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Cancer associated fibroblasts (CAFs) are a major component of the tumour
microenvironment in most tumours, and are key mediators of the response to tissue
damage caused by tumour growth and invasion, contributing to the observation that
tumours behave as ‘wounds that do not heal’. CAFs have been shown to play a
supporting role in all stages of tumour progression, and this is dependent on the highly
secretory phenotype CAFs develop upon activation, of which extracellular matrix (ECM)
production is a key element. A collagen rich, stromal ECM has been shown to influence
tumour growth and metastasis, exclude immune cells and impede drug delivery, and is
associated with poor prognosis in many cancers. CAFs also extensively remodel their
metabolism to support cancer cells, however, it is becoming clear that metabolic rewiring
also supports intrinsic functions of activated fibroblasts, such as increased ECM
production. In this review, we summarise how fibroblasts metabolically regulate ECM
production, focussing on collagen production, at the transcriptional, translational and
post-translational level, and discuss how this can provide possible strategies for effectively
targeting CAF activation and formation of a tumour-promoting stroma.
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INTRODUCTION

Fibroblasts are one of the most abundant cell types in the microenvironment of solid tumours, and
have long been known to play multiple and varied roles in promoting tumour progression and
metastasis. Fibroblasts are influenced by tumour cells to become ‘activated’, a process during which
they develop a highly secretory phenotype involving production of growth factors, pro-angiogenic
factors, immunomodulatory factors, metabolites, extracellular vesicles, and, crucially, ECM
components and remodelling factors (1–5). Activated fibroblasts in the tumour microenvironment
are known as cancer associated fibroblasts, or CAFs, however, fibroblasts undergo an extremely similar
activation process during wound healing, or other fibrotic diseases (6, 7). Indeed, the role of activated
fibroblasts is vital in the process of wound healing to stimulate cell proliferation, blood vessel repair
and formation, immune cell recruitment to prevent infection and ECM production to provide
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structural support for wound closure. However, following wound
healing, fibroblasts revert to their quiescent state whereas in cancer
or fibrotic disease, fibroblasts are aberrantly and continuously
activated, leading to the description of tumours as ‘wounds that do
not heal’ (8).

One of the main roles of fibroblasts in the healthy body is to
produce and maintain turnover of the extracellular matrix
(ECM), of which collagen proteins are one of the most highly
abundant components, and indeed comprise approximately 30%
of the total protein content of mammals (9). Upon fibroblast
activation, however, production of ECM and collagen is vastly
upregulated. In cancer, the production of excessive collagen-rich
ECM by CAFs is a crucial step in tumour progression, and CAFs
are the main source of structural ECM in tumours (10, 11).
Studies have shown that a collagen-dense stromal compartment
is a predictor of poor prognosis in many cancer types (12–14).
ECM provides a substrate for integrin-mediated signalling
supporting cancer cell adhesion and proliferation (15–18), acts
as a reservoir of pro-angiogenic and growth factors, can be
degraded to provide amino acids for tumour cells (19, 20) and
also acts as a physical barrier to decrease tumour perfusion, drug
delivery and infiltration of tumour suppressing immune cells
(21, 22). Furthermore, collagen in the tumour microenvironment
is more heavily cross-linked and linearised, leading to a stiffer
ECM which is also known to increase tumour aggression (23, 24).
The remodelling of the ECM and linearization of collagen fibres is
an important step in the deposition of pro-tumorigenic ECM,
since non-linearised collagen I can be anti-tumourigenic (25). In
vivo, the effects of the ECM on tumour growth have been assessed
in several studies. Ablation of Col6a1 or Col5a3 in the MMTV-
PyMT mammary tumour model resulted in reduced hyperplasia
and primary tumour growth (26, 27). Conversely, mice which
have been engineered to produce more collagen (Col1a1tm1jae)
showed increased tumour growth in the MMTV-PyMT model
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(12, 28). Inhibition of production of other ECM components such
as hyaluronan, fibronectin and tenascin-C also suppresses
tumour initiation and growth (29, 30). Therefore finding ways
to target ECM production by CAFs could both reduce tumour
growth and metastasis and improve tumour perfusion and drug
delivery (Figure 1) (29–33).
ENERGETIC COST OF ECM PRODUCTION

