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Introduction: Current risk predictors of multiple myeloma do not integrate ethnicity-
specific information. However, the impact of ethnicity on disease biology cannot be
overlooked. In this study, we have investigated the impact of ethnicity in multiple myeloma
risk prediction. In addition, an efficient and robust artificial intelligence (AI)-enabled risk-
stratification system is developed for newly diagnosed multiple myeloma (NDMM) patients
that utilizes ethnicity-specific cutoffs of key prognostic parameters.

Methods: K-adaptive partitioning is used to propose new cutoffs of parameters for two
different datasets—the MMIn (MM Indian dataset) dataset and the MMRF (Multiple
Myeloma Research Foundation) dataset belonging to two different ethnicities. The
Consensus-based Risk-Stratification System (CRSS) is designed using the Gaussian
mixture model (GMM) and agglomerative clustering. CRSS is validated via Cox hazard
proportional methods, Kaplan–Meier analysis, and log-rank tests on progression-free
survival (PFS) and overall survival (OS). SHAP (SHapley Additive exPlanations) is utilized to
establish the biological relevance of the risk prediction by CRSS.

Results: There is a significant variation in the key prognostic parameters of the two
datasets belonging to two different ethnicities. CRSS demonstrates superior performance
as compared with the R-ISS in terms of C-index and hazard ratios on both the MMIn and
MMRF datasets. An online calculator has been built that can predict the risk stage of a
multiple myeloma (MM) patient based on the values of parameters and ethnicity.

Conclusion: Our methodology discovers changes in the cutoffs with ethnicities from the
established cutoffs of prognostic features. The best predictor model for both cohorts was
obtained with the new ethnicity-specific cutoffs of clinical parameters. Our study also
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revealed the efficacy of AI in building a deployable risk prediction system for MM. In the
future, it is suggested to use the CRSS risk calculator on a large dataset as the cohort size
of the present study is 25% of the cohort used in the R-ISS reported in 2015.
Keywords: AI in cancer research, ML in cancer survival, risk stratification of multiple myeloma, GMM clustering in
cancer, consensus clustering in cancer, hematological malignancy
INTRODUCTION

Multiple myeloma is a hematopoietic malignancy of plasma cells
with an overall survival period ranging from 6 months to more
than 10 years. The variability in the outcome of patients is an
implication of the clinical and biological heterogeneity
underlying multiple myeloma (MM). Substantial advances in
tumor biology have made it possible to dissect the tumor
heterogeneity present in MM, optimize patient treatment, and
examine patient outcome. Multiple prognostic systems (1–5)
have been described in MM that stratify patients into different
risk groups. These risk groups further assist in identifying high-
risk patients who may require intense therapy upfront and/or a
higher monitoring frequency during the follow-up periods. The
first staging system for MM was proposed in 1975 (1) followed
by the development of the International Staging System (ISS) (2)
in 2005 and a Revised ISS (R-ISS) (3) in 2015. The ISS utilizes
serum albumin and beta2-microglobulin, while the R-ISS makes use
of ISS, lactate dehydrogenase (LDH), and high-risk cytogenetic
aberrations (HRCA). Currently, triplet combination therapy is the
new standard of care in MM which has shifted many high-risk
patients to standard-risk category, thereby justifying the need for a
new risk-stratification system with the possibility of inclusion of
more prognostic factors.

Although human physiological and genetic profile is known
to vary across ethnic groups, the current MM risk-staging
systems do not account for ethnicity-specific information that
can have a huge impact on the risk score prediction. It is evident
from the studies that African Americans experience two to three
times higher incidence rates than Asians, Mexican-Americans, or
Europeans (6). Recent studies have observed a significant
variation in the overall survival of different groups belonging
to distinct races/ethnicities since the introduction of novel
treatment agents in MM (7–10). In a recent study, vitamin D
deficiency at diagnosis was found to be a predictor of poor overall
survival in MM (11). However, this was significant only for
White Americans and not for African Americans even at lower
cutoffs of deficiency (11). Similarly, HRCA, which is used to
determine the intensity of frontline therapy, does not track with
survival outcomes in African Americans (10), thereby
highlighting the need for a race-specific risk-stratification
system. Though ethnicity is an important prognostic factor in
predicting the risk for MM (12), the variations in the clinical
characteristics among the different ethnic groups have not been
evaluated adequately. Therefore, it is desirable to have a staging
system that includes the variations in the clinical characteristics
of the patients pertaining to distinct ethnic groups. In addition, it
should be based on clinical and laboratory parameters that are
2

easily accessible in healthcare settings across the globe.
Therefore, to address this concern, we first investigated the
role of ethnicity in the differential clinical characteristics in the
two independent cohorts of MMIn and MMRF patients with
newly diagnosed multiple myeloma (NDMM) belonging to two
separate ethnic groups. Furthermore, we proposed the
Consensus based Risk-Stratification System (CRSS), an AI-
enabled risk-stratification system, for NDMM that incorporates
the ethnicity-specific cutoffs of the laboratory parameters like
albumin, beta-2 microglobulin (b2M), calcium, estimated
glomerular filtration rate (eGFR), hemoglobin, and age along
with HRCA. The newly proposed ethnicity-aware AI-assisted
CRSS method was shown to have superior performance as
compared with R-ISS. In addition, we also interpreted our
proposed model via SHapley Additive exPlanations (SHAP)
(13) analysis to demonstrate the clinical significance of the risk
stage predictions by CRSS. Our findings establish the significance
of integrating ethnicity-specific information as well as the
effectiveness of machine learning methods in devising a robust
risk-staging model for MM.
MATERIALS AND METHODS

