used for both training and validation, while MRI collected from
the San Luigi Hospital (center B) were used only as the second
holdout validation set (see flow chart in Figure 1).

2.2 MRI Acquisition

At center A, images were obtained either with a 1.5-T scanner
(Signa Excite HD, GE Healthcare, Milwaukee, WI, USA) using a
four-channel phased-array coil combined with an endorectal coil
(Medrad, Indianola, PA, USA) or with a 1.5-T scanner (Optima
MR450w, GE Healthcare, Milwaukee, WI, USA) using both

Frontiers in Oncology | www.frontiersin.org

October 2021 | Volume 11 | Article 718155


https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

Giannini et al. CAD System for Prostate Cancer Diagnosis
TRAINING VALIDATION

CENTER A CENTER A CENTER B
Scanner A Scanner B
72 patients 32 patients 27 patients

63 (88%) with 1 clinically significant PCa, 26 (81%) with 1 clinically significant PCa, 24 (89%) with 1 clinically significant PCa,

9 (12%) with 2 clinically significant PCa 6 (19%) with 2 clinically significant PCa 3 (11%) with 2 clinically significant PCa

81 clinically significant PCa 38 clinically significant PCa | | 30 clinically significant PCa
| 68 clinically significant PCa |
48 low aggressive | | 33 high aggressive 35 low aggressive 33 high aggressive
21 from center A and 17 from center A and
14 from center B 16 from center B
FIGURE 1 | Composition of training and validation sets.

32-channel phased-array and endorectal coils (Medrad,
Indianola, PA, USA). At center B, images were acquired with a
1.5-T scanner (Philips Achieva 1.5T DS, Nederland B.V., PC Best,
Netherlands) using a five-channel phased-array coil combined
with an endorectal coil (Medrad, Indianola, PA, USA). In both
centers, the DCE sequence was triggered to start simultaneously
with the power injection of 0.1 mmol/kg of gadobutrol (Gadovist,
Bayer Schering, Berlin, Germany) through a peripheral line at 0.7
ml/s, followed by infusion of 20 cm® of normal saline at the same
rate. Axial T2w, DW, and DCE sequence parameters are detailed
in Supplementary Table 1. The average time to complete the
whole MRI examination, including two additional T2w scans in
the sagittal and coronal planes and an additional DW sequence
with a higher b-value, was 40 min. Imaging parameters satisfied
the scanning European Society of Urogenital Radiology (ESUR)
guidelines for prostate imaging (33).

2.3 Histopathologic Analysis and
Reference Standard

Whole-mount histological sections resected from the RP
specimens were used as the reference standard. After RP,
surgical specimens were step-sectioned at 3-mm intervals
perpendicular to the long axis (apical-basal) of the gland, with
the same inclination as that of the axial T2w images (32, 34). The
bases and the apexes were cut longitudinally. Then, 5-um sections
were taken from each thick slice and stained with hematoxylin
and eosin. The same experienced pathologist (with 24 years of
experience in pathology and 20 years attending uropathology)
outlined each clinically significant tumor on microscopic slices

and assigned a pathological GG (35, 36). Clinically significant PCa
was defined as a tumor with volume >0.5 ml and/or pathological
GS >= 6 (31). All malignant lesions were then contoured with a
marker on the microscopic slice, and then each section was
scanned for comparison with MRI findings.