Of all the proteins that make up the ECM, collagen has a
particularly unusual amino acid composition. The collagen
protein is composed primarily of the Gly-X-Y motif, in which
X and Y are most commonly proline and its modified form
hydroxyproline (34). This is because small, flexible amino acids
are required to fit into the helix conformation of collagen chains,
and in particular glycine is the only amino acid small enough to
fit into the centre of the triple helix. Furthermore, the
hydroxyproline residues can form hydrogen bonds along the
helix to stabilise it. As a result, collagens contain approximately
30% glycine and 15-20% proline or hydroxyproline residues,
although this varies between different collagens (Table 1).
Therefore, collagen synthesis has unique biosynthetic
requirements and, given that it is a major output of CAFs, it is
expected that they might remodel their metabolism accordingly
to sustain it. Both proline and glycine are non-essential amino
acids, and can therefore be obtained exogenously from blood or
made endogenously. Glycine is the smallest amino acid and its
production from larger molecules is actually an exogenic process.
Glycine is produced from serine and its synthesis is therefore
connected to the tetrahydrofolate cycle and to glycolysis, both of
which produce ATP (Figure 2). Proline synthesis, on the other
hand, is an ATP-consuming process. Proline can be synthesised
either from glutamine via conversion to glutamate, or from
FIGURE 1 | CAF-derived ECM promotes tumour progression. Scheme showing how a collagen-rich ECM produced by CAFs influences key aspects of tumour progression.
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arginine via conversion to ornithine. Synthesis of 1 mole proline
from 1 mole glutamine or arginine requires 8 or 2.5 moles ATP,
respectively (35). The arginine pathway for proline synthesis
therefore has the least energetic cost.

Specific amino acid requirements aside, the increased
production of ECM proteins has a more general energetic cost.
Structural proteins such as collagens and fibronectin have a high
number of amino acid residues, meaning that their translation is
Frontiers in Oncology | www.frontiersin.org 3
costly in terms of ATP and GTP. Post-translational modification
of proline to hydroxyproline also has a high energetic cost, with 4
mole of ATP required to produce 1 mole of hydroxyproline for
collagen synthesis. Once translated and modified, ECM proteins
are then secreted by exocytosis, itself an ATP-consuming
process (36).

Although it has long been known that tumour cells undergo
metabolic alterations, only in the last decade has the remodelling
FIGURE 2 | Glycine and proline biosynthesis. Metabolic pathways contributing to synthesis of proline and glycine, which are the two most abundant amino acids in collagen.
TABLE 1 | A list of collagens with the percentage of glycine and proline residues in each.

Collagen Type Proline content (%) Glycine content (%)

Collagen I 17.5 27.3
Collagen II 18.1 27.3
Collagen III 18.7 28.1
Collagen IV 21.7 27.7
Collagen V 17.6 24.8
Collagen VI 8.2 11.6
Collagen VII 14.4 21.2
Collagen VIII 22.4 26.5
Collagen IX 16.6 27.9
Collagen X 21.3 25.7
Collagen XI 16.7 24.0
Collagen XII 9.2 9.2
Collagen XIII 17.4 25.6
Collagen XIV 8.7 10.8
Collagen XV 13.8 15.9
Collagen XVI 17.5 24.3
Collagen XVII 13.6 18.8
Collagen XVIII 17.3 17.2
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of CAF metabolism been studied in detail. Most studies focus on
the role of CAF metabolism in supporting tumour cell
proliferation through secretion of metabolites such as lactate,
pyruvate, and amino acids. Increased glycolysis and autophagy are
the two mechanisms most commonly observed in CAF metabolic
rewiring in the context of CAFs providing metabolites to fuel
tumour cells (37–43). However, until recently there has been little
research into how CAFs rewire their metabolism to support their
own needs upon activation, and in particular to support ECM
production. In addition to data available on how activated
fibroblasts metabolically support ECM production in cancer, we
can look to research on ECM production by fibroblasts in wound
healing andfibrosis for further insights, since these behave similarly
to CAFs (44). Indeed, studies show that there are metabolic
similarities between CAFs and other types of activated fibroblasts,
such as increased glycolysis (45–47).
GLYCOLYSIS STIMULATES ECM
PRODUCTION IN FIBROBLASTS