Datasets
A total of 1,675 entries were found in the computerized database
search on June 28, 2019, with the keyword “ICD C90” registered
at the Institute Rotary Cancer Centre, All India Institute of
Medical Sciences (AIIMS). Patients with plasma cell dyscrasia
other than MM (n = 253) or who were lost to follow-up after a
single visit (n = 111) or before first response could be assessed
(n = 21) or with inadequate clinical and/or laboratory parameters
(n = 121) or with early deaths (n = 99) were excluded. The
remaining 1,070 patients of MM belonging to the Indian
population, referred to as MMIn, were evaluated in this study
(Figure S1). Out of 1,070 patients, 41 patients had one or two
missing values. There are several methods to impute missing
values (14–17). However, in the MMIn dataset, missing values
were imputed with the median value of the parameters. An
independent cohort of 900 MM patients enrolled in the Multiple
Myeloma Research Foundation (MMRF) repository was also
used for developing the model. Clinical and laboratory data for
the MMRF dataset, belonging to the American population, are
available publicly. High-risk cytogenetic information was
available for 384 out of 1,070 patients in the MMIn cohort and
800 out of a total of 900 patients in the MMRF which were
further used for building the staging model.
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Clinical and Laboratory Characteristics
The clinical, laboratory, and radiological data were obtained
from the medical case files. The R-ISS could be assigned to a
subset of patients (n = 627) as described previously (18).
Response outcome was estimated following the international
uniform response criteria for multiple myeloma (19).
Progression-free survival (PFS) was computed from the date of
diagnosis till the time of progression or death. Overall survival
(OS) was computed from the date of diagnosis till death due to any
cause or being censored at last follow-up. Baseline clinical and
laboratory features of the patients are given in Supplementary
Table S1.

Study Design
The complete design strategy of the consensus-based approach for
developing the risk-stratification system (CRSS) is explained in this
section (Figure 1). Data from both cohorts were separately used to
develop the risk-staging models based on CRSS. Different clinical
parameters were evaluated for developing the risk-staging system
consistingof age, albumin,b2M, calcium, eGFR,hemoglobin, LDH,
and HRCA which includes t(4;14), t(14;16), and del17. b2M and
LDH levels are reflective of tumor burden and serum albumin,
hemoglobin, calcium, and creatinine are reflective of the bone and
renal homeostasis. eGFR was calculated from creatinine
concentration using the MDRD eGFR equation (20). LDH values
were brought to a common scale by multiplying each entry by 280
and dividing it by the upper limit of LDH provided for that
particular entry in MMIn data. Description of the steps used in
the consensus-based approach for developing the risk-staging
model is given below:

Step 1: Dividing patients into two risk groups based on
established thresholds of parameters. For each parameter,
patients were initially divided into high-risk and low-risk
groups using the well-established cutoffs of these parameters
(21) as shown in Table 1. Established thresholds for albumin and
b2M are derived from the ISS, and for eGFR, calcium, and
hemoglobin, the thresholds are derived from the revised IMWG
criteria (21).

Step 2: Finding new thresholds of parameters via KAP. The K-
adaptive partitioning (22) (KAP) algorithm was used to find new
threshold values for the parameters using complete data of
MMIn (n = 1,070) and MMRF (n = 900). KAP was performed
on the parameters of the patients yielding two threshold values
for each parameter, one from PFS and the other from OS
analysis. The cutoff which was close to the original value was
chosen as the new cutoff for each parameter. Patients were again
divided into high- and low-risk groups based on the proposed
cutoffs. The proposed thresholds maximized the separation
between high- and low-risk groups as compared with the
established thresholds. This is evident from the lower p-values
obtained from the log-rank test on the Kaplan–Meier curves for
all the parameters. A complete list of the proposed thresholds for
the MMIn and MMRF data is shown in Table 1.

Step 3: Cumulative integration of the prognostic impact of the
parameters. The collective prognostic impact of the parameters
was integrated into risk staging via creation of three different
Frontiers in Oncology | www.frontiersin.org 3
adjacency graphs using hazard ratios obtained from univariate
Cox hazard analysis, p-values obtained from log-rank test on
Kaplan–Meier curves, and ranks obtained from multivariate Cox
hazard analysis.

Step 4: Creation of the first adjacency graph. The first
adjacency graph was created using ranks obtained from the
multivariate Cox hazard analysis. The parameter with the
highest hazard value was given the highest rank, and the one
with the lowest hazard value was given the lowest rank. The
respective ranks served as the weights of each of the parameters
and captured the relative impact of each parameter on the
survival of patients. Next, the risk score for each patient was
calculated by successive addition of the weights of all those
parameters that had values (in the respective patient) greater
than the cutoffs defined for the high-risk group. These patient
scores were used to compute an adjacency graph of n rows and n
columns (columns are features), where n is the number of
patients. Each row corresponds to one patient and each entry
in the row is the absolute difference between the score of that
patient with each of the patients including self.

Step 5: Creation of the second and third adjacency graphs. For
the second adjacency graph, hazard ratio values obtained from
univariate Cox hazard analysis were used. For each parameter,
the highest of the two HR values obtained from PFS and OS was
chosen and normalized using “minmax” scaling. The scaled HR
values were assigned as the respective weights of each of the
parameters representing the impact of each parameter on the
survival of patients. The third adjacency graph was created using
p-values obtained by performing a log-rank test on Kaplan–
Meier curves. For each parameter, the lower of the two p-values
obtained from PFS and OS was chosen and normalized using
“minmax” scaling. The scaled p-values were assigned as the
respective weights of each of the parameters. Furthermore, the
risk score for each patient was calculated by successive addition
of the weights of all those parameters that had values (in the
respective patient) greater than the cutoff defined for the high-
risk group. The two different patient scores obtained from
univariate hazard ratios and p-values were further used to
compute two separate adjacency graphs of n rows and n
columns (columns are features), where n is the number of
patients. Each row corresponds to one patient and each entry
in the row is the absolute difference between the score of that
patient with each of the patients including self.