2.4 Prostate Cancer

Automatic Segmentation

Segmentation of the whole PCa was performed using a previously
validated CAD system (18, 32, 37). The CAD system consists of
multiple sequential steps, briefly reported in this paragraph. First,
all MRI sequences are registered (37) to correctly compare voxels
coming from different images. Once all datasets are aligned,
quantitative features are extracted from each voxel, including
ADC value, normalized T2w signal intensity, a;, and r of
phenomenological universality (PUN) model (38) and fed into
a support vector machine (SVM) classifier to produce a
voxel-wise malignancy probability map. Finally, all voxels
having probability to be malignant <60%, ADC values either
<200 mm?/s or >1,600 mm?/s, and maximum contrast uptake in
the first minute <100% are discarded. Only connected regions
with area >100 mm? are kept and considered as candidate to be
PCa. This size represents 60% of the volume of the smallest
clinically significant PCa, i.e., 0.5 ml (31). Once the automatic 3D
lesion segmentation was provided by the CAD system, an
experienced radiologist (>500 prostate mp-MRI studies
interpreted per year for 10 years) selected the actual lesion by
comparing MRI sequences with the outlines drawn by the
pathologist on digital images of the pathologic slices (Figure 2).
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FIGURE 2 | A 71-year-old man with Gleason score 3 + 4 (GG 2) prostate cancer contoured on the whole-mount prostatectomy slice (A). Findings of the computer-
aided diagnosis system were shown to the radiologist superimposed to the T2-weighted (T2w) image (B). Using pathology results and MR images, the radiologist
selected the region of interest containing the whole 3D tumor segmentation (red box in image B). Texture features were extracted from both the apparent diffusion
coefficient (ADC) map and the T2w image from voxels belonging to the 3D segmentation of the tumors shown in red in (C, D). (C) Example of a slice of the
segmentation mask of the tumor superimposed to the ADC map; (D) example of a slice of the segmentation mask of the tumor superimposed to the T2w image.

When pathological microslices and axial MR images were not
perfectly overlapped, usually due to modified prostate shape
soaked by formaldehyde, the radiologist and the pathologist
established in consensus the locations of tumors with respect to
identifiable anatomic landmarks (e.g., adenoma nodule, urethra,
ejaculatory ducts, and benign prostatic hyperplasia).

2.5 Texture Analysis and

Quantitative Features

To extract quantitative and texture features, we used an in-house,
image biomarker standardization initiative (IBSI)-compliant
software (39), implemented using C++ and the ITK libraries.
The IBSI reference provides standardized image biomarker
nomenclature and definitions, and a standardized general
image processing workflow, allowing to overcome the lack of
reproducibility and validation that can affect many radiomics
studies (39).

First, we applied a de-noising step with a Gaussian filter (¢ =
0.5 mm) (40). Then, we interpolated MR images and tumor
masks to isotropic voxel spacing of 0.5 mm, using a trilinear
interpolator for MR images (41) and the nearest neighbor
interpolator for masks, since it produces meaningful masks.
Interpolation is needed to produce 3D texture features that are

rotationally invariant, and it allows comparison between image
data from different samples (42). Once all images were
interpolated, we re-segmented the masks of all PCas between
the first and 99th percentiles of the region of interest (ROI) to
remove outliers. Finally, we discretized MR images using a fixed
number of bins (n=64). The fixed number of bin introduces a
normalizing effect, which may be beneficial when intensity units
are arbitrary (e.g., raw MRI data and many spatial filters),
and where image contrast is considered important (42).
Discretization of image intensities inside the ROI is often
required to make calculation of texture features tractable (43).
Details regarding image processing and feature extraction
method according to the IBSI reporting guidelines are
described in Supplementary Table 2.

Finally, we computed the following 92 features: 1) ROI
volume (mm?); 2) eight intensity-based statistics from the
ADC maps, i.e., mean, 25th percentile, 50th percentile, 75th
percentile, skewness, kurtosis, intensity kurtosis, and intensity
variance; 3) mean intensity histogram from the ADC maps; 4) 50
features derived from the gray-level co-occurrence matrices
(GLCMs), 25 from the ADC maps, and 25 from the T2w
images; 5) 32 features derived from the gray-level run length
matrices (GLRLMs), 16 from the ADC maps, and 16 from the
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T2w images. Since the T2w image is not a quantitative map and
consequently it suffers from high variability between scanners
and acquisition protocols, we decided to compute only the
texture-based features from this type of image and not to
compute the intensity-based statistics.

The GLCM was computed at one pixel distance (Ax = 1), and
both GLCM and GLRLM were computed using 32 bins, for each
of the 13 directions of a 3D image, and then averaged to enable
the method to be rotationally invariant to the distribution of
texture, i.e., 3D merged features according to IBSI nomenclature.

A list of all features is provided in Supplementary Table 2.