Increased TGFb signalling is the most well-known and studied
hallmark and master regulator of fibroblast activation, both in
cancer and in other fibroblast activating conditions. Among its
many roles, TGFb signalling upregulates production of ECM,
including collagens, in activated fibroblasts (48, 49). TGFb has
also been linked to metabolic reprogramming in CAFs; in
particular, it has been shown to upregulate glycolysis in many
studies. Although previous work has focussed on the role of
TGFb-induced glycolysis in CAFs in producing lactate as a
metabolic fuel for tumour cells, termed the ‘Reverse Warburg
effect’ (38, 50), it is important to note that glycolysis is also the
major source of ATP production in cells. As discussed earlier, the
process of ECM production is ATP consuming, through
requirements for specific amino acids, protein translation and
post-translational modification. Since ECM is such a significant
output of CAFs, it is reasonable to predict that an increase in
glycolysis may also support ECM synthesis via increased ATP
production. In support of this, it has been shown that fibroblasts
require an increase in glucose uptake and glycolysis to support
TGFb-induced collagen production in fibrosis (51, 52).

Glucose metabolism is also required for the synthesis of
glycine, the most abundant amino acid in collagen, and
therefore increased TGFb-induced glycolysis in CAFs could
also support collagen production through providing precursors
for glycine synthesis. Although glycine is available exogenously
(~400 µM in plasma) (53), two studies have demonstrated that
TGFb signalling also increases serine and glycine synthesis in
activated fibroblasts. Nigdegliogou and co-workers (51)
demonstrated that the enzymes for serine and glycine synthesis
from glucose, PDGDH and SHMT2 (Figure 2), were upregulated
in TGFb-treated human lung fibroblasts, in addition to glycolytic
enzymes. Pharmacological inhibition or genetic deletion of
PDGDH and SHMT2 both attenuated TGFb-induced collagen
I production. Since glycolysis provides precursors for both
glycine and serine synthesis (Figure 2), this implies that
Frontiers in Oncology | www.frontiersin.org 4
upregulated glycolysis in activated fibroblasts can also be used
to fuel glycine biosynthesis, which is a requirement for collagen
production. The mechanism for TGFb-stimulated glycine
production was further elucidated by Selvarajah and co-
workers (54), who recently demonstrated that, in human lung
fibroblasts, canonical TGFb signalling through SMAD3 activated
mTORC1 enhanced expression of glycine synthesis enzymes and
the glucose transporter GLUT1 via upregulation of the
transcription factor ATF4. Inhibition of this pathway reduced
glycine incorporation into, and thereby production of, collagen I.
A further study by Woodcock and co-workers (55) also found
that pharmacological inhibition of the mTORC1/4EBP1
signalling pathway attenuated collagen I synthesis in TGFb-
treated human lung fibroblasts and in CAFs derived from lung
adenocarcinoma patients. mTOR signalling was also found to be
upregulated in CAFs isolated from human PDAC tumours,
although its effect on ECM production was not investigated
(56). These studies show firstly that there is a requirement for
increased amino acid production to support collagen synthesis,
and also suggest a further role for TGFb-induced glycolysis and
mTOR signalling in activated fibroblasts to support glycine
synthesis for collagen production. The role of mTOR signalling
in this pathway is also of interest, as mTORC1 has long been
known to be regulated by availability of amino acids (57),
including glutamine which is involved in collagen production.
Therefore it is also possible that when amino acids are available
in activated fibroblasts, activated mTOR signalling regulates
transcription of genes involved in metabolic pathways that
promote collagen synthesis, both through increasing ATP
production via glycolysis and further synthesis of specific
amino acids required for translation of collagen mRNA.
PROLINE SYNTHESIS IS REQUIRED
FOR COLLAGEN PRODUCTION IN
ACTIVATED FIBROBLASTS