Step 6: Gaussian mixture model (GMM) clustering on the
adjacency graphs. GMM-based clustering is an unsupervised
clustering algorithm which was applied on the three adjacency
graphs to obtain clustering labels.

Step 7: Creation of a consensus graph. The clustering outputs
of the three different adjacency graphs were used to create a
consensus graph (23) of size n × n. The entry for the ith row and
jth column in the consensus graph was determined by calculating
the number of times ith and jth patients were assigned the same
group. Diagonal entries were zero in this graph.

Step 8: Hierarchical clustering on the consensus graph.
Agglomerative clustering was performed on the consensus
graph to cluster the patients into three risk groups. Each
November 2021 | Volume 11 | Article 720932
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cluster of patients was assigned one label: stage 1 (low risk), stage
2 (intermediate risk), or stage 3 (high risk). The rationale behind
using multiple clustering was to combine the results of the
clustering outputs achieved from the different adjacency graphs
and ensure the stability of the final clusters deduced from
agglomerative clustering.

Step 9: Training a decision tree classifier. The staging labels
obtained from agglomerative clustering served as ground-truth
labels for training the supervised decision tree classifier. The
trained decision tree classifier provided the rules in terms of the
parameters for the identification of risk groups, labeled as CRSS-
1 (low risk), CRSS-2 (intermediate risk), and CRSS-3 (high risk)
(Figures S2, S3).
Frontiers in Oncology | www.frontiersin.org 4
Step 10: Infer actual risk groups of the patients using decision
tree classifier rules. Decision tree classifier rules were then used to
identify the risk stages of the patients in both cohorts. The risk
stage assigned by the decision tree classifier was considered the
actual risk class for each patient.

Creation of Multiple Models on the
Datasets
The CRSS method explained in Figure 1 was used to create
multiple models for the MMIn and MMRF datasets. Models A1,
A2, and A3 were built for the MMIn data. Model A1 was built
using established cutoffs of the parameters of albumin, b2M,
LDH, and HRCA. Model A2 was built using the established
FIGURE 1 | Workflow for the development of the Consensus-based Risk-Stratification System (CRSS) for newly diagnosed multiple myeloma patients.
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cutoffs of the parameters of albumin, age, calcium, eGFR,
hemoglobin, b2M, and HRCA. Model A3 uses the same
parameters as model A2, but with the newly proposed cutoffs
of the parameters derived from the MMIn dataset. Similarly,
models M1, M2, M3, and M4 were built for the MMRF data.
Models M1 and M2 are equivalent to models A1 and A2,
respectively. For model M3, the proposed cutoffs of parameters
derived from the MMIn dataset were used for albumin, age,
calcium, eGFR, hemoglobin, b2M, and HRCA. Model M4 is
similar to model M3, but uses the proposed cutoffs of the
parameters derived from the MMRF dataset.
RESULTS

Clinical and Laboratory Characteristics of
Myeloma Patients
The baseline clinical and laboratory features of patients from the
two cohorts were compared using unpaired Wilcoxon rank-sum
test. The median values of all the parameters except albumin were
found to be significantly different (p-value < 0.05,Table S2) in both
cohorts thereby substantiating that the two populations are
different. Novel agents (IMIDs: thalidomide or lenalidomide and/
or PSI, i.e., bortezomib) either as primary or maintenance therapy
were given to all the patients. Triplet therapywas rendered to 56.5%
of the patients. With a median follow-up of 166 weeks (range: 14–
961 weeks), 626 patients progressed (median PFS = 117weeks) and
372 died (median OS = 166 weeks).

Results on the MMIn Dataset (n = 384)
Univariate Cox analysis of the entire patient cohort (n = 1,070,
Table S3, Figure 2) revealed increased risk of progression and
mortality for age >67 years, albumin ≤3.5, b2M ≥4.78, calcium
Frontiers in Oncology | www.frontiersin.org 5
≥11, eGFR ≤48.2, and hemoglobin ≤12.3. Multivariate Cox
hazard analysis was also performed to analyze the cumulative
risk of the parameters (Table S4). Of the three models generated,
model A3 based on ML-derived cutoffs for the prognostic
parameters was the best with higher C-index and hazard ratio
(Table 2). Using model A3, the patients were risk stratified and
the largest proportion of patients were placed in CRSS-2 (n =
192, 50%) followed by CRSS-1 (n = 137, 35.68%) and CRSS-3 (n
= 55, 14.32%). KM survival analysis of CRSS groups indicated
statistically significant difference in PFS between CRSS-1 and
CRSS-2 groups (median PFS: 213 vs. 138 weeks; p = 0.0003) and
between CRSS-2 and CRSS-3 groups (median PFS: 138 vs. 100
weeks; p = 0.0026) (Figure 2). For R-ISS, there was a statistically
significant difference in PFS between R-ISS2 and R-ISS3 (median
PFS: 160 vs. 105 weeks; p = 0.01) but not between R-ISS1 and R-
ISS2 (median PFS = 196 vs. 160 weeks; p = 0.31). Furthermore,
for CRSS, there was statistically significant difference in OS
between CRSS-1 and CRSS-2 groups (median OS = 495 vs. 249
weeks; p = 1.08e-8) as well as between CRSS-2 and CRSS-3
groups (median OS = 249 vs. 182 weeks; p = 0.02). For R-ISS,
there was statistical difference in OS between R-ISS2 and R-ISS3
groups (median OS = 377 vs. 168 weeks; p = 1.86e-5) as well as
between R-ISS1 and R-ISS2 groups (median OS = 478 vs. 377
weeks; p = 0.03).