2.6 Feature Selection and

Classifier Development

Feature selection (FS) is a process of choosing a subset of original
features to reduce dimensionality, remove irrelevant data, increase
learning accuracy, and improve result comprehensibility (44, 45).
The main idea of FS is to select an optimal subset of input
variables, by removing features with little or no predictive
information. In this study, FS was performed using a twofold
approach: first, we discarded highly correlated features, and then
we used a wrapper method to select the optimal subset of variables
and avoid overfitting. We first normalized all features using the
min-max scaling method to obtain the same range of values for
each feature, i.e., 0-1; then, on the training set, we computed the
bootstrapped area under the receiver operating characteristic
(ROC) curve (AUCQC) for each feature and the correlation matrix
between all features. When two features showed a correlation
higher than 0.9, we removed the features having the lowest value
of AUC. Once all highly correlated features were removed, we
developed the FS wrapper method, in which a threshold on the
number of features that would be included in the classification
model was defined accounting for the performance of a classifier
(46, 47). More specifically, n feature subsets were created by
including the first n features ordered by AUC. Then each subset
was fed into an SVM classifier that used a third-order polynomial
function (box constraint = 1). To avoid overfitting, we used a
k-fold cross-validation (CV) with k = 4. The k-fold CV consists in
partitioning the dataset into k-fold and performing training on all
but one fold and testing on the left-out fold. This procedure is
repeated until each fold has been used. Performance of each of the
n SVM classifier, i.e., trained with the nth subset, was measured as
the mean accuracy of the k training sets and the accuracy obtained
on the test set. Finally, we selected the n threshold, according to
the point of overfitting, i.e., the point in which accuracy on the
training set keeps increasing while accuracy on the test set
starts decreasing.

Once the best feature subset was selected, we optimized the
SVM via a grid search using incremental values of box constraint
from 1 to 50 (step of 1) and the same k-fold CV (k = 4). FS and
development of the classifier were performed using Matlab
(v R2019a).

2.7 Statistical Analysis
The endpoint of this study was to evaluate the performance of
the radiomics score in distinguishing between low and high

aggressive tumors. Performances were evaluated by means of
both monoparametric and multiparametric analyses. For the first
analysis, the Mann-Whitney U test was used to compare each
texture feature of both T2w images and ADC maps for
differentiation of the two risk groups. Bootstrap AUCs, along
with 95% confidence intervals, were computed for all features in
the training set.

For the multiparametric analysis, we first computed the AUC
obtained with the SVM for both training and validation sets. Then,
we selected the most cost-effective cutoff (Youden’s index) of the
ROC curve obtained in the training phase, and we applied the same
cutoff to the validation datasets. Youden’s index is the point on the
ROC curve that has the minimum distance to the upper left corner
(where sensitivity = 1 and specificity = 1) and represents the value
for which both sensitivity and specificity are maximized. We also
evaluated results at the cutoff that maximizes the negative predictive
value (NPV), which is a measure that indicates the real number of
low aggressive tumors among all tumors that are classified as low
aggressive. This metric is important from a clinically point of view,
since, ideally, we do not want to misclassify as low aggressive any
aggressive tumor and consequently not to treat it, even at the cost of
overtreating a few of low aggressive tumors. Once the cutoffs were
selected, we computed accuracy, sensitivity, specificity, NPV, and
positive predictive value (PPV). Finally, we divided our radiomics
score into three levels of suspicious of aggressiveness (Agg-score):
a) indolent: not likely to be aggressive, if the radiomics score was
from 0 to —15% of the best cutoff; b) indeterminate: patient needs
further investigations with biopsy, when the radiomics score is
comprised between —15% of the best cutoff and the best cutoff; and
c) aggressive: likely to be aggressive, if the radiomics score was
higher than the best cutoff.

AUGC:s of the most discriminant features and of the SVM were
compared using Delong’s test (48). Results between performance
obtained in the two validation centers were compared using the
chi-squared test. A p-value of less than 0.05 was considered a
statistically significant result.

3 RESULTS

Patients’ demographics and clinical data are presented in
Table 1. The training set included 72 patients for a total of 81
clinically significant peripheral PCas, while the multicenter
validation set was composed of 59 patients for a total of 68
clinically significant peripheral PCas. Details of the dataset
composition are described in Figure 1.

There were no statistically significant differences in PSA, age,
and PCa largest diameter when comparing the validation set
and the training set. Age, PSA, and PCa largest diameter were
higher in the group of patients with aggressive PCa (p = 0.007,
p = 0.0001, and p = 0.0001 respectively).