Collagen synthesis has often been hypothesised to be a metabolic
‘dump’ for excess proline. Both glutamine and arginine can be
converted into 1-pyrroline-5-carboxylic acid (P5C) (via
ALDH18A1 or OAT), which is the final precursor for proline
synthesis by PYCR1, PYCR2 or PYCR3. It seems clear that
proline synthesis is upregulated in activated fibroblasts and a
limiting factor in collagen production. Hepatic stellate cells
increase proline production from glutamine upon activation
during liver fibrosis, and PYCR1 is upregulated and proline
oxidase (PRODH), which recycles proline back to P5C, is
downregulated, showing that fibroblast activation pushes cells
towards proline synthesis, although whether this affected
collagen production was not investigated (58). A recent study
showed that TGFb-activated fibroblasts increased expression of
genes in the proline synthesis pathway as well as increasing
proline labelling from 13C-glutamine. ALDH18A1 deletion
decreased collagen production, which could be rescued with
proline supplementation (52). PYCR1 deletion did not
however affect collagen synthesis. Conversely, PYCR1
August 2021 | Volume 11 | Article 719922
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knockdown or inhibition reduced collagen production, and
particularly collagen VI production, in patient derived
mammary CAFs, and could be rescued with proline
supplementation (59). P5C supplementation has also been
shown to increase collagen synthesis by human fibroblasts (60).
Furthermore, Pycr1 KO zebrafish have reduced ECM content and
proline and hydroxyproline levels in their tissues, demonstrating a
link between proline availability and ECM production (61).
Interestingly, mutations in PYCR1 or ALDH18A1 in patients
give rise to a condition called cutis laxa, one of the symptoms of
which is wrinkled skin. This could be due to a loss of ECM
production by fibroblasts, and indeed abnormal collagen fibres
and decreased collagen compactness, in addition to reduced elastin
content, has been observed in some patients with PYCR1
mutations (62). Reduced levels of collagens I and III has also
been observed in patients with ALDH18A1 mutations (63).

In addition to proline biosynthesis, extracellular proline is a
potential source of proline for collagen synthesis. Several studies
have investigated the effects of extracellular proline on collagen
production in fibroblasts. Proline concentration is upregulated at
wound sites, suggesting it is either actively imported to or
synthesised at the wound and therefore there may be a
requirement for extracellular proline (64). However, an early
study found that proline supplementation does not increase
collagen production in a range of cell lines in culture, although
fibroblasts were not investigated (65). Although cirrhotic rat liver
contains high levels of proline and collagen, a proline rich diet
did not stimulate collagen production in the liver, suggesting the
high proline concentration comes from proline synthesis (66).
More recent research, including from our lab, has confirmed this
observation (59). Proline supplementation did not increase
collagen production in human mammary CAFs and human skin
fibroblasts unless glutamine availability or proline synthesis was
limited (59, 67). Furthermore, although exogenous proline
increased Col1a1 expression and radiolabelled proline was
incorporated into collagen in human dermal fibroblasts, this
effect was more pronounced when the fibroblasts were cultured
in the absence of glutamine (67). Therefore, it seems that
fibroblasts preferentially synthesise their own proline. The study
on dermal fibroblasts proposed that proline availability also
regulates expression of collagen genes as well as being a
substrate for collagen translation, which suggests there could be
a feedback loop whereby intracellular proline concentration
regulates collagen expression. However, this was not the case in
the mammary CAFs, so this may not be a universal mechanism for
activated fibroblasts.