C-statistic and hazard ratios computed on CRSS surpassed
the C-index and hazard ratios obtained for R-ISS with respect to
both PFS and OS (Table 2). C-statistic for CRSS was 0.60
[Akaike information criteria (AIC) = 2,171.49, Bayesian
information criteria (BIC) = 2,175.43, HR = 1.80, 95% CI =
1.46–2.21, p < 5e-6] for PFS and 0.67 (AIC = 1,244.72, BIC =
1,248.67, HR = 2.43, 95% CI = 1.87–3.14, p < 5e-6) for OS, while
C-statistic for R-ISS was 0.57 (AIC = 2,011.14, BIC = 2,015.01,
HR = 1.43, 95% CI = 1.12–1.82, p = 4.18e-3) for PFS and 0.636
TABLE 1 | Comparison of established and proposed cutoffs for clinical and laboratory parameters for the stratification of patients for progression-free survival (PFS) and
overall survival (OS) in MMIn and MMRF using Kaplan–Meier analysis.

Parameter Established
cutoff value

Proposed
cutoff value

PFS OS

p-value with
established cutoff

p-value with
proposed cutoff

p-value with
established cutoff

p-value with
proposed cutoff

MMIn (n = 1,070)

Age (years) >65 >67 0.11 0.012 5.84e-5 1.25e-6
Albumin (g/dl) ≤3.5 ≤3.5 0.115 0.115 7.0e-4 7.0e-4
b2M (mg/L) ≥5.5 ≥4.78 8.15e-10 9.32e-10 4.13e-10 4.53e-14
Calcium (mg/dl) ≥11 ≥11 0.0078 0.0078 0.0037 0.0037
eGFR (ml/min/1.73m2) ≤40 ≤48.2 0.16 0.04 0.005 1.5e-4
Hb (g/dl) ≤10 ≤12.3 0.0019 8.56e-5 0.0014 3.75e-7

MMRF (n = 900)

Age (years) >65 >69 3.23e-05 1.98e-08 1.06e-05 1.58e-09
Albumin (g/dl) ≤3.5 ≤3.5 0.00017 0.00017 8.47e-07 8.47e-07
b2M (mg/L) ≥5.5 ≥5.5 1.22e-10 1.22e-10 9.25e-13 9.25e-13
Calcium (mg/dl) ≥11 ≥10.52 0.0077 1.40e-04 5.88e-06 3.49e-06
eGFR (ml/min/1.73m2) ≤40 ≤48.3 4.5e-05 4.67e-09 7.48e-06 2.48e-10
Hb (g/dl) ≤10 ≤9.59 2.82e-06 5.69e-09 6.77e-06 5.42e-07
November 2021 | Volum
The proposed cutoffs were found using complete data of MMIn (n = 1,070) and MMRF (n = 900). Less than or equal to cutoff reveals the increased risk in the patient. “>65” shows that a
patient with age greater than 65 years is at greater risk than a patient less than 65 years. “≤3.5” shows that a patient with albumin levels less than equal to 3.5 is at a greater risk than a
patient with albumin levels greater than 3.5. It holds true for other parameters also in a similar manner. Bold values of the column “proposed cutoff value” signify the change in the value of
the parameters from the existing cut-offs. p-values in bold signify that p-values became more significant with the proposed changes in cutoffs.
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(AIC = 1,132.20, BIC = 1,136.07, HR = 2.32, 95% CI = 1.67–3.23,
p < 5e-6) for OS.

Results on the MMRF Dataset (n = 800)
For the MMRF data, out of the four models generated, model M4
performed the best and had the highest C-index and hazard ratios as
compared with the other models as well as R-ISS (Table 2). In the
Frontiers in Oncology | www.frontiersin.org 6
univariateCoxhazard analysis of theMMRFdata, risk of progression
and mortality was increased for age >69 years, b2M ≥5.5, albumin
≤3.5, hemoglobin≤9.59, eGFR ≤48.3, and calcium≥10.52 (Table S3,
Figure S4). Multivariate Cox hazard analysis was also performed
(TableS4). In theMMRFcohort, using theM4model, themajorityof
the patients were placed in CRSS-2 (n = 452, 56.5%) followed by
CRSS-3 (n = 174, 21.75%) and CRSS-1 (n = 174, 21.75%). Results of
A