3.1 Monoparametric Analysis

The Mann-Whitney test showed that 56 out of 92 features were
statistically different between GG < 2 PCas and GG > 2 PCas in
the training set. Among them, 55 had bootstrapped AUC
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TABLE 1 | Clinical and demographic characteristics of the patient cohort.

Number of patients (n) Total Training Validation 1 Validation 2
131 72 32 27
Number of clinically significant PCas (n) 149 81 38 30
Median age, years [IQR] 66 [61-70] 65 [60-70] 67 [60-70] 68 [63-72]
Median PSA ng/ml [IQR] 6.3 [6.3-9.1] 6.1 [4.9-8.1] 6.0 [6.5-11] 7.0 [6.2-10.3]
Pathologic stage at prostatectomy, n (%)
pT2a 22 (17) 9(12) 7(22) 6 (22)
pT2c 48 (36) 33 (46) 10 (31) 5(19)
pT3a 43 (33) 18 (25) 13 (41) 12(44)
pT3b 18 (14) 12 (17) 2 (6) 4(15)
Gleason score [Gleason grade], n (%)
3+3 [GG 1] 8 (5) 4 (5) 1) 3(10)
3+4 [GG 2] 75 (51) 44 (54) 20 (53) 11 @37)
4+3 [GG 3] 42 (28) 19 (24) 10 (26) 12 (40)
4+4 or higher [GG 4-5] 24 (16) 14 (17) 7(18) 4 (13)
Median largest diameter (mm) [IQR] 13 [10-18] 13 [10-18] 12 [7-16] 16 [12-20]

PSA, prostate-specific antigen; PCa, prostate cancer; IQR, interquartile range.
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FIGURE 3 | Area under the receiver operating characteristic curve (AUC) of
radiomics features having AUC > 0.7 compared with AUC of the 50th
percentile of apparent diffusion coefficient (ADC).

statistically higher than 0.5. Figure 3 compares features having
AUC 2 0.7 with the AUC of the 50th percentile of the ADC
(0.55), which is a parameter that radiologists usually considered
to assess PCa aggressiveness.

Table 2 shows performances of features having AUC > 0.7.
Sensitivity, specificity, PPV, and NPV were computed on both
the training and validation sets at Youden’s index obtained on
the training set. The best performance was reached using the
lesion volume, with sensitivity of 76% and specificity of 65% in
the training set. However, most of these features did not show
good performances when the same cutoff was applied on the
validation set, and either sensitivity or specificity dropped
significantly. This is probably due to the fact that individual

features are not largely different in the low and aggressive
tumors; therefore a cutoff found on a dataset is not
generalizable to another one, i.e., the validation set. Only,
RP_GLRLM_ADC showed similar performance between the
training and validation sets; however, results obtained on both
datasets are not high enough to develop a radiomics score based
only on this feature. Moreover, sensitivity of RP_GLRLM_ADC
was significantly different between center A and center B, 41%
and 87% respectively, meaning that its performance depends on
the MR scanner. All the other metrics were not different between
centers A and B.

3.2 Multiparametric Analysis

3.2.1 Feature Selection

Figure 4 shows the mean accuracy of the k training sets and test sets
obtained by each of the n SVM classifier, i.e., trained with the nth
subset. Overfitting, i.e., the point where performance on a training
set keeps increasing, while that on the test set starts decreasing,
occurs after the sixth subset, ie., containing the six best and not
correlated features ranked by their AUC values. The best feature
subset is composed of six features: volume, two features derived
from the T2w image (difference_average _GLCM and
RP_GLRLM), and three features computed on the ADC maps
(JointMax_GLCM and RP_GLRLM). Three out of four features
with AUC > 0.7 were kept in the best feature subset, while
GLNU_GLRLM from ADC was discarded since it was highly
correlated with lesion volume (p = 0.996). The parameter C of
the SVM was set to 4, after having performed a grid search using the
same k-folds used to select the best feature subset.

3.2.2 Classification Performances

Figure 5 shows the ROC curves achieved for the discrimination
of GG <2 PCas and GG > 2 PCas on the training and validation
sets, with and without FS. With the use of all features, the
classifier obtained perfect results on the training set, yet not
statistically different than those obtained using the chosen
feature subset. However, on the validation set, performances
plunged and were statistically lower than those obtained after

Frontiers in Oncology | www.frontiersin.org

October 2021 | Volume 11 | Article 718155


https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

Giannini et al.