The question of why fibroblasts prefer to synthesise their own
proline for collagen production, even when free proline is
available, has not yet been answered. One possibility is that
proline synthesis plays an important role in producing reducing
potential. The production of proline by PYCR1 oxidises NAPDH
or NADH to NADP+/NAD+, which can support glycolysis and
the pentose phosphate pathway (68), which could help to
maintain the increase in glycolysis in activated fibroblasts.
Equally, the interconversion of P5C and proline creates a
shuttle of the redox equivalents NADPH/NADP+ between the
Frontiers in Oncology | www.frontiersin.org 5
mitochondria and cytosol, meaning that proline production can
play a role in maintaining redox homeostasis (69). Proline itself
is also an antioxidant through the secondary amine of the
pyrrolidine ring (70). In support of this, upregulated proline
synthesis protects cells from the reducing potential and ROS
caused by increased TCA cycle activity in TGF-b stimulated
fibroblasts (52), and mitochondrial NADPH was required for
proline biosynthesis and collagen production in MEFs (71).
PYCR1 loss in fibroblasts has been shown to increase their
susceptibility to ROS-mediated apoptosis (72). Interestingly,
both PYCR1 and PYCR2 have been found to interact with and
promote the activity of RRM2B, a protein that supports DNA
damage repair in response to oxidative stress, in fibroblasts,
showing that the anti-oxidant properties of PYCR1 are not solely
due to its role in proline production but that it also plays a role in
the wider cellular response to oxidative stress (73). Therefore
fibroblasts may also maintain proline synthesis to counteract
redox stress. Thus, in addition to reducing ECM production,
targeting collagen production in CAFs through proline synthesis
could also reduce their ability to cope with the increased levels of
oxidative stress in the tumour microenvironment, and further
research into the effects of proline synthesis inhibition on CAFs
would be needed to verify this.
PRECURSORS FOR PROLINE SYNTHESIS

Glutamine Metabolism
Another major metabolic pathway, which has been found to
regulate ECM production in fibroblasts, and in particular
collagen production, is that of glutamine metabolism. Glutamine
is converted to glutamate, and from there can enter the TCA cycle
via a-ketoglutarate to fuel oxidative phosphorylation. Glutamate
is also a precursor for proline. Intraperitoneal administration of
glutamine improved wound healing and increased the presence of
immature collagen in parenchymal lung lesions in rats (74).
Interestingly, dietary glutamine supplementation improved
collagen density in colonic anastomoses in rats more than
glycine supplementation (75), suggesting that fibroblasts are able
to synthesise sufficient glycine for collagen production, whereas
they require a source of extracellular glutamine. This is also
reflected in a study showing that a much higher concentration
of extracellular glycine was needed to increase collagen production
in chondrocytes than that of glutamine or, indeed, proline (76).
Conversely, inhibition of glutamine metabolism with the
glutamine agonist 6-diazo-5-oxo-L-norleucine (DON) prevented
aspects of fibrosis including collagen production in fibroblasts
derived from patients with iatrogenic laryngotracheal stenosis
(iLTS) (77). Conversion of glutamine into glutamate seems to be
crucial for its collagen-promoting properties, as inhibition of
glutamate synthase (GLS) with the inhibitor BPTES also
decreased collagen production in iLTS derived fibroblasts (78).
Furthermore, both glutamine and glutamate stimulated collagen
biosynthesis in human skin fibroblasts (60), and glutamine
synthesis has been shown to be upregulated in ovarian CAFs
(79). However, although these studies show that glutamine
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metabolism is important for collagen production both in vivo and
in activated fibroblasts in vitro, the question remains as to whether
glutamine enhances collagen production through incorporation
into proline to sustain collagen translation, or through other
metabolic pathways leading indirectly to increased collagen
expression, or both.