B

C

D

F

E

FIGURE 2 | (A, B) Progression-free survival in patients with multiple myeloma (MM) from the MMIn cohort (n = 1,070) stratified by the Revised International Staging
System (R-ISS) (n = 355) and the proposed CRSS (n = 384), respectively. R-ISS1 is the low-risk stage, R-ISS2 is the intermediate-risk stage, and R-ISS3 is the high-
risk stage. Median progression-free survival (PFS) for R-ISS1, R-ISS2, and R-ISS3 are 196, 160, and 105 weeks, respectively. The observed p-value obtained after
performing a log-rank test on R-ISS is 9.47e-3. Similarly, CRSS-1 is the low-risk stage, CRSS-2 is the intermediate-risk stage, and CRSS-3 is the high-risk stage.
Median PFS for CRSS-1, CRSS-2, and CRSS-3 are 213, 138, and 100 weeks, respectively. The observed p-value obtained after performing a log-rank test on
CRSS is 5.60e-8. (C, D) Overall survival in patients with MM from the MMIn cohort (n = 1,070) stratified by the R-ISS (n = 355) and CRSS (n = 384), respectively.
Median overall survival (OS) for R-ISS1, R-ISS2, and R-ISS3 are 478, 337, and 168 weeks, respectively. The observed p-value obtained after performing a log-rank
test on R-ISS is 1.00e-6. Median OS for CRSS-1, CRSS-2, and CRSS-3 are 495, 249, and 182 weeks, respectively. The observed p-value obtained after performing
a log-rank test on CRSS is 4.96e-11. (E, F) Univariate Cox hazard analysis on the prognostic factors—age, albumin, beta-2 microglobulin (b2M), calcium, estimated
glomerular filtration rate (eGFR), hemoglobin, and high-risk cytogenetic abnormalities (HRCA)—for PFS and OS, respectively. Hazard ratios for all the parameters
except HRCA were calculated on complete data (n = 1,070) for the MMIn dataset. Hazard ratio for HRCA and the risk-staging models were found using the data for
which HRCA information was present (n = 384 for the MMIn dataset).
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themedianPFSonCRSSgroups (p=8.64e-12) andR-ISSgroups (p=
1.73e-5) as well asmedianOS onCRSS groups (p = 1.08e-15) and R-
ISS groups (p=6.57e-8) reveal the superior performance of theCRSS
than the R-ISS (significant p-values; Figure S4).

C-statistic for CRSS in MMRF data is 0.61 (AIC = 4,126.07,
BIC = 4,130.74, HR = 1.79, 95% CI = 1.52–2.12, p < 5e-6) for PFS
and 0.676 (AIC = 1,819.95, BIC = 1,824.62, HR = 2.85, 95% CI =
2.19–3.71, p < 5e-6) for OS. C-statistic for R-ISS is 0.578 (AIC =
3,413.36, BIC = 3,416.49, HR = 1.61, 95% CI = 1.30–2.00, p =
1.00e-5) for PFS and 0.618 (AIC = 1,586.78, BIC = 1,591.27, HR
= 2.26, 95% CI = 1.65–3.11, p < 5e-6) for OS (Table 3).

The 5-year OS for the MMIn (n = 384) was 89.79% for CRSS-1,
47.91%forCRSS-2, and31.36%forCRSS-3 (Table3).Overall, there is
a substantialdifference in thepercentagesof the5-yearOSandmedian
OS for different risk groups which indicate that the groups were
significant.Asimilar stratificationwasachievedwhentheCRSSmodel
was appliedon theMMRF test dataset. The5-yearOS forMMRFdata
was 94.78% for CRSS-1, 65.69% for CRSS-2, and 46.91% for CRSS-3
which is quite comparable to that obtained in theMMIn data. Higher
values of C-index and hazard ratios as well as lower values of partial
Frontiers in Oncology | www.frontiersin.org 7
AIC and BIC on both datasets were indicative of the superior
performance of our AI-based CRSSmethod as compared with R-ISS.

Statistical Analysis on the Parameters
Used in CRSS
The Kruskal–Wallis test was performed to compare the median
values of the parameters age, albumin, b2M, calcium, eGFR, and
hemoglobin across the three risk groups for both the MMIn and
MMRF datasets. There was a significant increase (p < 0.05) in the
values of age and b2M, while there was a significant decrease (p <
0.05) in the values of albumin, eGFR, and hemoglobin as the risk of
disease increased (Figures S5, S6) for both the MMIn and MMRF
datasets. Wilcoxon rank-sum test was performed to compare the
median values of the parameters between two successive risk groups
and showed significant variation of parameters for both datasets.

Model Interpretation
To ascertain the impact of individual parameters on risk stage
predictions by CRSS, decision tree models built using the MMIn
andMMRF datasets were analyzed using SHAP (Figures 3, 7). Key
TABLE 2 | Comparison of different models devised for the risk stratification of patients in the MMIn and MMRF cohorts with the R-ISS.

PFS OS

Hazard ratio p-value C-index Hazard ratio p-value C-index

MMIn (n = 384)

R-ISS (n = 355) 1.42 0.004 0.57 2.32 <5e-6 0.636
2vs1 1.24 0.33 2.31 0.04
3vs1 1.92 0.009 5.37 0.00013

Model A1 1.5 1.00e-5 0.594 2.03 <5e-6 0.646
2vs1 1.53 0.007 2.13 0.0013
3vs1 2.26 2.00e-5 4.16 <5e-6

Model A2 1.4 0.0001 0.579 1.74 1.00e-5 0.616
2vs1 1.42 0.056 1.9 0.02
3vs1 1.98 0.00013 3.13 2.00e-5

Model A3 (CRSS) 1.8 <5e-6 0.6 2.43 <5e-6 0.67
2vs1 1.76 3.00e-4 3.95 <5e-6
3vs1 3.27 <5e-6 6.43 <5e-6

MMRF (n = 800)

R-ISS (n = 658) 1.61 0.00001 0.578 2.26 <5e-6 0.618
2vs1 1.49 0.015 1.79 0.03
3vs1 2.6 0.00001 4.66 <5e-6

Model M1 1.55 <5e-6 0.6 2.07 <5e-6 0.656
2vs1 1.55 0.00042 2.06 0.00067
3vs1 2.4 <5e-6 4.3 <5e-6

Model M2 1.62 <5e-6 0.6 2.36 <5e-6 0.657
2vs1 1.44 0.01 2.12 0.0081
3vs1 2.54 <5e-6 5.22 <5e-6

Model M3 1.54 <5e-6 0.604 2.2 <5e-6 0.679
2vs1 1.87 <5e-6 2.95 <5e-6
3vs1 2.32 <5e-6 5.11 <5e-6