CAD System for Prostate Cancer Diagnosis

= 5 _ T _ T T
Q SEI8ICO6
o~ O OO M AN M~ M~
7 ORI RN
2 RN RN RN e
0 WO AN M~
o ~NToLog T g
-4 v [te] 'e) ©
s D _ N _ O N
2 COFTod Lo
X T Ao god =~ ©
0 :'TQGIDLEQI\
(=)
S edeugleo
e | 2 2L 0YoFegad
Q % ovy\vovm\"l
" o © < © ©
c
o
S
(]
he]
® T _©_©_° .
> | 22 Q00RO =
CO  ©OYDoN~OF O
EQ Lo FaoNN
)
Ch soxoxoxd
0S8 Oa-C-8BOog
) T OeNINC 5O
N~ [ep] N~ [(e}
70 _® _ @
= Q0Q0-09Q2
S0 ¥SY¥9oaddw =X
=) :L?QIT:?S|
2h KN RORARES
S ¥ 90NN WO .,
7] Ao To N o
< © ™ ©
N
o
}{
— — = = =
S D __ - O __ O
S Q CEIFINST
2 xX TN T Y ® WO W
< 0 DB 0D B0 D0
(2]
£ |7 |fg%sifass
2 g 3L sLcLse
P 4 ~ N N~ N~
(o]
o
=
[
K]
8 5 T4953=-%5
£ 2 SETISECR I e
S X B o Mwd — F 0
2 o SN N6R o
g e LORLO RO RN
5 > 0 0 OnoD— v
| - a ocINITIcsI S
» % o o] [¥o) © te]
@
D
%] o
c £
S| £
F| @ — e = =
ke - O ___© O __ o
IS 2o SSISITIO
= C0 T YoYDL IA
o EI QN OaNONoN
= =
® 8% R- R RITRO
=) Q2 ©®O®ON N0
< (7] gL g0 gL e
.% © © © ©
5
s
c
==
o
O
s ®_® T T
o 2o QOFTORO0OG
R >0 LTV I —
2 E3 Lo R AN
o o
g 2  ROURO KD RO
3 0 | 0N DN DN
o n 6Ll LlLgla@
= N~ © © N~
(o]
£
[0
[
8 *
o (@} «©
o -‘;;-% © — — o
5 e I o o &
m = o — o
S £ N R AV
G
(o]
(] —
5 3 o
£ < 8 -
ke s £ 3
& o 9 3 <
— E © T =
~ E Y 3 2
w 9 [0} é | —
c_nl % % € 2 OI
< ') Ke) Ks} = Qo
= [ > - O] o

Numbers in square brackets represent the number correctly classified over the total number of each class.

PPV, positive predictive value; NPV, negative predictive value; ADC, apparent diffusion coefficient.
“Determined by Youden's index considering the high aggressive tumor as the positive class.

1 T T T T T T

0.95 Training | |
Testing
09 b
0.85 b
X6
2 Y 0.79226
g o8 | E
g
3
Pl [ ]
i X6
Y 0.68891

0.7 b

0.65 4

0.55 ! L L L L 1
0 5 10 15 20 25 30 35

# of features

FIGURE 4 | Classification performance (mean accuracy of a k-fold validation)
as a function of the number of features used. Features are ordered by
decreasing area under the receiver operating characteristic curve (AUC)
values. In this example, the best performance was obtained when the first six
features were used (mean accuracy of 0.79 and 0.69 in the training and test
set, respectively). Choosing more features would lead to overfitting and thus
decrease performance.

100 | o o o o o o

80—

60 [—

Sensitivity

40 [—

20 [+

= Training FS (AUC=0.96)

=== Validation FS (AUC=0.81)

=== Training all features (AUC=1.0)
Validation all features (AUC=0.52)

0 20 40 60 80 100
100-Specificity

FIGURE 5 | Support vector machine (SVM) performance on the training set
and validation set in discriminating between low (GG < 2) and high (GG > 2)
aggressive prostate cancers. receiver operating characteristic (ROC) curves
were obtained using all parameters and after applying the feature selection (FS).

applying FS. This behavior clearly showed that overfitting occurs
when applying a high number of features.