A few studies have demonstrated that glutamine is required
for proline production to sustain collagen synthesis in fibroblasts.
Bellon and co-workers (80) first demonstrated that glutamine
supplementation stimulates procollagen synthesis in human
foreskin fibroblasts, and that glutamine-derived proline competed
with extracellular 14C-labelled proline for incorporation into
prolyl-tRNA and procollagen, showing that glutamine is an
important intracellular source of proline for collagen production.
Furthermore, procollagen synthesis was independent of the
concentration of free proline in the media when glutamine was
provided, suggesting that fibroblasts may prefer to synthesise
their own proline from glutamine rather than use extracellular
proline. A more recent study showed that conversion of glutamine
into glutamate and thence to proline and glycine (Figure 2) is
required for collagen production in human lung fibroblasts
activated with TGFb (81). TGFb increased the expression of
GLS, PSAT1 and enzymes in the proline synthesis pathway,
and the intracellular concentrations of both proline and glycine,
in addition to increasing collagen production. In the absence
of glutamine, collagen production, but not COL1A1 mRNA
expression, was reduced, implying again that glutamine is
required for collagen translation. siRNA mediated silencing of
GLS, PSAT1 or ALDH18A1 attenuated TGFb-induced collagen
production, and interestingly ALDH18A1 knockdown could not be
rescued by proline supplementation at physiological levels,
suggesting again that proline synthesis from glutamine, rather
than extracellular proline, is required for collagen synthesis in
activated fibroblasts. This is concurrent with data showing only
supraphysiological levels of proline could rescue PYCR1
knockdown (59), however another study was able to rescue
ALDH18A1 depletion with sub physiological proline levels (52).
This could be because the CRISPRmediated ALDH18A1 knockout
in Schworer et al. has a more drastic effect on proline synthesis
compared to the siRNA and shRNA knockdown in the other two
studies, and can therefore a lower dose of proline will provide some
rescue. Conversely, inhibition of glutamate metabolism by
oxoglutarate dehydrogenase knockdown to decrease oxidative
metabolism did not affect collagen production.
Arginine and Ornithine
Aside from glutamine, cells can also make proline for collagen
production from arginine via ornithine, a pathway which
branches from the urea cycle (Figure 2). Much of the evidence
that arginine metabolism supports collagen production comes
from studies on wound healing and fibrosis, however there is
some evidence that this pathway may be similarly regulated in
CAFs. Glutamate, arginine and ornithine are all drained at burn
sites (82, 83), suggesting a requirement for these specific amino
acids during the wound healing process. Furthermore, arginase
expression is upregulated in wound derived fibroblasts at all
Frontiers in Oncology | www.frontiersin.org 6
stages of the wound healing process in rats (84) and local
inhibition of arginase delayed healing of incisional wounds in
C57Bl/6 mice (85). Arginine is also among the metabolites
upregulated in the lungs of patients with idiopathic lung
fibrosis (86), although the study did not investigate whether
the increase in arginine levels was specifically in fibroblasts or
in other cells in the lung. In an immunohistochemical analysis
of PDAC patients, arginase has been found to be upregulated in
CAFs, and is a predictor of poor outcome. Furthermore,
arginase expression could be stimulated in cultured fibroblasts
by exposure to hypoxia, which is a common feature of the tumour
microenvironment (87). Therefore arginine and ornithine
metabolism seems to be upregulated in conditions in which
fibroblasts increase collagen production. But does it actually
contribute to collagen synthesis? Dietary supplementation of
both arginine and ornithine, but not citrulline, has been shown
to improve collagen production in wounds in mice or rats (88–
90). Furthermore, arginase is upregulated in fibroblasts in mice
treated with bleomycin to stimulate fibrosis, and pharmacological
inhibition of arginase with NG-hydroxy-l-arginine attenuated
TGFb-stimulated collagen deposition, without affecting collagen
mRNA expression or SMAD signalling, suggesting that arginine
is required for collagen translation, possibly through conversion
to proline (91). Also linking TGFb-induced collagen deposition
by fibroblasts to arginase activity is a study showing that treating
rats given lung orthotopic transplants with pirfenidone reduced
collagen content and fibro-collagenous injury in the transplants,
and that this was associated with both decreased endogenous
TGFb and arginase expression (92). TGFb was also shown to
stimulate arginine uptake and ornithine aminotransferase (OAT)
expression in smooth muscle cells (93). Arginine-induced
collagen production by smooth muscle cells was found to be
dependent on conversion of arginine to proline (94), suggesting
arginine’s role in collagen synthesis is as a proline precursor.
However, much of the research into arginine metabolism and
collagen production has been done in the context of wound
healing and fibrosis, and while activated fibroblasts in wounds
and the TME share similarities, further research is required to
verify whether targeting arginase also reduces collagen
production in tumours. Arginase has already been proposed as
a therapeutic target against tumour promoting immune cells, so if
it also stimulates collagen production in CAFs it could be a useful
means of targeting two aspects of the tumour microenvironment.
ALTERNATIVE ROLES FOR
AMINO ACID METABOLISM IN
COLLAGEN PRODUCTION