Model M4 (CRSS) 1.79 <5e-6 0.61 2.85 <5e-6 0.676
2vs1 1.76 8.10e-4 4.1 3.40e-4
3vs1 3.19 <5e-6 10.61 <5e-6
November 2021
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Models were built using data for which high-risk cytogenetic information (HRCA) was available (n = 384 for MMIn and n = 800 for MMRF). R-ISS information was available for only 355 out of
384 patients in the MMIn dataset and 658 out of 800 patients in the MMRF dataset. The model with the best performance was A3 and M4 (in bold).
Model A1: beta-2 microglobulin (b2M), albumin, LDH, and CA [del17, t(4;14), t(14;16)] at existing cutoffs. Model A2: age, b2M, albumin, calcium, estimated glomerular filtration rate (eGFR),
Hb, and HRCA using existing cutoffs. Model A3: age, b2M, albumin, calcium, eGFR, Hb, and HRCA using proposed cutoffs for MMIn data. Model M1: b2M, albumin, LDH, and HRCA at
existing cutoffs. Model M2: age, b2M, albumin, calcium, eGFR, Hb, and HRCA using existing cutoffs. Model M3: age, b2M, albumin, calcium, eGFR, Hb, and HRCA using proposed cutoffs
for MMIn data. Model M4: age, b2M, albumin, calcium, eGFR, Hb, and HRCA using proposed cutoffs for MMRF data.
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contributors of high-risk predictions in the MMIn dataset were the
presence of HRCA, elevated levels of b2M, higher age, and lower
levels of albumin (Figure 3). Furthermore, lower levels of eGFR and
hemoglobin alongwith elevated levels of calcium also contributed to
high-risk prediction in the patients. It was observed from the
waterfall plots (Figures 4–6) of the randomly chosen patients in
different risk stages that the order of the impact of the parameters
varied in different patients within the same risk category. For the
high-risk category (Figure 6), HRCAhad the highest impact on one
of the randomly chosen patients; in another patient, b2M had the
highest impact in contributing tohigh risk,while in the third patient,
age and albumin had the highest prognostic impact. This suggests
that the risk assessment inMM is a cumulative function of multiple
factors. An individual parameter cannot adequately capture the risk
associated with MM given that other prognostic parameters could
influence the outcome. Furthermore, the complex association
among different parameters that encapsulates the disease risk
varies according to the patients, thereby leading to a varying order
of impact ofparameters in thepatients.Hence, theAI-baseddecision
tree algorithms can handle such an integrated analysis. This analysis
reveals that each patient is unique and multiple factors interact and
impact the outcome differently in individual patients.
DISCUSSION

The influence of ethnicities on clinical characteristics in patients
belonging to distinct ethnic groups is well known, and therefore, it is
Frontiers in Oncology | www.frontiersin.org 8
of paramount interest to integrate the ethnic group-specific
information in risk-staging models as it can affect the risk score
prediction. The R-ISS (3) is the current standard of care for staging
myeloma patients which includes a few HRCA, but molecular
aberrations such as 1q gain and chromothripsis associated with
adverse outcome have been overlooked (24). In fact, it includes t
(4;14), which has lost significance in patients treated with triplet
regimens (25). Besides, theR-ISSdoesnot include any ethnic-specific
information and, therefore, is not robust considering the large
heterogeneous population of MM patients globally. An ideal risk-
staging system would be based on all the known adverse prognostic
factors including clinical, ethnic, andmolecular aberrations. There is
a tremendous heterogeneity in global healthcare systems that limit
the availability of high-endmolecular testing for all patients, and yet,
the internet/electronic connectivity allowspatients to receivemedical
advice from global leaders in medicine. Recently, an AI-supported
risk-staging model, MRS (26), has been developed for NDMM;
however, it does not include HRCA and ethnicity information.
Considering the present world scenario, it is, thus, desirable to
develop a simple risk-staging model that integrates ethnic-specific
characteristicsof theprognosticparameters that are easy toacquire in
the healthcare settings worldwide.
Risk-Staging Models and Their
Performance as Compared With the R-ISS
In contrast to the R-ISS which utilizes four parameters, seven
parameters were taken into consideration for designing the
TABLE 3 | Prediction of progression-free survival and overall survival (in %) for CRSS and R-ISS at 1, 2, 3, 4, and 5 years in the MMIn (n = 384) and MMRF datasets
(n = 800).

MMIn data

R-ISS (n = 355) CRSS (n = 384)

Year 1 2 3 1 2 3
PFS 1 0.9318 0.8305 0.6967 0.8966 0.7812 0.7196

2 0.8606 0.6601 0.5223 0.7709 0.6265 0.4472
3 0.6404 0.5124 0.3632 0.6449 0.4729 0.2515
4 0.3422 0.4179 0.2810 0.5251 0.3624 0.0587
5 0.2738 0.2856 0.2342 0.4014 0.2679 0.0587

OS 1 0.9773 0.9387 0.7784 0.9630 0.8938 0.7976
2 0.9540 0.8415 0.6393 0.9466 0.7679 0.6155
3 0.9282 0.7764 0.5342 0.9098 0.6702 0.5831
4 0.8895 0.6790 0.4953 0.8979 0.5691 0.4574
5 0.8895 0.6422 0.3698 0.8979 0.4791 0.3136

MMRF data

R-ISS (n = 658) CRSS (n = 800)

Year 1 2 3 1 2 3
PFS 1 0.9033 0.8132 0.6358 0.9325 0.8367 0.6611

2 0.7957 0.6261 0.4040 0.8162 0.6734 0.4423
3 0.6295 0.4862 0.3059 0.7008 0.5084 0.3129
4 0.4641 0.3414 0.2781 0.5151 0.3711 0.2249
5 0.2769 0.2450 0.2781 0.4121 0.2637 0.1799