Results obtained on the training set at the cost-effective cutoff
(0.42), after applying FS, are shown in Table 3. Accuracy was
95.1% (77/81; 95%CI: 87.8-98.9) and 75.0% (51/68; 95%CI:
63.0-84.7) on the training and validation sets, respectively. The
cutoft that maximizes NPV computed on the training set was
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0.39, and the results are shown in Table 3. Performances were
not statistically different between the validation sets of the
two centers.

Figure 6 shows the waterfall plot of the radiomics score of the
classifier on both the training and validation sets. The black line
shows the position of the cutoff that maximizes NPV. When this
threshold is chosen, all aggressive tumors in the training set are
correctly classified; i.e., there is no red bar with negative
normalized radiomics score. Moreover, in the validation set,
eight high aggressive tumors that were erroneously classified as
low aggressive with the best cutoft were correctly classified, when
using this cutoff, i.e., the eight red bars with a negative
normalized radiomics score (Figure 6). Figure 7 shows the
distribution of low and high aggressive tumors within the three
levels of the Agg-score. All FNs in both the training (2/2) and
validation sets (12/12) were classified as indeterminate, meaning
that further investigations are needed, while no high aggressive
tumor was classified as indolent (not likely to be aggressive), and
only 2/33 and 5/26 low aggressive tumors were classified as high
aggressive, in the training and validation sets, respectively.
Therefore, our method provided a clear indication of
aggressiveness (Agg-score indolent and aggressive) in 51% and
53% of lesions in the training and validation sets, respectively,
without classifying as non-aggressive any high aggressive tumor.
Two examples of misclassified lesions are shown in Figure 8.

4 DISCUSSION

In this study, we present a comprehensive non-invasive tool that
can detect PCa and provide a likelihood score of cancer
aggressiveness. Our system provides a radiomics score based
on texture features extracted from the automatic segmentation of
the tumor, reaching a considerable accuracy in discriminating
between low and high aggressive PCa (AUC respectively of 0.96
and 0.81 in the training and validation datasets).

The fully automatic pipeline we developed represents an
important improvement with respect to previous studies,
which relied mainly on manual segmentations performed by
expert radiologists. Manual segmentation is a time-consuming
task and is impractical when large databases need to be evaluated
(49). Moreover, results are operator dependent and not readily
transferrable into clinical practice (30, 50). An additional
advantage of our CAD system is that it has been designed with
the purpose of effectively managing patients with PCa, also
allowing the distinction of PCa in three groups, i.e., aggressive,
indolent and indeterminate. Each group leads to a different
diagnostic/therapeutic path that will be customized to the
actual clinical need of each patient. Indeed, if further validation
will confirm our findings, men classified with aggressive PCa
could undergo radical treatments, while conversely, those with
indolent tumors could benefit from active surveillance. Both
could avoid the side effects of multiple core biopsies, paving the
way to a new diagnostic paradigm where tissue biopsy is
substituted by virtual biopsy. Finally, in patients with
indeterminate findings, additional information will be needed
for decision making, for example, by retrieving additional biopsy
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FIGURE 7 | Distribution of low aggressive and high aggressive tumors in the
three levels of aggressiveness score, for both the training and validation sets.

samples of the lesion or considering other clinical, laboratory,
and molecular variables. To further improve the accuracy of the
diagnostic assessment of patients with PCa, in the future, we
envisage the integration of our PCa aggressiveness score into a
more comprehensive clinical decision support system.

Other studies have assessed the relationship between
quantitative biomarkers and PCa aggressiveness. Of note,
Rozenberg et al. (23) developed an SVM classifier that used
four texture parameters derived from ADC maps, i.e., skewness,
kurtosis, entropy, and run length non-uniformity. On a dataset
of 54 patients, all GS = 7 tumors, they obtained an AUC of 0.77,

40 50 60

FIGURE 6 | Waterfall plot of both training and validation sets. The black line shows the cutoff that maximizes the negative predictive value (NPV). * shows the eight
tumors that were correctly classified as high aggressive when using the cutoff that maximizes NPV.