Many studies have shown that the role of glutamine metabolism
in collagen synthesis is not limited to the translational level
(Figure 3). Interestingly, glutamine availability can also regulate
collagen mRNA expression in fibroblasts. Treatment of cultured
fibroblasts with glutamine increased collagen mRNA levels (95),
conversely, removal of glutamine from cell culture media or
pharmacological inhibition of GLS reduced expression of
August 2021 | Volume 11 | Article 719922
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collagen I in hepatic stellate cells (58). It has also been shown that
glutamine metabolism may regulate fibroblast activation at a
more general level. Bernard and co-workers found that when
murine lung fibroblasts are deprived of glutamine or GLS is
inhibited, TGFb treatment fails to increase not only the
expression of Col1a1, but also other markers of fibroblast
activation including fibronectin, Acta2 (which encodes for
aSMA) and Hif1a. Interestingly, the authors also found that
glutamine depletion post-TGFb treatment did not affect aSMA
protein levels but did affect the other markers, and that a-
ketoglutarate only restored Acta2 and Hif1a expression under
glutamine deprivation (96). On the other hand, another study
showed that in human lung fibroblasts GLS inhibition did not
affect collagen gene expression, but reduced collagen translation
via loss of mTORC1 activation, which was regulated by a-
ketoglutarate production from glutamate (97). This therefore
suggests that glutamine metabolism may support fibroblast
activation through several different pathways. It is worth
noting that a-ketoglutarate is a cofactor for many enzymes,
including histone demethylases, so it is possible that glutamine
metabolismmay promote expression of Acta2 andHif1a through
an epigenetic switch, whereas perhaps expression of ECM
proteins is part of a feedback loop regulated by amino acid
availability. Conversion of a-ketoglutarate to succinate could
also inhibit prolyl hydroxylases that destabilise HIF1a.
Frontiers in Oncology | www.frontiersin.org 7
An alternative way that glutamine metabolism can affect
collagen production is through a-ketoglutarate-mediated
activation of prolyl hydroxylases, which use it as a cofactor.
Conversely, accumulation of succinate decreases prolyl
hydroxylase activity. Proline hydroxylation is vital to maintain
collagen stability, and GLS inhibition markedly increased
degradation of collagens I and III in human lung fibroblasts
(97). The requirement for a-ketoglutarate by prolyl hydroxylases
has also been linked to amino acid sensing by mTOR, since a-
ketoglutarate is a degradation product of several amino acids and
the product of glutamine deamination (98). As previously
discussed, mTOR activation has also been linked to collagen
production through activation of glycine synthesis and
glycolysis. A more recent study demonstrated that HIF1a
activation in chondrocytes led to increased glutaminolysis and
thereby accumulation of a-ketoglutarate. This enhanced proline
and lysine hydroxylation on collagen, making the matrix more
resistant to degradation by MMPs and ultimately resulting in
skeletal dysplasia (99). Since HIF1a signalling is also often
activated in CAFs (100, 101), this mechanism could also be
relevant for increased collagen modification in the tumour
microenvironment. The a-ketoglutarate: succinate ratio has
also been shown to affect collagen stability in breast CAFs
(102). Another aspect of glutamine metabolism is its effect on
the redox balance of the cell, as glutamate is a precursor for GSH
synthesis, and it has also been shown that glutamine or cancer
cell-derived glutamate balances the redox state of fibroblasts,
enabling ECM remodelling and increased ECM stiffness (103).
Therefore glutamine metabolism clearly has a wider impact on
CAF-derived ECM than solely the translation of ECM proteins.
Although it is clear that glutamine metabolism has an important
role to play in ECM production by CAFs, the mechanism(s) by
which it promotes fibrosis are unclear and studies are conflicting
as to whether glutamine affects both collagen transcription and
translation. More research is needed to determine exactly how
glutamine metabolism can regulate mRNA expression of
collagen, fibronectin and other myofibroblast markers.
Therefore the exact role of glutamine in fibroblast activation
and ECM production has yet to be determined, and it seems
likely that glutamine metabolism impacts upon many pathways
that can affect ECM gene expression, synthesis and stability.