OS 1 0.9807 0.9092 0.8559 0.9869 0.9379 0.8231
2 0.9612 0.8372 0.6460 0.9689 0.8772 0.6780
3 0.9286 0.7799 0.5211 0.9478 0.8217 0.5814
4 0.8833 0.7461 0.4904 0.9478 0.7844 0.5293
5 0.5748 0.7108 0.3678 0.9478 0.6569 0.4691
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CRSS. It was observed that the cutoff values for these parameters
derived using KAP vary in the two cohorts, one of which belongs
to Indian and the other belongs to the American population. For
the Indian data, there was a change in the cutoff values for b2M,
age, eGFR, and hemoglobin, while there was no change in the
cutoff value for calcium and albumin as shown in Table 1. For
the MMRF data, there was a change in cutoff values for calcium,
eGFR, hemoglobin, and age, while the cutoff values for albumin
and b2M remain unchanged. The median age of onset of MM in
the Indian population is almost a decade early as compared with
the population in the USA (27, 28). This supported our assertion
of choosing different cutoffs of age for MMIn from the
MMRF dataset.

Various models were built on the different combinations of the
parameters using both the established and proposed cutoffs for the
two datasets. The best stagingmodel for both datasets was obtained
Frontiers in Oncology | www.frontiersin.org 9
when the proposed cutoffs for the respective cohorts were used.
When the ML-derived cutoffs were used for the parameters age,
eGFR, hemoglobin, and b2M in the A3 model, performance was
enhanced significantly in termsofhighC-indexandhazard ratios as
compared with the R-ISS. A similar observation was noticed in the
M4 model which utilized ML-derived cutoffs obtained for the
MMRF dataset and achieved the best performance among all the
models with a significant improvement in the C-index as well as
hazard ratios as comparedwith the R-ISS. Overall, A3 andM4were
thebest stagingmodels for theMMInandMMRFdata, respectively.
The improvement in the performance of the model verified our
hypothesis that the cutoffs of the different parameters vary with
different ethnicities.

The plausibility of the proposed model was further
substantiated by performing significance testing. The Kruskal–
Wallis test showed statistically significant variations (p < 0.05) in
A B

C D

FE

FIGURE 3 | Model interpretation using SHAP (SHapley Additive exPlanations). SHAP summary plots for different risk stages inferred from MMIn data showing the
relative impact of different parameters (top to bottom) contributing to a particular risk stage prediction. (A, B) CRSS-1: Normal levels of b2M and hemoglobin are the
key contributors to the low-risk stage prediction. Furthermore, high values of age on the left side of the summary plot are pushing the model away from the low-risk
prediction and are indicative of either intermediate or high risk. Overall, b2M has the highest impact and calcium has the lowest impact on the low-risk stage
prediction. (C, D) CRSS-2: b2M and hemoglobin are the key contributors to the intermediate-risk stage. Elevated levels of b2M with lower levels of hemoglobin are
indicative of intermediate risk. (E, F) CRSS-3: Presence of HRCA is contributing the most to the high-risk stage. Elevated values of b2M and calcium and lower levels
of albumin, hemoglobin, and eGFR are contributing toward the high-risk stage prediction.
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A B

C D

FIGURE 4 | SHAP waterfall plots for the randomly chosen four patients in low-risk stage (CRSS-1) from the MMIn dataset. The pink color shows the positive impact
of the feature, while the blue color shows the negative impact of the feature. Features with a positive impact contributed to the class of low-risk stage prediction,
while features with a negative impact contributed to class opposite to low risk. b2M, hemoglobin, age, and HRCA have the highest overall impact on low-risk stage
prediction in the MMIn dataset. However, this ranking itself differs from patient to patient as can be seen in (A–D). (A) b2M has the highest impact followed by
hemoglobin, age, and HRCA. (B) Hemoglobin has the highest impact followed by b2M and age. (C, D) b2M has the highest impact followed by age and HRCA.
A B

C D

FIGURE 5 | SHAP waterfall plots for the randomly chosen four patients in the intermediate-risk stage (CRSS-2) from the MMIn dataset. The pink color shows the
positive impact of the feature, while the blue color shows the negative impact of the feature. Features with a positive impact contributed to the class of intermediate-
risk stage prediction, while features with a negative impact contributed to the class opposite to intermediate risk. b2M, hemoglobin, HRCA, and albumin have the
highest overall impact on the intermediate-risk stage prediction in the MMIn dataset. However, the ranking of the features itself differs from patient to patient as can
be seen in (A–D). (A) b2M has the highest impact followed by HRCA. (B) Hemoglobin has the highest impact followed by HRCA. (C) HRCA has the highest impact
followed by albumin. (D) Albumin has the highest impact followed by age.
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the median values of the parameters age, albumin, b2M, eGFR,
and hemoglobin across the three risk groups (Figures S4, S5) for
both datasets. Furthermore, theWilcoxon rank-sum test revealed
statistically significant variations (p < 0.05) in the median values
of the parameters between two successive risk groups (CRSS-1
and CRSS-2; CRSS-2 and CRSS-3). Furthermore, CRSS for the
MMIn and MMRF datasets were interpreted using SHAP (13) to
establish the clinical relevance of the risk stages predicted by the
CRSS. For the MMIn data, elevated levels of b2M and calcium
with lower levels of eGFR and hemoglobin contributed to high
risk, whereas in the MMRF data, elevated levels of b2M and
lower levels of hemoglobin, eGFR, and albumin contributed to
high risk in myeloma patients. These findings are in accordance
with the observations mostly identified in high-risk MM patients.
Additionally, it was observed that the order of impact of
hemoglobin was higher in low-risk stage prediction in the
MMIn dataset as compared with the MMRF dataset, while the
order of impact of hemoglobin was higher in high-risk stage
prediction in the MMRF dataset as compared with the MMIn
dataset (Figures 3, 7). The difference in the rankings can be
attributed to the varying ethnicities and further confirmed our
claim of using ethnicity-aware risk-staging models for MM. In
the present study, we have used the MMIn and MMRF cohorts
belonging to Indian and American ethnicities, respectively, for
building CRSS models. Results on both cohorts have
strengthened our claim that the robustness of the staging
model is amplified by inclusion of ethnicity-specific cutoffs of
the prognostic factors as well as by utilizing AI techniques.