a sensitivity of 71%, and a specificity of 78% in distinguishing
between GS < 3 + 4 and GS > 3 + 4 at the best cutoff point, using
a 10-fold CV method. In comparison, our study yielded higher
AUC values. Moreover, the present study included tumors from
GS = 6 to GS 2 8, increasing heterogeneity of the dataset and
providing a setting more similar to the actual clinical practice.
Previously, ADC-derived biomarkers have been also used to
predict PCa aggressiveness. For example, Wibmer et al. (25)
demonstrated that ADC energy is lower and ADC entropy is
higher in tumor with GS > 3 + 4, and Rosenkrantz et al. (22)
observed that ADC entropy values were higher in tumors with a
GS = 4 + 3 than in tumors with a GS = 3 + 4. Finally, Nketiah
et al. (26) demonstrated that energy and entropy derived from
T2w images were moderately correlated with GS. As a general
consideration, all of the above-reported studies did not evaluate
the combination of different parameters and if a combined
radiomics score could increase performances in assessing
PCa aggressiveness.

More recently, some authors did explore ML to distinguishing
GS = 6 PCa from more aggressive tumors by using CV, with
promising results (49, 51-54). However, among these authors,
only Varghese et al. validated their algorithms on an independent
cohort, obtaining an AUC of 0.71 in distinguishing between GS =
6 and higher (53).

From a pathological perspective, it has now been cleared that
the new GG correlates with PCa-specific mortality (10). In
particular, GG groups 1 and 2 have a more favorable prognosis
with respect to GG 3 through 5. Our CAD system was specifically
designed to distinguish these two cohorts of patients. Previously,
only Chaddad et al. (51) provided an analysis of the usefulness of
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tumor in which the pathologist drew the outline of the tumor (blue contour) (E, F).

g

FIGURE 8 | Example of two slices of a GS = 4 + 4 (GG 4) prostate cancer having volume = 0.84 cm? that was erroneously classified as low aggressive.
Segmentation mask superimposed to the apparent diffusion coefficient (ADC) map (A, B) and to the T2-weighted (T2w) image (C, D). Histopathologic section of the

radiomics features in distinguishing between patients with a
favorable outcome from those with an unfavorable prognosis,
ie,GS<3+4o0r GG 1and2 versus GS > 3 + 4 or GG 3 through
5. However, they obtained an AUC of 0.64 on an independent
dataset of 20 patients from the same institution, while our
method reached an AUC of 0.81 on an independent cohort
composed of images acquired from two different institutions,
which is important for ensuring robustness and generalizability
of the tool.

Another important strength of our study relies on the fact that
we demonstrated that integrating 3D texture features from both
T2w images and ADC maps into an ML algorithm could provide
a more precise classification of men with PCa between low and
high aggressive cases than those provided by using only the ADC

map (AUC = 0.96 vs. AUC = 0.55, respectively). We are aware
that computing ADC value from a manually drawn ROI might
appear more easy to do and practical than running ML from a
scratch. However, although the ML-based classifier derivation
process may seem involved, the clinical practitioners do not have
to deal with it directly. The resultant classifier, which can
typically be implemented in a few lines of code on top of the
existing radiomics pipeline, can be executed by such practitioners
through a simple graphical user interface (GUI) and only a few
clicks of a mouse or key (53).

Our study has also some limitations. First, we did not include
transitional zone tumors in the analysis. However, tumors in the
transitional zone have different texture characteristics from those
in the peripheral zone (55), requiring a different computational
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approach. Second, our assessment of aggressiveness was limited
to the analysis of two large classes of tumors, i.e., those with a
favorable versus those with a poor prognosis. For example, we
did not attempt a correlation between radiomics score and
percentage of GG 4, which has important prognostic
implications (56). Finally, we are aware that a more extensive
validation process will be necessary on different MRI equipment
and using different protocols, to confirm the strength and
generalizability of our findings.

In conclusion, in this study, we developed a CAD system,
based on radiomics features, that automatically segments PCa,
providing an aggressiveness likelihood map capable of
distinguishing tumors with a favorable outcome from those
with a poor prognosis. Our CAD performance is superior to
that of previous studies and overcomes some of their limitations,
such as the need to perform manual segmentation or the fact that
analysis is limited to single-center datasets. The results of this
study are promising and could pave the way to a prediction tool
for personalized decision making in patients harboring PCa.
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