Arginine metabolism may also play a more complex role in
collagen production besides that of a proline precursor. Arginine is
involved in the production of nitric oxide (NO), which has been
shown in several studies to inhibit fibrosis and collagen production
by fibroblasts (104–106). Therefore arginase and NO synthase
(NOS) may compete for arginine as a substrate, and metabolism
of arginine by arginase may divert arginine away from NO
production in addition to enabling proline synthesis to stimulate
collagen synthesis. On the other hand, NO production has actually
been found upregulated in breast CAFs due to downregulation of
Caveolin 1, which binds and inhibits NOS. NO production led to
increased glycolysis and ROS production, both features of CAF
activation (107). Interestingly, arginine supplementation was
unable to enhance wound healing and collagen production in
inducible NOS knockout mice (108), whereas ornithine
FIGURE 3 | The role of glutamine in ECM production. Scheme showing the
different aspects of ECM production that are influenced by glutamine
metabolism in fibroblasts.
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supplementation still stimulated collagen production even in the
absence of NOS (90). Therefore, while proline production from
arginine andornithine can be upregulated in activatedfibroblasts to
stimulate collagen production, whether or not arginine uptake
regulates collagen production by reducing NO synthesis is still
unclear and further research is required to elucidate the role of NO
in fibroblast activation.
CONCLUSIONS

TGFb is well-known as a master regulator of CAF activation, but
it is becoming clear that it is also a major architect of metabolic
rewiring in fibroblasts. TGFb stimulates glycolysis, serine and
glycine metabolism, glutamine metabolism, and increased
proline synthesis from glutamine and arginine. Therefore, in
addition to increasing ECM gene expression, TGFb also activates
metabolic pathways that support ECM production by activated
fibroblasts: by increasing ATP generation to support synthesis of
ECM protein, increasing production of amino acids required for
collagen translation and by enhancing collagen stability and
post-translational modification.

Glycine, proline, glutamine and arginine metabolism are all
potential targets for normalising collagen production in the
tumour stroma to reduce tumour growth and improve tumour
perfusion and drug delivery. However, there is still much research
to be done and many unanswered questions. Firstly, many of the
studies showing these metabolites affect collagen production have
been carried out in the context of activated fibroblasts in wound
healing, fibrotic disease and acutely TGFb-treated fibroblasts,
rather than CAFs derived from cancer patients, although gene
expression data suggests these pathways are also upregulated in
the tumour stroma. Therefore, further research is needed to verify
that metabolic changes in CAFs are relevant and targetable
pathways to regulate ECM production. Furthermore, there is a
lack of studies investigating whether these metabolic pathways
could be a viable therapeutic target against the tumour stroma in
vivo, since the majority of research to date has focussed on the
role of these pathways in 2D cell culture of activated fibroblasts
and the only in vivo models have been of wound healing or
fibrotic disease.
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Therapeutically, there are already several possibilities for targeting
metabolic regulationof ECMproduction inCAFs. TheGLS inhibitor
CB-839 is currently undergoing clinical trials in cancer patients, so it
would be useful to ascertain whether this drug affects the stroma
as well as targeting cancer cells. Arginase inhibitors are also
available and undergoing clinical trials in cancer patients as an
immunotherapeutic, again, it will be interesting to discover if they
also have an impact on CAFs. However, the development of drugs
targeting the proline synthesis pathway is still at an early stage, and
inhibitors against PYCR1 have only recently been developed (109,
110). Since however, PYCR1 has recently been found to be
upregulated in many cancer cells and to have tumour promoting
effects both in cancer cells and CAFs (59, 111, 112), the development
of new inhibitors may prove useful in targeting both tumour and
stroma, killing two birds with one stone. Targeting stromal collagen
production may also increase the effectiveness of immunotherapies.
Collagenwas shown to impede immune cellfiltration, increase T-cell
exhaustion and decrease sensitivity to PD-L1 blockade in lung
tumours (113), although this may be tumour context dependent
since in a KRas-induced PDAC mouse model, ablation of stromal
collagen I enabled recruitment of tumour suppressing myeloid
cells and promoted tumour progression (114). Finally, since
normalisation of the tumour stroma is known to increase drug
delivery to the tumour, it is likely that targeting the metabolic
pathways discussed in this review will be most efficacious in
combination with other cancer cell targeting therapies, and this
should be borne in mind when designing future therapeutic
strategies to target cancer-associated stroma and ECM production.
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