The classification rules were obtained using a decision tree
classifier on the classification output of the best performing
models in both MMIn and MMRF data. Overall classification
accuracy was 94.79% and 98% for the MMIn and MMRF data,
respectively. Final risk stages were evaluated using the
Frontiers in Oncology | www.frontiersin.org 11
classification rules in both datasets. Furthermore, it is evident
from the UMAP plots that both the MMIn and MMRF data were
not visible as three separate risk groups initially in the absence of
CRSS risk labels (Figures S3A, C, E). With the addition of these
risk labels with every patient sample, the subjects could be seen to
be grouped separately (where a group corresponds to one risk
label) in the UMAP plot (Figures S3B, D). This demonstrates
the ability of the CRSS model in identifying the risk groups
correctly from the non-separable data. To further validate our
model, we found risk stages in 123 prospective subjects of MMIn
data that were not used to build the CRSS model. UMAP plots
(Figure S3F) suggest that the prospective subjects got correctly
aligned to their respective risk stages inferred via CRSS.

For the MMIn data, b2M was in the highest level of hierarchy
in the classification rules followed by hemoglobin and HRCA
(Figure S2A). For the MMRF data, the prognostic factor in the
highest level of hierarchy was b2M followed by albumin and Hb
(Figure S2B). The cutoff values for b2M, albumin, and Hb were
5.2, 3.55, and 9.64. The cutoffs for b2M and albumin were not
changed, but the cutoff value proposed for Hb was 9.59, which
was close to the observed value in the classification rules. This
observation further justified our choice of using new cutoffs for
the risk-staging model.

Conclusion
In this work, we examined the impact of ethnicity-based cutoffs of
laboratory parameters derived using the ML algorithm on risk
prediction in Indian and American patients with MM.We trained
different risk-staging models for both the MMRF and MMIn
datasets. The best predictor model was obtained when ethnicity-
specific cutoffs of the clinical parameters were utilized.
Furthermore, we presented a new reliable and robust AI-enabled
risk-staging system, namely, CRSS, which utilizes easily acquirable
A B

C

FIGURE 6 | SHAP waterfall plots for randomly chosen patients in high-risk stage (CRSS-3) from the MMIn dataset. The pink color shows the positive impact of the
feature, while the blue color shows the negative impact of the feature. Features with a positive impact contributed to the class of high-risk stage prediction, while
features with a negative impact contributed to class opposite to highest risk. HRCA, b2M, age, and albumin have the highest overall impact on high-risk stage
prediction. However, this ranking differs from patient to patient as can be seen in (A–C). (A) HRCA has the highest impact. (B) b2M has the highest impact.
(C, D) Age and albumin have the highest impact.
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laboratory and clinical parameters, i.e., age, albumin,b2M, calcium,
eGFR, and hemoglobin along with HRCA (Table S5). Risk
stratification achieved by AI-assisted CRSS is able to better
separate the patients into different risk groups as compared with
the R-ISS. High concordance-index and hazard ratios reveal the
superior performance of the CRSS as compared with the R-ISS.

Furthermore, the clinical and biological significance of the
decision tree classifier rules for risk stage prediction in MM
patients was deduced via SHAP analysis on both datasets. The
successful evaluation of our proposed staging system on both
datasets establishes the utility of the proposed ethnicity-aware
staging system for NDMM patients, treated largely with novel
agents or a combination thereof, in a real-world scenario. Our
study also highlights the importance of application of AI in
building CRSS, thereby enhancing the prediction of survival
outcome and separability of risk stages in NDMM patients. We
have also developed a web platform-based AI-assisted ethnicity-
aware MM risk-staging calculator.
Frontiers in Oncology | www.frontiersin.org 12
Limitations and Future Work
The CRSS has been built on a smaller set of NDMM patients as
compared with the R-ISS (3) study. In the future, the CRSS
model may be tested on larger datasets with varying ethnic
groups as the cohort size of the present study is 25% of the
cohort used in the R-ISS reported in 2015. As the CRSS
calculator becomes available online, data could be generated by
independent groups for further validation in real-world scenarios.
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FIGURE 7 | Model interpretation using SHAP. SHAP summary plots for different risk stages inferred in MMRF data showing the impact of different parameters used
in the model. (A, B) CRSS-1: albumin, HRCA, and b2M have the highest impact on the low-risk stage. Normal levels of albumin, absence of HRCA, and lower values
of b2M are contributing to low risk (CRSS-1) in myeloma patients. (C, D) CRSS-2: b2M, albumin, and HRCA are the key contributors to the intermediate-risk stage.
(E, F) CRSS-3: b2M and hemoglobin have the highest impact on the high-risk stage. Elevated levels of b2M and lower values of hemoglobin are contributing toward
the high-risk stage in the patient. Lower values of albumin and eGFR are further promoting high-risk stage prediction.
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